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Abstract 
This paper proposes a novel edge-based stitching 
method to detect moving objects and construct 
mosaics from images.  The method is a 
coarse-to-fine scheme which first estimates a good 
initialization of camera parameters with two 
complementary methods and then refines the 
solution through an optimization process.  The 
two complementary methods are the edge 
alignment and correspondence-based approaches, 
respectively. Since these two methods are 
complementary to each other, the des ired initial 
estimate can be obtained more robustly.  After that, 
a Monte-Carlo style method is then proposed for 
integrating these two methods together.  Then, an 
optimization process is applied to refine the above 
initial parameters.  Since the found initialization is 
very close to the exact solution and only errors on 
feature positions are considered for minimization, 
the optimization process can be very quickly 
achieved.  Experimental results are provided to 
verify the superiority of the proposed method. 
Keywords:  Image registration, image-based 
rendering, mosaics, moving object detection, and 
video retrieval. 

1. Introduction 
Image stitching is the process of recovering the 
existing camera motions between images and then 
compositing them together.  This  technique has 
been successfully applied to  many different 
applications like video compression [1], video 
indexing [2]-[3], object tracking [9], or creation of 
virtual environments [5]-[8], [12].  For example, 
Shum and Szeliski [7]-[8] proposed methods to 
stitch a set of images together to form a panorama.  
In addition, Irani and Anandan [2] used this 
technique to represent and index different video 
contents.  Moreover, Jin et al. [9] used this 
technique to compensate unwanted camera motions 
for extracting desired objects from video sequences.  
For most methods in this field, an affine camera 

model is used to approximate the possible motions 
between two consecutive frames.  Then, the 
parameters of this model can be recovered from 
pair of images by two common methods, i.e., the 
correlation-based approach and the 
optimization-based one.  For the first approach, 
the measure “correlation” can be calculated in 
frequency domain or spatial domain.  For example, 
Kuglin and Hines [4] presented a phase-correlation 
method to estimate the displacement between two 
adjacent images in frequency domain.  For the 
approaches in spatial domain, Sawhney and Ayer [1] 
proposed a feature matching approach to estimate 
the dominant and multiple camera motions.  In 
addition, Zoghlami et al. [11] proposed a 
corner-based approach to build a set of 
correspondences for computing the transformation 
parameters from pair of images. However, the 
establishment of good correspondences is a 
challenging work when images have nonlinear 
intensity changes [17].  In order to avoid this  
problem, some researchers [6], [13] treated the 
stitching problem as a global optimization problem.  
For example, Szeliski [6] proposed a nonlinear 
minimization algorithm for automatically 
registering images by minimizing the discrepancy 
in intensities between images.  In addition, Davis 
[13] proposed an optimization scheme to obtain a 
least-square solution by globally optimizing all 
pair-wise registrations.  In comparison with the 
correlation-based method, the global optimization 
approach performs more robustly but will be 
trapped on a local minimum if the starting point is 
not properly initialized.   

In this paper, we present an edge-based 
stitching technique to detect moving objects and 
construct mosaics from consecutive images.  In 
general, the transformations between consecutive 
images can be described by a planar perspective 
motion model.  Since the transformation is 
non-linear, the paper uses a coarse-to-fine approach 
to robustly and accurately recover the desired 
model parameters.  Firstly, at the coarse stage, two 



complementary methods, i.e., the edge alignment 
and the correspondence-based approaches, are 
proposed to get respective initial estimates from 
images.  Then, at the fine stage, the found initial 
estimate can be further refined through an 
optimization process.  The edge alignment 
method finds possible image translations by 
checking the consistencies of edge positions 
between different images.  It is simple and 
efficient without involving any optimization 
process or building any correspondences.  In 
addition, the method has better capabilities to 
overcome large displacements and lighting 
variations between images.  On the other hand, 
the correspondence-based method obtains desired 
model parameters from a set of correspondences by 
using a new feature extraction and a new 
correspondence building method.   Especially, 
when building correspondences, a new measure is 
defined to measure the goodness of each match 
such that all false correspondences between 
features can be eliminated as well as possible.  
Compared with the edge alignment method, the 
correspondence-based approach can solve more 
general camera motion model but fails to work 
when images have large lighting changes.  
Therefore, due to the complementary property of 
the two methods, we can obtain the desired initial 
estimate more robustly.  After that, a Monte-Carlo 
style method with gird partition is then proposed to 
integrate these methods together. The grid partition 
scheme can much enhance the accuracy of each try 
for deriving the correct parameters.  Then, the 
found parameters are further refined through an 
optimization process.  Sine the minimization is 
only applied to the positions of matching pairs, the 
optimization process can be performed very 
efficiently. From experimental results, the proposed 
method indeed achieves great improvements in 
terms of stitching accuracy, robustness, and 
stability.  

The rest of the paper is organized as follows.  
In the next section, we will present an affine model 
to appro ximate the motions of a video camera.   
Then, details of the proposed method for 
recovering the parameters of this  model are 
described in Section III.   Section IV reports the 
experimental results.  Finally, conclusions will be 
presented in Section V.  

2. Camera Motion Model 
Assume that input images are captured by a video 
camera.  Then, the relationship between two 
adjacent images can be described by an affine 
camera model:  
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where (x, y) and ( ', ')x y  are a pair of pixels in the 

two adjacent images 0I  and 1I , and 

0 1 7( , ,..., )M m m m=  the motion parameters.  The 
M can be obtained by minimizing the error function 
E(M)  as follows: 
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where ' '
1 0( , ) ( , )i i i i ie I x y I x y= − . Then, Szeliski[7] 

gave the solution M with the iterative form: 
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coefficient obtained by the Levenber-Marquardt 
method [18].  The method works well if the initial 
value to the correct M is close enough.  However, 
it suffers from low convergence and gets trapped in 
local minimum if the initialization is not proper, 
especially when images have large displacements.  
It is noticed that Eq.(3) tries to find desired 
solutions by minimizing intensity errors of all 
pixels between images.   When the number of 
iterations increases, the calculation of intensity 
errors will become very time-consuming.  
Therefore, in what follows, we will propose a fast 
edge-based algorithm for tacking all the above 
problems. 

3. Fast Algorithm for Mosaic 
Construction and Object Detection 

In this paper, a coarse-to-fine approach is proposed 
to guide the optimization process.  First, an 
edge-based approach is proposed to find a good 
initial estimate and then the initial result is refined 
through an optimization process.  The initial 
estimate is got from two complementary methods, 
i.e., the edge alignment and the correspondence- 
based approaches.  Since the two methods are 
complementary to each other, the robustness of the 
whole process of parameter estimation can be much 
enhanced.  After that, a Monte Carlo style method 
is then used to integrate the above solutions 
together.   For accuracy consideration, the found 
parameters can be further refined with an 
optimization process, which minimizes errors only 
on the coordinates of feature points.  Sine the 
number of feature points is much smaller than the 
whole image, the optimization process can be 
performed extremely efficiently. The overall 
flowchart of the proposed approach is described in 
Fig. 1.  In what follows, details of each proposed 
algorithm are described. 



3.1 Translation Estimation Using Edge 
Alignment 

As described in Fig. 1, for the purpose of 
robustness, we propose two strategies to find 
different initializations fed into an optimization 
process for deriving the correct model parameters.  
In this section, the edge alignment method is first 
proposed to estimate desired model translations 
from images.  Let ( )xg p  be the gradient of a 
pixel p in the x direction of an image I, i.e., 

( ( , )) | ( ( 1, )) ( ( 1, )) |xg p i j I p i j I p i j= + − − , 
where ( )I p  is the intensity of p.  In addition, let 

( )gS i  denote the sum of ( )xg p  obtained by 

accumulating ( )xg p  along pixels in the ith 
column, i.e.,   

1
( ) | ( ( 1, )) ( ( 1, )) |g

j

S i I p i j I p i j
H

= + − −∑ , 

where H is the height of I.  If ( )gS i  is larger 
than a threshold, i.e., 15, the ith column is 
considered to have a vertical edge.  After checking 
all pixels of input images column by column, a set 
of positions of vertical edges can be found. 

Assume aI  and bI  are two images 
prepared to be stitched and shown in Fig. 2 (a) and 
(b), respectively.  Through the above vertical edge 
detector, the positions of vertical edges in aI  and 

bI  can be obtained as v
aP = (100, 115, 180, 200, 

310, 325, 360, 390, 470) and v
bP = (20, 35, 100, 

120, 230, 245, 280, 310, 390), respectively.  If the 
images aI  and bI  come from the same static 
scene, there should exist an offset xd  such that 

( ) ( )v v
a b xP i P j d= +  and the corresponding relation 

between i and j is one-to-one.  Then, the offset 

xd  is the desired translation solution between aI  
and bI  in the x direction, i.e., xd = 80.  Based 
on this idea, in what follows, a novel method will 
be proposed to estimate desired translation 
parameters from images without building any 
correspondences or involving any optimization 
processes. 

Before describing the proposed method, we 
shall know in practice due to noise, some edges 
will be lost or undetected.  The lost or undetected 
edges will lead to that the relations between v

aP  

and v
bP  are no longer one-to-one.  For this 

problem, this paper defines a distance function 
( , )vd i k  to measure the distance of a position 

( )v
aP i  to the translation solution k as 

( , )vd i k
1
min | ( ) ( ) |

v
b

v v
a b

j N
P i k P j

≤ ≤
= − − , (4) 

where v
bN  is the number of elements in v

bP .  
Let dT  denote a threshold and set to be 4.  Given 

a number k, we want to determine the number v
pN  

of elements in v
aP  whose ( , )vd i k  is less than 

dT .  In addition, we denote the average value of 

( , )vd i k  for these v
pN  elements as v

kE , which 
can be used as an index to measure the goodness of 
k to see whether it is a suitable translation solution.  
If v

kE  is smaller enough and v
pN  is larger 

enough, the position k will be a good horizontal 
translation.  More precisely, if v

k eE T≤  and 
v
p pN T≥ , the k is collected as an element of the set 

xS  of possible horizontal translations, where the 
two thresholds pT  and eT  are set to be 5 and 2, 

respectively.  Let bW  denote the width of the 
input image bI . Through examining different k for 
all | | bk W< , the set xS  can be obtained. 

On the other hand, let h
aP  and h

bP  denote 
as the sets of horizontal edge positions in aI  and 

bI , respectively.  With h
aP  and h

bP , we can 
define a distance function hd  as follows: 

( , )hd i k
1
min | ( ) ( ) |

h
b

h h
a b

j N
P i k P j

≤ ≤
= − − , (5) 

where h
bN  is the number of elements in h

bP .  

Let bH  denote the height of the input image bI .  
According to hd , with the similar method to 
obtain xS , by examining different k for all 
| | bk H< , the set yS  of possible vertical 

translations can be obtained.  With xS  and yS , 

the set xyS  of possible translations can be 

obtained as: { }( , )  |  ,  xy x yS x y x S y S= ∈ ∈ .  The 

best translation can be then determined from xyS  
through a correlation technique.  Details of the 
whole algorithm are summarized as follows. 
Edge-based Translation Estimation Algorithm: 

aI  and bI : two adjacent images prepared to be 
stitched.  
S1: Apply a vertical edge detector to find the sets 

v
aP  and v

bP  of vertical edge positions from 

aI  and bI , respectively. 



S2: Determine the set xS  of possible horizontal 

translations from v
aP  and v

bP  based on 
( , )vd i k  (see Eq.(4)). 

S3: Apply a horizontal edge detector to find the 
sets h

aP  and h
bP  of horizontal edges from aI  

and bI , respectively. 

S4: Determine the set yS  of possible vertical 

translations from h
aP  and h

bP  based on 
( , )hd i k  ( see Eq.(5)). 

S5: Let xyS  denote the set of possible translations, 

i.e., { }( , )  |  ,  xy x yS x y x S y S= ∈ ∈ . 

S6: Determine the best solution ( , )x yt t  from xyS  
through a correlation technique.  

3.2 Motion Parameter Estimation by 
Feature Matching 

As described in Fig. 1, two strategies are used to 
find respective initial estimates of camera 
parameters for further optimization process.  In 
this section, details of the correspondence-based 
method are described.  In Section 3.2.1, we will 
propose a new method to extract a set of useful 
feature points from images based on edges.  Then, 
details of building correspondences between 
features are described in Section 3.2.2.  However, 
due to noise, many false matches will also be 
generated.  In Section 3.2.3, a new scheme is 
proposed to eliminate all impossible false matches.     

3.2.1 Feature Extraction 
In this section, we will use several edge operators  
to extract a set of useful feature points.  First of all, 
let the gradients of an image I(x,y)  at scale σ  in 
the x and y directions be denoted as ( , )xI x yσ  

* ( , )xI G x yσ=  and ( , ) * ( ,y yI x y I G x yσ σ= ) , where 

xGσ  and  yGσ  are the first partial derivatives of a 

2D Gaussian smoothing function ( , )G x yσ  in the 
x and y directions, respectively, where σ  is a 
standard deviation.  Then, the modulus of xI σ  

and yI σ  is defined as: 

2 2| ( , ) | | ( , ) | | ( , ) |x yI x y I x y I x yσ σ σ∇ = + . 
Since we are interested in some specific feature 
points for image stitching, additional constraints 
have to be introduced.  In what follows, two 
conditions adopted here for judging whether a 
point P(x,y)  is a feature point or not are 
summarized as follows:  

C1: P(x,y) must be an edge point of the image 
I(x,y).  This means that P(x,y) is a local 

maxima of 2 ( , )M I x y , and 2 ( , )M I x y  > a 
threshold; 

C2: 2| ( , ) |I x yσ
σ =∇  = { }

' ' 2
( , )

max | ( ', ' ) |
px y N

I x yσ
σ =

∈
∇ , 

where pN  is a the neighborhood of P(x,y) 
within an 13×13 window.  

3.2.2 Correspondence Establishment 
In the previous section, we have described how the 
feature points between ( , )aI x y  and ( , )bI x y  are 
derived.  Now, we are ready to find the matching 
pairs between aI  and bI .  Let {

aI iFP p= =  

( , )}i i
x yp p  and { }( , )

b

i i
I i x yFP q q q= =  be two sets 

of feature points extracted from two images aI  
and bI , respectively.  In addition, 

aIN  and 
bIN  

represent the number of elements in 
aIFP  and 

bIFP , respectively.  The similarity between two 
feature points p and q is measured by their 
normalized cross-correlation denoted as ( , )C p q .  

For each point ip  in 
aIFP , find the maximum 

peak of the similarity measure as its best matching 
point q in another image bI .  Then, a pair 
{ }i ip q⇔  is qualified as a matching pair if two 
conditions are satisfied: 

( , ) max ( , )
k Ib

i i i kq FP
C p q C p q

∈
=  and ( , )i i cC p q T≥ , (6) 

where 0.75cT = .  The first condition enforces to 
find a feature point 

bk Iq FP∈  such that the 

measure ,a bI IC  is maximized.  As for Condition 

2, it forces the value ,a bI IC  of a marching pair to 

be larger than a threshold (0.75 in this case). 
3.2.3 Eliminating False Matches 

In the previous section, through matching, a set of 
matching pairs has been extracted.  However, if 
the relative geometries of features are considered, 
the matching results can be refined more accurately. 
Let { }, 1,2...a bI I i i i

MP p q
=

= ⇔  be the set of 

matching pairs, where ip  is an element in 
aIFP  

and iq  another element in 
bIFP .  Let ( )

aI iNe p  

and ( )
bI iNe q  be the neighbors of ip  and iq  

within a disc of radius R, respectively.  Assume 

that { }1 2

1,2....i jp q k k k
NP n n

=
= ⇔  is the set of 

matching pairs, where 1 ( )
ak I in Ne p∈ , 2

kn ∈  

( )
bI jNe q , and all elements of 

i jp qNP belong to 

,a bI IMP .  The proposed method is based on a 



concept that if { }i ip q⇔  and { }j jp q⇔  are 

two good matches, the relation between ip  and 

jp  should be similar to the one between iq  and 

jq .  Based on this assumption, we can measure 

the goodness of a matching pair { }i ip q⇔  

according to how many matches { }1 2
k kn n⇔  in 

i ip qNP  whose distance d( ip , 1
kn ) is similar to the 

distance d( jq , 2
kn ), where ( , ) || ||i j i jd u u u u= − , the 

Euclidean distance between two points iu  and 

ju .  Then, the measure of goodness for a match 

{ }i ip q⇔  can be defined as: 

1 2

1 2

{ }

( , ) ( , )
( )

1 ( , )a b

k k p qi i

k k
I I

n n NP

C n n r i k
G i

dist i k⇔ ∈

=
+∑ , 

where 1 2( , ) [ ( , ) ( , ) ] /2i k i kdist i k d p n d q n= + , 1( ,kC n  
2 )kn  the correlation measure between 1

kn  and 2
kn , 

( , )r i k = 1( , ) /i k Te µ− , with a threshold T1, and ( , )u i k  

= 1 2| ( , ) ( , ) | / ( , )i k i kd p n d q n dist i k− . The contribution 

of a pair { }1 2
k kn n⇔  in 

i ip qNP  monotonically 
decreases based on the value of dist(i, k). 

After calculating the goodness of each pair 

{ }i ip q⇔  in ,a bI IMP , we can obtain their relative 

goodness ( )
a bI IG i  for further eliminating false 

matches.  Assume G  is the average value of 
( )

a bI IG i  for all matching pairs.  If the value of 

( )
a bI IG i  is less than 0.75 G , the matching pair 

{ }i ip q⇔  is eliminated. 

3.3 Motion Parameter Estimation 
Using Monte Carlo Method 

In this section, a Monte-Carlo -style method is 
proposed for integrating these methods together for 
further optimization process.  The spirit of the 
Monte Carlo method is to use many tries to find (or 
hit) the wanted correct solution.  Assume each try 
can generate a solution and the probability to find a 
correct solution for each try is r.  After k tries, the 
probability of continuous failure to find a correct 
solution is (1 )ks r= − .  Clearly, even though r is 
very small, after hundreds or thousands of tries, s 
will tend very closely to zero.  In other words, if 
we define a try as a random selection of four 
matching pairs, each try will generate a solution.  
Then, it is  expected that a correct solution M will 
be obtained after hundreds or thousands of tries. 
 As we knew, for each try, four matching pairs 

will be selected to obtain a possible solution.  If 

rMP  has rN  elements and cN  ones are correct, 
the probability to select four correct pairs for each 

try will be 
( 1)( 2)( 3)
( 1)( 2)( 3)

c c c c

r r r r

N N N N
N N N N

− − −
− − −

.  In what 

follows, a method is proposed to improve the 
probability for each try to find a correct solution by 
separating images into grids.  Assume all the 
correct and false matching pairs distribute very 
randomly.  Then, if the input images are 
segmented into several grids, in each grid the 
probability to select a correct matching pair is still 

/c rN N .  Therefore, we can select four different 
girds first and then get one matching pair from 
each grid.  With this method, the probability to 
select four correct matching pairs will become 

4 4/c rN N . Clearly, 
( 1)( 2)( 3)
( 1)( 2)( 3)

c c c c

r r r r

N N N N
N N N N

− − −
− − −

< 

4 4/c rN N  if c rN N< .  Thus, the suggested 
method can better enhance the hit rate of finding 
four correct matching pairs to derive desired 
parameters.  
 On the other hand, since the Monte Carlo 
method uses lots of tries to find final desired 
solutions, we should propose a verification process 
to determine which try is the best.  Assume 

0( ,i iM m= 1 7,..., )i im m  is the solution got from the 
ith try.  The verification process can be achieved 
by comparing how many matching pairs in rMP  

are consistent to iM . Let { }p q↔  be a 

matching pair and the consistent error ( , , )ie p q M  
of this pair to iM  be: 
 2 20 1 2 3 4 5

6 7 6 7

( , , ) ( ) ( )
1 1

i x i y i i x i y i
i x y

i x i y i x i y

m p m p m m p m p m
e p q M q q

m p m p m p m p
+ + + +

= − + −
+ + + +

.(7) 

For each matching pair { }k kp q↔  in rMP , if 

( , , )i
k k ee p q M T< , the pair { }k kp q↔  is said to 

be consistent to iM , where eT  is a threshold set 
to 6 for the consistency check.  Based on Eq.(7), a 
counter ( )ic M  is used to record how many 
matching pairs in rMP  which are consistent to 

iM .  After several tries, the best solution M  
can be obtained as follows: 

argmax ( )
i

i

M
M c M= . (8) 

When initialization (i=0), 0M  is got from the 
edge alignment approach (see Section 3.1).    

3.4 Parameter Refinement through 
Optimization 

With the Monte Carlo method, the best estimate 



M  can be found from rMP .  However, if an 

optimization process is applied, M  can be further 
refined.  In Section 3.2, two sets of feature points, 
i.e., 

aIFP  and 
bI

FP , have been extracted from the 

images aI  and bI , respectively.  For each point 

ip  in 
aIFP  and jq  in 

bIFP , according to Eq.(7) 

and M , if ( , , )i j ee p q M T< , we denote 

{ }i jp q⇔  as a new match.  Then, after checking 

all elements in 
aIFP  and 

bIFP , a new set M
MP  

of matching pairs can be obtained: 
{ , 1,2,..., }k kM M

MP p q k N= ⇔ = , 

where ( , , )k k ee p q M T< ,
ak Ip FP∈ , and 

bk Iq FP∈ .  
Then, we can define an error function as: 

1

( ) ( , , )
MN

k k
k

M e p q M
=

Φ = ∑ , (9) 

where { }k kp q⇔  is an element in M
MP .   By 

calculating the gradient and Hessian matrix of Φ , 
M  can be updated with the iterative form: 

1
1 ( )T T

t tM M A Bλ −
+ = + + , (10) 

where  
1

[ ]
M

k k

i j

N
e e

ij m m
k

A ∂ ∂
∂ ∂

=

= ∑ , 
1

[ ]
M

k

i

N
e

i k m
k

B e ∂
∂

=

= ∑ , t is the 

iteration number,  and λ  is a coefficient obtained 
by the Levenber-Marquardt method [18].  The 
above minimization process quickly converges 
since only the coordinates of feature positions are 
considered into minimization and the initial 
estimate of M  is very close to the final solution. 

4. Experimental Results 
In order to analyze the performance of the 
proposed method, a series of real images were 
adopted as test images.  Fig. 3 shows the result for 
mosaic construction when a series of panoramic 
images are used.  In this case, before stitching, all 
the images are projected into a cylindrical map [5].  
Then, only the translation parameters need to be 
estimated.  Fig. 4 shows the case when images 
have larger intensity differences.  (a) and (b) are 
the original images and (c) is the stitching result.  
The large lighting changes will lead to the 
instability of feature matching in the traditional 
matching techniques like block matching or phase 
correlation techniques.  However, in this paper, 
the proposed edge alignment algorithm tries to find 
all possible translations by checking the 
consistence of edge positions instead of comparing 
the intensity similarity of images.  Therefore, 
even though images have larger lighting changes, 
the proposed method still works well to find all 
desired camera parameters for stitching.  Fig. 5 

shows the case when images have some moving 
objects.  The moving object will disturb the work 
of image stitching.  However, the proposed 
method still successfully stitches them together.  
Fig. 6 shows the result when images have some 
rotation and skewing effects.  In this case, the 
proposed Monte Carlo method still works well to 
find the correct camera parameters.  

The proposed method also can be used in 
camera compensation for extracting moving 
objects from video sequence.  Fig. 7 shows two 
frames got from a movie.  In order to detect the 
moving object, a static background should be 
constructed.  With the proposed method, the 
camera motion between Fig. 7(a) and Fig. 7(b) can 
be well found and compensated.  Fig. 7(c) is the 
mosaic of Fig. 7(a) and (b).  Then, the moving 
object can be detected by image differencing like 
Fig. 7(d).  The detection result is very useful for 
various applications like intelligent transportation 
system, video indexing, video surveillance, and etc.  
Fig. 8 is another case when a moving car appears in 
the video sequence.  From the experimental 
results, it is obvious that the proposed method is 
indeed an efficient, robust, and accurate method for 
image stitching. 

5. Conclusions 
In this paper, we have proposed an 

edge-based method for stitching series of images 
from a video camera.  In this approach, for 
robustness consideration, the initial estimate is 
estimated from two different schemes, i.e., the edge 
alignment approach and the correspondence-based 
one.  Since the two methods are complementary 
to each other, much robustness can be gained 
during the parameter estimation process. To 
integrate these two methods together, a 
Monte-Carlo style method is proposed to find the 
best motion parameters.  Then, the solution is 
refined through an optimization process. The 
contributions of this paper can be summarized as 
follows: 

(a) This paper proposed an edge alignment 
scheme for estimating translation parameters 
using edges.  The method has better 
capabilities to overcome the problems of large 
displacements and lighting changes between 
images. 

(b) A new feature extraction scheme was 
proposed to extract a set of useful features. 

(c) When building correspondences, a new 
scheme was proposed to eliminate many false 
matches by judging the goodness of a 
matching pair.  Through the judgment, a set 
of desired correspondences can be obtained 
more reliably. 



(d) A grid partition scheme was proposed to 
enhance the hit rate of obtaining four correct 
matching pairs.  Then, the correct parameters 
can be found with less tries. 

(e) An efficient optimization process was 
proposed for refining the estimated 
parameters more accurately.  Since only the 
errors on feature positions are considered, the 
minimization process can be performed 
extremely efficiently.     

Experimental results have shown our method is 
superior in terms of stitching accuracy, robustness, 
and stability.  

Acknowledges 
This work was supported in part by National 
Science Council of Taiwan under Grant 
NSC91-2213-E-150-019, Taiwan. 

References 
[1] H. Sawhney and S. Ayer, “Compact 

representation of video through dominant and 
multiple motion estimation, ” IEEE trans. 
Pattern Anal. Machine Intell., vol. 18, 814-830, 
Aug. 1997. 

[2] M. Irani and P. Anandan, “Video indexing 
based on mosaic representation,” Proc. IEEE, 
vol.86, pp. 905-921, May, 1998. 

[3] M. Bonnet, “Mosaic representation for video 
shot description,” Proc. MPEG-7 Evaluation 
Ad Hoc Meeting, pp. 636, Feb. 1999. 

[4] C. Kuglin and D. Hines, “The Phase 
Correlation Image Alignment Method,” Proc. 
of the IEEE Int. Con. on Cybernetics and 
Society, pp.163-165, 1975. 

[5] S. Chen, “Quicktime VR-an image-based 
approach to virtual environment navigation,” 
Proc. SIGGRAPH ’95, pp.29-38, 1995.  

[6] R. Szeliski, “Video Mosaics for Virtual 
Environments,” IEEE Computer Graph and 
Application, vol. 16, pp. 22-30, March 1996. 

[7] H. Y. Shum and R. Szeliski, “Systems and 
Experiment Paper: Construction of Panoramic 
Image Mosaics with Global and Local 
Alignment,”International Journal of Computer 
Vision, vol. 36, no. 2, pp. 101-130, 2000.  

[8] R. Szeliski and H. Y. Shum, “Creating full 
view panoramic image moaics and 
environment maps,” Proc. Computer Graphics 
Annu. Conf. Series, pp. 251-259, 1997. 

[9] J. S. Jin, Z. Zhu and G. Xu, “A stable vision 
system for moving vehicles”, IEEE Trans. on 
Intelligent Transportation Systems, vol. 1, No. 
1, pp.32-39, 2000. 

[10] H. Nicolas, “New methods for dynamic 
mosaicking,” IEEE trans. Image Processing, 
vol. 10, no. 8, pp. 1239-1251, Aug. 2001. 

[11] I. Zoghlami, O. Faugera, and R. Deriche, 
“Using geometric corners to build a 2D mosaic 
from a set of images,” Proc. Conf. Computer 
Vision and Pattern Recognition , Puerto Rico, 
pp.420-425, 1997. 

[12] C.T. Hsu et al., “Feature-based video  mosaic,” 
Proceedings of ICIP 2000, vol.2, pp.887-890, 
Vancouver, Canada, Sep. 2000. 

[13] J. Davis, “Mosaics of scenes with moving 
objects,” IEEE Proc. CVPR 1998.  

[14] C. Guestrin, F. Cozman, and E. Krotkov, “Fast 
Software Image Stabilization with Color 
Registration,” In Proceedings of Intelligent 
Robots and Systems Conference, pp.19-24, 
Victoria, Canada, October 1998. 

[15] S. B. Kang, “A survey of image-based 
rendering techniques,” Technical Report 97/4, 
Digital Equipment Corporation, Cambridge 
Research Lab.  

[16] J. W. Hsieh, H. Y. Mark Liao, K. C. Fan, M. T. 
Ko, and Y. P. Hung, “Image Registration 
Using a New Edge-based Approach, ” 
Computer Vision and Image Understanding, 
67, 112-130, 1997. 

[17] M. Sonka, V. Hlavac, and R. Boyle, Image 
Processing, Analysis and Machine Vision, 
London, U. K.: Chapman & Hall, 1993. 

[18] W. H. Press, S. A. Teukolsky, W. T. Vetterling, 
and B. P. Flannery, Numerical Recipes in C: 
the Art of Scientific Computing, Cambridge 
University Press. 

 

Translation Estimation
Using

Edge Alignment

Feature Extraction
Using Edge Operators

Correspondence
Establishment

Motion Estimation with
Monte Caro Approach

Input Images

Solution Refinement by
Optimization

Camera Compensation or Mosaic Construction
 

Fig. 1: Flowchart of the proposed method. 

 

 

 
 

(a)               (b) 
Fig. 2 Edge results of two images. 

 



 

 

 

 

 
 
 
 
 

Fig. 3: Stitching result of a series of 
panoramic images.  

  
(a)           (b) 

 
                    (c) 
Fig. 4: Stitching result of two images with larger 
lighting changes. (c) is the stitching result of (a) 
and (b) 

  
(a)              (b) 

 
(c) 

Fig. 5: Stitching result when images have moving 
objects.  (a) and (b) Original Images.  (c) 
Stitching result. 

 

 

 

 
Fig. 6: Stitching result when the camera has 
rotation changes. 

   
(a)                   (b) 

  
(c)                  (d) 

Fig. 7: Mosaic construction and object 
detection.  (c) is the mosaic result of (a) and 
(b).  (d) is the object detection result by 
image differencing. 

 

  
   (a)            (b)                                        

  
(c)                (d) 

Fig. 8: Mosaics and object detection when 
images have a moving object.  c) is the 
mosaic result of (a) and (b).  (d) is the object 
detection result by image differencing. 
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