應用於 JPEG2000 之上提式離散小波轉換電路

陳慶鴻

國立台灣海洋大學 電機工程學系

呂紹偉 國立台灣海洋大學 電機工程學系

李政宏 國立台灣科技大學 電子工程學系

E-mail:cloud@ds.ee.ntou.edu.tw

E-mail:swleu@ntou.net E-mail:D9102102@mail.ntust.edu.tw

摘要

本論文針對應用於 JPEG2000 之上提式離 散小波轉換提出一管線化的電路架構。在此一 架構中,我們將 JPEG2000 使用的兩種濾波器 加以整合。這兩種濾波器分別為應用於無失真 壓縮的 5/3 濾波器和應用於有失真壓縮的 9/7 濾波器。我們所提出的一維架構具有精簡且彈 性化的特點,但是需要對外部的記憶體作大量 的存取。針對這個缺點我們提出了一個以一維 架構為基礎而延伸出來的二維架構,經由將輸 入訊號的順序做最佳化的安排,可以有效減少 記憶體的使用量。相對於一維架構,二維架構 可以減少一半的外部記憶體存取,完成轉換所 需的時間也減少將近一半。在記憶體的使用量 方面,當影像的解析度為 N×N 時,我們所提 出的二維架構只需 9N 的儲存單元,且由於整 合 5/3 了和 9/7 濾波器,記憶體使用量也較個 別實現二種濾波器時所需的 14N 為少。

關鍵字:上提式離散小波轉換、JPEG2000、 影像處理。

簡介

近年來電腦科技的發展日新月異,各種聲 音、影像、圖片等多媒體資訊的應用與技術也 不斷的推陳出新,隨著網路傳輸以及資料備份 儲存的需求日益殷切,資料壓縮的技術越顯得 重要且不可避免。經過壓縮的資料不但可以節 省儲存的空間及網路傳輸的時間,還可以增 加資料的安全性。

自 90 年代起,小波轉換受到廣泛的討論 及應用,如數值分析、信號分析、統計學、生 物醫學、影像辨識及影像編碼等各種領域。由 於小波轉換具有多重解析(multiresolution)的 特性,使其特別適合應用在影像的分析和壓縮 [1]。在硬體實現方面,雖然曾有許多架構被提 出[2]-[7],但大都過於複雜。Sweldens[8]-[10] 在 1996 年提出了一種新的小波轉換架構,即

上提式小波轉換 (lifting-based discrete wavelet transform)。此種轉換方式所需的硬體資源較 先前的方式少,且完成計算所需的時間也較 短,因此已被納入國際標準組織的 JPEG2000 標準[11]。

在本論文中,我們針對應用於 JPEG2000 中之上提式離散小波轉換,先提出一管線化之 一維轉換架構,然後利用此架構為基礎發展二 維架構。我們所提出的二維架構能有效的減少 記憶體的使用量;以一個解析度為 $N \times N$ 的影 像為例,執行 JPEG2000 之有失真9/7 濾波器 運算只需要 9N 的記憶體。

二、 上提式小波轉換

上提式小波轉換的組成架構,主要分為四 個部分: splitting、 predicting、 updating 和 scaling。圖 1 為上提式小波轉換之示意圖,以 下為各部分的簡要說明。

- (1) Splitting: 將輸入訊號 x[n] 分離成兩個部 分, 即 x[n] 的奇數部分 x_a[n] 和偶數部分 $x_{a}[n]$, 其中 $x_{a} = x[2n+1]$, $x_{a} = x[2n]$.
- (2) Predicting(P): x_a[n] 訊號經過 predicting 模組產生一預測值,然後再求此一預測值 和 x_[n] 之誤差而得到高頻小波係數 $d^{1}[n]$,以數學式表示為 $d^{1}[n] = x_{n}[n]$ $P(x_{a}[n])$ o
- (3) Updating(U): d¹[n] 經由 updating 模組然 後和 x [n] 相加產生一個低頻小波訊號 $s^{1}[n]$,以數學式表示為 $s^{1}[n] = x_{1} +$ $U(d^{1}[n])_{o}$

(4) Scaling(K,1/K):將所得到的高頻小波係 數和低頻小波係數分別乘以 K 和1/K, 也就是將這兩個係數正規化,即 s[n] = (1/K)×s¹[n]和d[n] = K×d¹[n]。

JPEG2000 標準使用兩種轉換,即 5/3 濾 波器和 9/7 濾波器。 5/3 濾波器稱為整數小 波,它將影像的整數灰階值轉換成整數小波係 數,主要是應用在無失真資料壓縮(lossless compression),又稱為可逆(reversible)轉換。 9/7 濾波器稱為浮點小波,它將影像的整數灰 階值轉換成實數形式的小波係數,適合應用在 有失真的資料壓縮(lossy compression),又稱 為不可逆(irreversible)轉換。圖 2 為 5/3 濾 波器之上提式小波轉換示意圖,其所對應之數 學式如下:

$$P(z) = \alpha \times (1+z)$$
$$U(z) = \beta \times (z^{-1}+1)$$

其中 $\alpha = -1/2$ $\beta = 1/4$,使得其硬體較為簡單,只需移位運算即可實現。

圖 3 為 9/7 濾波器之上提式小波轉換示意 圖,其所對應之數學式如下:

$$P1(z) = \alpha \times (1+z)$$
$$U1(z) = \beta \times (z^{-1}+1)$$
$$P2(z) = \gamma \times (1+z)$$
$$U2(z) = \delta \times (z^{-1}+1)$$

其中 $\alpha = -1.586134342$, $\beta = -0.052980118$ $\gamma = 0.882911075$, $\delta = 0.443506852$ 。

圖 2 5/3 濾波器之上提式小波轉換示意圖

圖 3 9/7 濾波器之上提式小波轉換示意圖

由於 9/7 濾波器之上提式小波轉換係數皆為 實數,因此硬體實作會較為複雜。以下各節將 介紹 5/3 和 9/7 濾波器上提式轉換之硬體實 現。

三、 一維轉換

我們在本節提出一個管線化的一維上提 式離散小波轉換硬體架構,此架構將 5/3 濾波 器和 9/7 濾波器的前段加以整合,以節省硬體 資源。當管線填滿之後每個時脈週期可以送出 一個高頻訊號和一個低頻訊號。

3-1 硬體架構

一維小波轉換的硬體架構如圖 4。電路主要由以下的運算單元構成: Predictor、 Updator、Predictor97、Updator97,以及負責 傳遞資料的 Reg 單元。當進行無失真 5/3 濾波 器運算時只需上半部的電路,而進行有失真 9/7 濾波器運算則使用全部的電路。Odd 和 Even 為電路的輸出埠,分別為高頻訊號(odd coefficients)和低頻訊號(even coefficients)。

3-2 運算單元設計

我們使用管線運算(Pipelining)的方式來 實作每一個運算單元。 5/3 濾波器需要兩個加 法器和一個移位器; 9/7 濾波器需要兩個加法 器和一個乘法器。我們讓二種濾波器共用加法 器並且將移位器和乘法器整合,使電路簡化。 如圖 5,當進行 5/3 運算時選用移位器, 9/7 運 算時選用乘法器。因為 Predictor97 和 Updator97 模組是進行 9/7 運算時才會使用 到,所以沒有移位器。暫存器的資料寬度定為 十六位元。 9/7 濾波器的係數皆為實數,以二 補數表示如表 1。

圖 5 運算單元設計

= 1	0/7	() 走: 中 明	ばまち	
বহু	9/1	滤液态	ふむく	

	value	16-bit 2's complement
α	1.586134342	$2^{0} + 2^{-1} + 2^{-4} + 2^{-6} + 2^{-7} + 2^{-13} + 2^{-14}$
β	0.052980118	$2^{-5} + 2^{-6} + 2^{-8} + 2^{-9} + 2^{-12}$
γ	0.882911075	$2^{-1} + 2^{-2} + 2^{-3} + 2^{-7} + 2^{-14} + 2^{-15}$
δ	0.443506852	$2^{-2} + 2^{-3} + 2^{-4} + 2^{-8} + 2^{-9} + 2^{-13}$

3-3 運算方式

我們以一個 9×9 的影像為例進行上提式 離散小波轉換,圖 6 為 5/3 濾波器的運算方 式。0~9 的方格代表輸入的影像之一列或一行 像素 (pixel), -1、 -2、9、10 則為 periodic symmetric extended signals,這些擴展訊號在圖 中以線段和原先的輸入訊號相連。圖中的圓圈 為基本運算單元。

圖 7 為 9/7 濾波器的運算方式。因為 9/7 濾波器的濾波器係數較多,所以以上提式演算 法實現需要四階,也就是兩次 predict 和兩次 update。在 signal extension 方面也需要較多的 係數擴展。從圖 6 和圖 7 可以很明顯看出, Predictor 模組是以兩個偶數位置的訊號和一 個奇數位置的訊號為輸入,經運算後可以得到 一奇數位置的輸出。Updator 模組的輸出是經 由兩個 Predictor 模組的奇數輸出和一個偶數 位置的輸入得到。接著我們以時序的觀點來瞭 解運算的過程。

表 2 5/3 濾波器部分時序

Time	Pı	edictor		Updator				
	Adder1	S/M	Adder2	Adder1	S/M	Adder2		
1								
2	$X_{0,0} X_{0,2}$							
3	X _{0,2} X _{0,4}	RA1						
4	X _{0,4} X _{0,6}	RA1	RS X _{0,1}					
5	X _{0,6} X _{0,8}	RA1	RS X _{0,3}					
6		RA1	RS X _{0,5}	Y _{0,1} Y _{0,3}				
7			RS X _{0,7}	Y _{0,3} Y _{0,5}	RA1	Y _{0,0}		
8				Y _{0,5} Y _{0,7}	RA1	RS X _{0,2}		
9					RA1	RS X _{0,4}		
10						RS X _{0,6}		
11						V		

3-4 運算時序

表 2 為一列像素進行 5/3 濾波器運算時資 料的時序,其中 X 代表輸入的信號, Y 代表輸 出,X Y 的下標代表該像素在影像中的位置。 以一個9×9的影像為例,若輸入的訊號是該影 像第零列的像素,則在第 4 到第 7 個週期可以 得到高頻訊號 Y_{0.1}、Y_{0.3}、Y_{0.5}及 Y_{0.7};第 7 到 11 週期可以得到低頻訊號 Y_{0.0}、Y_{0.2}、Y_{0.4}、Y_{0.6} 及 Y_{0.8}。如此週而復始完成所有的列運算之 後,再進行行運算,即可完成一次二維離散小 波轉換。

同樣由表 3 可以瞭解一列像素進行 9/7 濾 波器運算時資料的時序。因為 9/7 濾波器的運 算電路比 5/3 濾波器大了一倍,所以 9/7 濾波 器的管線階數也較多。表 3 中 X 代表輸入的 信號,Z 代表輸出,X、Z 的下標代表該像素 在影像中的位置。在第 11 到第 14 週期可以得 到高頻訊號 Z_{0.1}、Z_{0.3}、Z_{0.5}及 Z_{0.7};第 14 到第 18 個週期可以得到低頻訊號 Z_{0.0}、Z_{0.2}、Z_{0.4}、 Z_{0.6}及 Z_{0.8}。

3-5 效能分析

當管線填滿之後每個時脈週期可以送出 一個高頻訊號和一個低頻訊號。對一列長度為 N的訊號,執行 5/3 濾波器運算需要(N/2)+5 個週期,執行 9/7 濾波器運算需要(N/2)+12 個週期,一個 $N \times N$ 的影像作一次轉換,5/3 濾 波器需要 N^2 +5 個週期,9/7 濾波器則需要 N^2 +12 個週期。

Time		Predictor			Updator]	Predictor9'	7		Updator97	i .
	Adder1	α	Adder2	Adder1	β	Adder2	Adder1	γ	Adder2	Adder1	δ	Adder2
1	-	-	-	-	-	-	-	-	-	-	-	-
2	X ₀₀ X ₀₂	-	-	-	-	-	-	-	-	-	-	-
3	X ₀₂ X ₀₄	RA1	-	-	-	-	-	-	-	-	-	-
4	X ₀₄ X ₀₆	RA1	RM X ₀₁	-	-	-	-	-	-	-	-	-
5	X06 X08	RA1	RM X ₀₃	$Y_{01}Y_{01}$	-	-	-	-	-	-	-	-
6	-	RA1	RM X ₀₅	Y ₀₁ Y ₀₃	RA1	-	-	-	-	-	-	-
7		-	RM X ₀₇	Y ₀₃ Y ₀₅	RA1	Y ₀₀	-	-	-	-	-	-
8			-	Y ₀₅ Y ₀₇	RA1	RM X ₀₂		-	-	-	-	-
9				Y ₀₇ Y ₀₇	RA1	RM X ₀₄	$Y_{00} Y_{02}$		-	-	-	-
10					RA1	RM X ₀₆	$Y_{02} Y_{04}$	RA1		-	-	-
11						Y ₀₈	$Y_{04} Y_{06}$	RA1	RM Y ₀₁		-	-
12							$Y_{06} Y_{08}$	RA1	RM Y ₀₃	$Z_{01}Z_{01}$		-
13							-	RA1	RM Y ₀₅	Z ₀₁ Z ₀₃	RA1	
14								-	RM Y ₀₇	$Z_{03}Z_{05}$	RA1	Z ₀₀
15									-	Z05Z07	RA1	RM Y ₀₂
16										Z ₀₇ Z ₀₇	RA1	RM Y ₀₄
17											RA1	RM Y ₀₆
18												Z ₀₈

表 3 9/7 濾波器部分時序

四、 二維轉換

4-1 硬體架構

為了減少對外部記憶體存取資料的次 數,我們提出一種二維轉換的方式:首先進行 列運算,然後將結果儲存到記憶體中,當儲存 足夠的列運算值後(三列),即可開始做列之 行運算(column processing along row)。此二 維小波轉換的架構如圖 8,其中 Memory1、 Memory2及 Temp 皆為記憶體模組。此架構可 以說是一維架構的延伸,基本運算單元都是相 同的。藉由將一維模組運算過的結果儲存到內 部的記憶體,我們可以減少外部記憶體的存取 次數。

表 4 5/3 濾波器之二維轉換部分時序(1)

Time	Pı	edictor	1	Updator		
	Adder1	S/M	Adder2	Adder1	S/M	Adder2
1						
2	X _{0,0} X _{0,2}					
3	X _{0,2} X _{0,4}	RA1				
4	X _{0,4} X _{0,6}	RA1	RS X _{0,1}			
5	$X_{0,6} X_{0,8}$	RA1	RS X _{0,3}			
6	-	RA1	RS X _{0,5}	Y _{0,1} Y _{0,3}		
7	$X_{2,0} X_{2,2}$	-	RS X _{0,7}	Y _{0,3} Y _{0,5}	RA1	Y _{0,0}
8	X _{2,0} X _{2,2}	RA1	-	Y _{0,5} Y _{0,7}	RA1	RS X _{0,2}
9	$X_{2,0} X_{2,2}$	RA1	RS X _{2,1}	-	RA1	RS X _{0,4}
10	$X_{2,0} X_{2,2}$	RA1	RS X _{2,3}	-	-	RS X _{0,6}
11	-	RA1	RS X _{2,5}	Y _{2,1} Y _{2,3}	-	Y _{0,8}
12	X _{1,0} X _{1,2}	-	RS X _{2,7}	Y _{2,3} Y _{2,5}	RA1	Y _{2,0}
13	$X_{1,2} X_{1,4}$	RA1	-	Y _{2,5} Y _{2,7}	RA1	RS X _{2,2}
14	$X_{1,4} X_{1,6}$	RA1	RS X _{1,1}	-	RA1	RS X _{2,4}
15	X1,6 X2,8	RA1	RS X _{1,3}	-	-	RS X _{2,6}
16	-	RA1	RS X _{1,5}	Y _{1,1} Y _{1,3}		Y _{2,8}
17	X4,0 X4,2	-	RS X _{1,7}	Y _{1,3} Y _{1,5}	RA1	Y _{1,0}
18	$X_{4,0} X_{4,2}$	RA1	-	Y _{1,5} Y _{1,7}	RA1	RS X _{1,2}

表 5 5/3 濾波器之二維轉換部分時序(2)

Time	P	redicto	ŗ	Time	Predictor			
	Adder1	S/M	Adder2		Adder1	S/M	Adder2	
	-	-	-					
15	Y _{0,1} Y _{2,1}	-	-	18	Z _{1,1} Z _{1,1}	-	-	
16	Y _{0,3} Y _{2,3}	RA1	-	19	Z _{1,3} Z _{1,3}	RA1	-	
17	Y _{0,5} Y _{2,5}	RA1	RS Y _{1,1}	20	Z _{1.5} Z _{1.5}	RA1	RS Y _{0,1}	
18	Y _{0,7} Y _{2,7}	RA1	RS Y _{1,3}	21	$Z_{1,7} Z_{1,7}$	RA1	RS Y _{0,3}	
19	Y _{0,0} Y _{2,0}	RA1	RS Y _{1,5}	22	$Z_{1,0} Z_{1,0}$	RA1	RS Y _{0,5}	
20	Y _{0,2} Y _{2,2}	RA1	RS Y _{1,7}	23	$Z_{1,2} Z_{1,2}$	RA1	RS Y _{0,7}	
21	Y _{0,4} Y _{2,4}	RA1	RS Y _{1,0}	24	$Z_{1,4} Z_{1,4}$	RA1	RS Y _{0,0}	
22	Y _{0,6} Y _{2,6}	RA1	RS Y _{1,2}	25	Z _{1,6} Z _{1,6}	RA1	RS Y _{0,2}	
23	Y _{0,8} Y _{2,8}	RA1	RS Y _{1,4}	26	Z _{1.8} Z _{1.8}	RA1	RS Y _{0,4}	
24	Y _{2,1} Y _{4,1}	RA1	RS Y _{1,6}	27	Z _{1,1} Z _{3,1}	RA1	RS Y _{0,6}	
25	Y2,3 Y4,3	RA1	RS Y _{1.8}	28	Z _{1,3} Z _{3,3}	RA1	RS Y _{0,8}	
26	Y2,5 Y4,5	RA1	RS Y _{3,1}	29	Z _{1.5} Z _{3.5}	RA1	RS Y _{2,1}	
27	Y2,7 Y4,7	RA1	RS Y _{3,3}	30	Z1,7 Z3,7	RA1	RS Y _{2,3}	
28	Y2,0 Y4,0	RA1	RS Y _{3,5}	31	Z _{1,0} Z _{3,0}	RA1	RS Y _{2,5}	
29	$Y_{2,2} Y_{4,2}$	RA1	RS Y _{3,7}	32	Z _{1,2} Z _{3,2}	RA1	RS Y _{2,7}	
30	Y2,4 Y4,4	RA1	RS Y _{3,0}	33	Z _{1,4} Z _{3,4}	RA1	RS Y _{2,0}	
31	Y2,6 Y4,6	RA1	RS Y _{3,2}	34	Z1,6 Z3,6	RA1	RS Y _{2,2}	
				35	Z1.8 Z3.8	RA1	RS Y _{2,4}	
				36	Z _{3,1} Z _{5,3}	RA1	RS Y _{2,6}	
				37	Z _{3,3} Z _{5,3}	RA1	RS Y _{2,8}	

Time		Predictor			Updator		1	Predictor9	7	Upda	tor97	
	Adder1	α	Adder2	Adder1	β	Adder2	Adder1	γ	Adder2	Adder1	δ	Adder2
1	-	-	-	-	-	-	-	-	-	-	-	-
2	X ₀₀ X ₀₂	-	-	-	-	-	-	-	-	-	-	-
3	$X_{02} X_{04}$	RA1	-	-	-	-	-	-	-	-	-	-
4	X ₀₄ X ₀₆	RA1	RM X ₀₁	-	-	-	-	-	-	-	-	-
5	X06 X08	RA1	RM X ₀₃		-	-	-	-	-	-	-	-
6	-	RA1	RM X ₀₅	$Y_{01} Y_{03}$		-	-	-	-	-	-	-
7	X20 X22	-	RM X ₀₇	Y ₀₃ Y ₀₅	RA1	Y ₀₀	-	-	-	-	-	-
8	X22 X24	RA1	-	$Y_{05} Y_{07}$	RA1	RM X ₀₂		-	-	-	-	-
9	X24 X26	RA1	RM X ₂₁	-	RA1	RM X ₀₄	$Y_{00} Y_{02}$		-	-	-	-
10	X26 X28	RA1	RM X ₂₃		-	RM X ₀₆	$Y_{02} Y_{04}$	RA1		-	-	-
11	-	RA1	RM X ₂₅	$Y_{21}Y_{23}$		Y ₀₈	$Y_{04} Y_{06}$	RA1	RM Y ₀₁		-	-
12	X10 X12	-	RM X ₂₇	$Y_{23} Y_{25}$	RA1	Y ₂₀	Y ₀₆ Y ₀₈	RA1	RM Y ₀₃			-
13	$X_{12} X_{14}$	RA1	-	$Y_{25} Y_{27}$	RA1	RM X ₂₂	-	RA1	RM Y ₀₅	Z ₀₁ Z ₀₃		
14	$X_{14} X_{16}$	RA1	RM X ₁₁	-	RA1	RM X ₂₄	$Y_{20} Y_{22}$	-	RM Y ₀₇	Z ₀₃ Z ₀₅	RA1	Z ₀₀
15	X16 X18	RA1	RM X ₁₃		-	RM X ₂₆	$Y_{22} Y_{24}$	RA1	-	Z05 Z07	RA1	RM Y ₀₂
16	-	RA1	RM X ₁₅	Y ₁₁ Y ₁₃		Y ₂₈	$Y_{24} Y_{26}$	RA1	RM Y ₂₁	-	RA1	RM Y ₀₄
17	X40 X42	-	RM X ₁₇	Y13 Y15	RA1	Y ₁₀	$Y_{26} Y_{28}$	RA1	RM Y ₂₃		-	RM Y ₀₆
18	X42 X44	RA1	-	Y15 Y17	RA1	RM X ₁₂		RA1	RM Y ₂₅	Z ₂₁ Z ₂₃		Z ₀₈
19	X44 X46	RA1	RM X ₄₁	-	RA1	RM X ₁₄	Y10 Y12		RM Y ₂₇	Z ₂₃ Z ₂₅	RA1	Z ₂₀
20	X46 X48	RA1	RM X43		-	RM X ₁₆	$Y_{12} Y_{14}$	RA1		Z25 Z27	RA1	RM Y ₂₂
21	-	RA1	RM X ₄₅	$Y_{41} Y_{43}$		Y ₁₈	Y14 Y16	RA1	RM Y ₁₁		RA1	RM Y ₂₄
22	X ₃₀ X ₃₂	-	RM X ₄₇	$Y_{43} Y_{45}$	RA1	Y ₄₀	Y16 Y18	RA1	RM Y ₁₃			RM Y ₂₆
23	X ₃₂ X ₃₄	RA1	-	$Y_{45} Y_{47}$	RA1	RM X ₄₂		RA1	RM Y ₁₅	Z11 Z13		Z ₂₈

表 6 9/7 濾波器之二維轉換部分時序(1)

表 7 9/7 濾波器之二維轉換部分時序(2)

Time]	Predicto	r	Time	-	Updator	
	Adder1	S/M	Adder2		Adder1	S/M	Adder2
	-	-	-		-	-	-
20	Z _{0,1} Z _{2,1}	-	-	23	A _{1,1} A _{1,1}	-	-
21	Z _{0,3} Z _{2,3}	RA1	-	24	A _{1,3} A _{1,3}	RA1	-
22	Z _{0,5} Z _{2,5}	RA1	RS Z _{1,1}	25	A _{1,5} A _{1,5}	RA1	RS Z _{0,1}
23	Z _{0,7} Z _{2,7}	RA1	RS Z _{1,3}	26	A _{1,7} A _{1,7}	RA1	RS Z _{0,3}
24	Z _{0,0} Z _{2,0}	RA1	RS Z _{1,5}	27	$A_{1,0}A_{1,0}$	RA1	RS Z _{0,5}
25	Z _{0,2} Z _{2,2}	RA1	RS Z _{1,7}	28	$A_{1,2} A_{1,2}$	RA1	RS Z _{0,7}
26	Z _{0,4} Z _{2,4}	RA1	RS Z _{1,0}	29	$A_{1,4} A_{1,4}$	RA1	RS Z _{0,0}
27	Z _{0,6} Z _{2,6}	RA1	RS Z _{1,2}	30	$A_{1,6} A_{1,6}$	RA1	RS Z _{0,2}
28	Z _{0,8} Z _{2,8}	RA1	RS Z _{1,4}	31	$A_{1,8} A_{1,8}$	RA1	RS Z _{0,4}
29	Z _{2,1} Z _{4,1}	RA1	RS Z _{1,6}	32	A _{1,1} A _{3,1}	RA1	RS Z _{0,6}
30	Z _{2,3} Z _{4,3}	RA1	RS Z _{1,8}	33	A1,3 A3,3	RA1	RS Z _{0,8}
31	Z _{2,5} Z _{4,5}	RA1	RS Z _{3,1}	34	A1,5 A3,5	RA1	RS Z _{2,1}
32	Z _{2,7} Z _{4,7}	RA1	RS Z _{3,3}	35	A1,7 A3,7	RA1	RS Z _{2,3}
33	Z _{2,0} Z _{4,0}	RA1	RS Z _{3,5}	36	A1,0 A3,0	RA1	RS Z _{2,5}
34	Z _{2,2} Z _{4,2}	RA1	RS Z _{3,7}	37	A _{1,2} A _{3,2}	RA1	RS Z _{2,7}
35	Z _{2,4} Z _{4,4}	RA1	RS Z _{3,0}	38	A1,4 A3,4	RA1	RS Z _{2,0}
36	$Z_{26}Z_{46}$	RA1	RS Z ₃₂	39	A16 A36	RA1	RS Z ₂₂

4-2 運算時序

如果依一般按列進行的一維轉換運算方 式,在二維架構中將會浪費許多記憶體,因此 我們重定列運算的順序,以便將二維小波轉換 所需的記憶體存取次數降至最低。從前面各節 可知,上提式離散小波轉換中的高頻訊號是經 由兩個偶係數和一個奇係數求得,低頻訊號是 經由兩個奇係數和一個偶係數得到;所以我們 維轉換列運算的部分時序,如同一維架構運算 的方式,將像素列依特定順序送入 1-D Module 中。表中 X 代表輸入像素值, Y 代表列運算的 輸出值, Y 被儲存到 Memory1 中。由表 4 可 知輸出的列順序為 Q 2 L 4 3..。當 Memory1 中依序儲存了第零列、第二列、第一列的列運 算結果後,即可進行行運算。表 5 為 5/3 濾波 器行運算的時序,其中 Y 為運算單元 Predictor 的輸入訊號,其輸出訊號 Z 作為運算單元 Updator 的輸入。最後我們在 Predictor 單元和 Updator 單元的輸出得到結果 Z。

表 6 為一個9×9的影像進行9/7 濾波器 二維轉換列運算的部分時序,其中 X 代表輸 入像素值,Z代表列運算的輸出值,Z將被儲 存到 Memory1 中。如同5/3濾波器的運算, Memory1 儲存了一定量的訊號之後即可開始 進行行運算。表7及8為9/7濾波器行運算的 時序。9/7濾波器運算會用到四個運算單元; 即 Predictor、Updator、Predictor97 以及 Updator97。Z 為運算單元 Predictor 的輸入訊 號,其輸出訊號A 作為運算單元 Updator 的輸 入,同時A 也必須儲存到 Memory2 中。

經由 Predictor 和 Updator 模組分別產生 1、3、5、7...列和2、4、6、8...列的輸出。當 Memory2 中儲存了0、2、1 列之後就可以讓 Predictor97 模組和 Updator97 模組進行運算。 由表8,A 為從 Memory2 中讀出之輸入,在 Predictor97 模組的輸出端可以得到奇數列的B 輸出,而 Updator97 模組的輸出端可以得到偶 數列的 B 輸出。

Time	Pr	edictor	97	Time	U	pdator	97		
	Adder1	S/M	Adder2		Adder1	S/M	Adder2		
35	A _{0,1} A _{2,1}	-	-	38	B _{1,1} B _{1,1}	-	-		
36	A _{0,3} A _{2,3}	RA1	-	39	B _{1,3} B _{1,3}	RA1	-		
37	A _{0,5} A _{2,5}	RA1	RS A _{1,1}	40	B _{1,5} B _{1,5}	RA1	RS A _{0,1}		
38	A _{0,7} A _{2,7}	RA1	RS A _{1,3}	41	$B_{1,7} B_{1,7}$	RA1	RS A _{0,3}		
39	A _{0,0} A _{2,0}	RA1	RS A _{1,5}	42	$B_{1,0} B_{1,0}$	RA1	RS A _{0,5}		
40	A _{0,2} A _{2,2}	RA1	RS A _{1,7}	43	$B_{1,2} B_{1,2}$	RA1	RS A _{0,7}		
41	A _{0,4} A _{2,4}	RA1	RS A _{1,0}	44	$B_{1,4} B_{1,4}$	RA1	RS A _{0,0}		
42	A _{0,6} A _{2,6}	RA1	RS A _{1,2}	45	$B_{1,6} B_{1,6}$	RA1	RS A _{0,2}		
43	A _{0,8} A _{2,8}	RA1	RS A _{1,4}	46	$B_{1,8} B_{1,8}$	RA1	RS A _{0,4}		
44	A2,1 A4,1	RA1	RS A _{1,6}	47	$B_{1,1} B_{3,1}$	RA1	RS A _{0,6}		
45	A2,3 A4,3	RA1	RS A _{1,8}	48	$B_{1,3} B_{3,3}$	RA1	RS A _{0,8}		
46	A2,5 A4,5	RA1	RS A _{3,1}	49	$B_{1,5} B_{3,5}$	RA1	RS A2,1		
47	A2,7 A4,7	RA1	RS A _{3,3}	50	$B_{1,7} B_{3,7}$	RA1	RS A2,3		
48	A2,0 A4,0	RA1	RS A _{3,5}	51	$B_{1,0} B_{3,0}$	RA1	RS A2,5		
49	$A_{2,2} A_{4,2}$	RA1	RS A _{3,7}	52	$B_{1,2} B_{3,2}$	RA1	RS A2,7		
50	A2,4 A4,4	RA1	RS A _{3,0}	53	$B_{1,4} B_{3,4}$	RA1	RS A _{2,0}		
51	A2,6 A4,6	RA1	RS A _{3,2}	54	B1,6 B3,6	RA1	RS A2,2		

表 8 9/7 濾波器之二維轉換部分時序(3)

表9 硬體資源需求比較

Architecture	Mult.	Adder	Storage
[2]	32	32	20N
[7]	$2N^2$	$2N^2$	$3N^2$
[12]	24	21	14N
[13]	32	28	$2N^2$
[14]	10	16	14N
This work	10	16	9N

4-3 記憶體組織架構

在我們所提出的二維轉換的架構中,有三 個記憶體模組:Memory1、Memory2及Temp, 所使用的記憶體架構及資料儲存的方式分別 如圖 9、10 和 11 所示。在Memory1中,我們 需要三組如圖 9 所示之記憶體,以便儲存經由 一維列運算所產生的數值。這些值再依奇數訊 號和偶數訊號分別儲存。

在 Memory2 中, 需要四組如圖 10 所示之 記憶體來儲存 9/7 濾波器運算所產生之值。我 們將同一列的資料儲存在一頁中, 記憶體前半 的位址儲存奇數訊號, 偶數訊號則儲存在記憶 體後半的位址。

圖 9 Memoryl 的記憶體架構

對 Temp 作存取的時候,必須作記憶體的 預先讀取以免發生資料衝突。如圖 11,我們 將一列的資料儲存在一頁中,記憶體前半段儲 存奇數訊號,偶數訊號儲存在記憶體後半段。 在讀出端我們加上一個預讀取暫存器來儲存 預先讀出的資料。

4-4 記憶體需求

假設要轉換的影像大小為 $N \times N$,在 Memory1 中我們需要使用六組大小為 N/2的 儲存模組, Memory2 需要四組大小為 N的儲 存模組。進行 9/7 濾波器運算所需要的記憶體 大小為 9N。

4-5 效能分析

如同一維架構,一個 $N \times N$ 的影像不論是 以 5/3 濾波器運算或以 9/7 濾波器運算,當管 線的資料填滿之後,每個週期可以送出一個高 頻訊號和一個低頻訊號。當進行 5/3 轉換時, 要填滿管線大約需要N+3 個週期,進行 9/7 轉換填滿管線大約需要2N+10 個週期,則完 成一次二維轉換 5/3 濾波器需要 $(N^2/2)+N+3$ 個週期,9/7 濾波器需要 $(N^2/2)+2N+10$ 個週期。

表9將我們的二維架構在進行9/7 濾波器 運算時,使用到的乘法器數量、加法器數量、 以及記憶體需求和其它的架構作一個比較。輸 入的影像解析度為*N×N*。由表中可以看出此 架構具有節省記憶體的優勢。

五、 效能評估

在效能評估及驗證方面,我們以 Synplicity公司的Synplify Pro來進行FPGA的 合成,目標元件為 Altera 公司所生產的 EPF10K200SRC240-1,完成佈局之一維架構操 作頻率為 29.6 MHz。在此工作頻率下,以解 析度為 256×256 和 512×512 的灰階影像進行 一階轉換分別需要

$$512 \times 512 : \frac{512 \times 512}{29.6 \text{ M Hz}} = 8.85 \text{ ms}$$
$$1024 \times 1024 : \frac{1024 \times 1024}{29.6 \text{ M Hz}} = 35.42 \text{ n}$$

= 35.42 ms

以一般 JPEG2000 運算需要進行五階轉換,則 完成一張灰階影像需要的時間為

 $512 \times 512 : 8.85 + 2.21 + 0.55 + 0.14$

$$+ 0.03 = 11.78 \text{ ms}$$

 $1024 \times 1024 : 35.42 + 8.85 + 2.21 + 0.55 + 0.14$

$$+0.03 = 47.2 \,\mathrm{ms}$$

因而每秒可以連續編碼的灰階影像數為

$$512 \times 512: \left\lfloor \frac{1000}{11.78} \right\rfloor = 84 \text{ (frames/s)}$$

 $1024 \times 1024: \left\lfloor \frac{1000}{47.2} \right\rfloor = 21 \text{ (frames/s)}$

二維架構的運算需要較長的時間延遲之 後才能有結果輸出,但是往後的每個週期皆可 有兩個像素的輸出,當輸入的影像解析度夠大 時,二維架構的效能約為一維架構的兩倍。同 樣以 29.6 MHz 的工作頻率進行編碼,則完成 一張灰階影像需要的時間為

1024 × 1024 : 23.6 ms

 2048×2048 : 70.84 + 23.6 = 94.44 ms 而每秒可以編碼的灰階影像數為

$$1024 \times 1024 : \left\lfloor \frac{1000}{23.6} \right\rfloor = 42 \text{ (frames/s)}$$
$$2048 \times 2048 : \left\lfloor \frac{1000}{94.44} \right\rfloor = 10 \text{ (frames/s)}$$

可知在解析度為1024×1024時,其效能已能滿 足動態影像編碼的要求。

五、結論

在本論文中,我們針對應用於 JPEG2000 之上提式離散小波轉換,提出一種整合5/3和 9/7 濾波器的管線化電路架構。我們所提出的 一維架構具有精簡且彈性化的特點,但是需要 對外部的記憶體作大量的存取。以一維架構為 基礎而延伸出來的二維架構,經由重新安排輸 入訊號的順序,可以有效減少記憶體的使用 量。相較於一維架構,二維架構可減少一半的 外部記憶體存取,運算速度也快了將近一倍, 但只能針對特定的影像解析度作運算。

對於未來的發展與改進,在效能方面可以 進一步提升運算元件的速度,因為整個系統的 運算速度主要是受限於管線暫存器之間的運 算延遲。此外,我們所提出的架構,只要修改 運算的參數,就可以進行反轉換的運算,如此 便可以完成一個完整的編碼解碼系統。

參考文獻

- [1] S. G. Mallat, "A Theory for Multiresolution Signal Decomposition: The Wavelet Representation," *IEEE Trans. Pattern* Analysis and Machine Intelligence, vol.11 no. 7 pp. 674-693, July 1989.
- [2] M. Vishwanath, R. Owens, and T. Acharya, "VLSI Architecture for the Discrete Wavelet Transform," IEEE Trans. Circuits Syst. II, vol. 42, pp. 305-316, May 1995.
- [3] J. S. Fridman and E. S. Manolakos, "Discrete Wavelet Transform: Data Dependence Analysis and Synthesis of Distributed Memory and Control Array Architecture," IEEE Trans. Signal Processing, vol. 45, pp.1291-1308, May 1997.
- [4] T. Acharya, "A High Speed Systolic Architecture for Discrete Wavelet Transforms," in Proc. IEEE Global Telecommun. Conf., vol. 2, 1997 pp. 669-673.
- [5] K. K. Parhi and T. Nishitani, "VLSI Architectures for Discrete Wavelet Transforms." IEEE Trans. VLSI Syst., vol. 1, pp. 191-202, June 1993.
- [6] A. Grzeszczak, M. K. Mandal, S. Panchanathan, and T. Yeap, "VLSI Implementation of Discrete Wavelet Transform," IEEE Trans. VLSI Syst., vol. 4, pp. 421-433, June1996.
- [7] C. Chakrabarti and M. Vishwanath, "Efficient Realizations of the Discrete and Continuous Wavelet Transforms: From Single Chip Implementations to Mappings on SIMD Array Computers," IEEE Trans. Signal Processing, vol. 43, pp.759-771, Mar. 1995.
- [8] W. Sweldens, "The Lifting Scheme: A Construction of Second Generation Wavelets," Tech. Rep. 1995:6 Industrial Mathematics Initiative. Department of Mathematics. University of South Carllina 1995.
- [9] W. Sweldens, "The Lifting Scheme: A construction Custom-design of Biorthogonal Wavelets," Appl. Comput. Harmon. Anal. vol. 3(2). pp. 186-200. 1996.
- [10] I. Daubechies and W. Sweldens, "Factoring Wavelet Transform into Lifting Steps." J. Foureier Anal. Appl., vol 4, Nr. 3, pp. 247-296.
- [11] M. Boliek, C. Christopoulos and E. Majani, "JPEG 2000 part I Final Committee Draft Version 1.0 (ISO/IEC FDIS15444-1),"

ISO/IEC JTC/SC29/WG/N164R, March 16, 2000.

- [12] C. Yu and S. J. Chen, "Design of An Efficient VLSI Architecture for 2-D Discrete Wavelet Transforms," *IEEE Trans. Consumer Elect.*, vol. 45, no 1, pp. 135-140, 1999.
- [13] S. K. Paek, and L. S. Kim, "2D DWT VLSI Architecture for Wavelet Image Processing," *Electron. Lett.*, vol. 34, no. 6, pp. 537-538, 1998.
- [14] C. -T. Huang, P.-C. Tseng, L.-G. Chen, "Efficient VLSI Architectures of Lifting-based Discrete Wavelet Transform by Systematic Design Method," *IEEE International Symposium on Circuits and Systems (ISCAS)*, vol. 5, pp.V-565-V-568, 26-29 May 2002.