

A New Approach of Instant Message Extended from Short
Message Service with Jabber

Heng-Te Henry Chu

Dept. of Product Develop-
ment, Mobitai Communica-
tions Corporation, Taichung,

Taiwan

henry_chu@mobitai.com.tw

Yi-Hung Huang*

*Dept. of Information Net-
working Technology,

Hsiuping Institute of Tech-
nology, Da-Li, Taichung,

Taiwan

ehhwang@mail.hit.edu.tw

Wen-Shiung Chen**

**VIP-CCLab., Dept. of
Electrical Engineering,
National Chi Nan Uni-
versity, Pu-Li, Nan-Tou,

545 Taiwan

wschen@ncnu.edu.tw

Abstract

Nowadays, short message service has been very
successful in carrier business. Instant message
service also gains popularity through Internet. To
bridge them is becoming a new promising niche
because people really enjoy getting messages
instantly, anywhere and anytime. However, there
is still not a common, unified and open standard
to communicate with each other. Hence, in this
paper we propose a solution, based on
XML-based protocol, Jabber, to simplify
interconnections among Internet instant message
systems and short message systems. Currently,
several providers, such as AOL, MSN, Yahoo,
and ICQ dominate Internet instant message
systems via proprietary protocols. On the other
hand, every carrier operator has been trying to
refine its own homemade interface to short
message application services with the intention
to cover the complexity and security of the
communication with its own short message
service center. Since Jabber is an XML-based
protocol, which is in human-readable format, it
can be used to cover different underlying
protocols and present a unified and easier
interface to message applications and services.
Obviously, it is much easier than SS7 or any
other protocols of proprietary or binary data
formats, to achieve message exchange and
interoperability among different systems, such as
GSM, PHS, CDMA and 3G. An XML-based
protocol is also purely an IP-based solution,
which comes out to be much cheaper than a
telecommunication-based solution to adopt and
upgrade. Furthermore, an IP-based protocol can
be easily translated to and from any other
IP-based protocol by way of modern
programming languages.

Keywords : SMS, SMPP, IM, Jabber, XML

1. Introduction

Enterprises and consumers have discovered that
instant message service [1][2] is more
cost-effective than e-mail. People may rely on
instant messages to improve their work
efficiency. Businesses and applications may
count on instant message services for faster
message flow processing. In reality, mobile
handsets with short message services [6] are
ideal tools for people to get messages anywhere
and/or anytime, instantly.

A short message service center (SMSC)
provides an old-fashioned protocol, i.e., short
message peer-to -peer protocol (SMPP) [6], for
IP-based applications to communicate with. The
SMPP speaks in binary data format, instead of
human-readable text formats. However, the
SMPP is so peculiar to most application
developers that Internet content providers (ICP)
view it as a technical barrier to join. On the other
hand, major Internet instant message service
providers (e.g., AOL, MSN, Yahoo, ICQ, and so
on) are apt to use their own proprietary interface
to secure their investment. Certainly, those
proprietary protocols block interoperability and
also raise another barrier to ICP.

Since XML is in human-readable text
format, it is open, flexible, portable, and simple
to create and read [5]. Beneficially, most modern
programming languages, e.g., Java, begin to
support XML parsing and processing [10].
Jabber [3][4] is an open-source, XML-based
protocol. Accordingly, Jabber is capable of being
open to non-Jabber systems in nature. With a
plug-in component, called Jabber transport, a
Jabber server may communicate with a
non-Jabber system. Similarly, a Jabber client
may talk to a non-Jabber community as well as
to another Jabber client. Hence, the Jabber
transport may cover up the complexity of SMPP,
and still exposes the same XML-based interface

to outside world for simplicity. Based on XML,
interoperability between different proprietary
interfaces (or instant message service systems) is
easy and foreseeable to achieve.

2. Jabber Architecture

The basic Jabber communication model follows
the well-understood and simple client/server
architecture, as shown in Fig. 1. Unlike those
peer-to-peer approaches, Jabber encourages to
implement centralized control and enforce
communication policies. On the one hand, a
Jabber server enforces those control policies. On
the other hand, the Jabber protocol keeps its
client as thin as possible, for sake of easy
development and joint.

Jabber Client
Joe@a.com/work

Jabber Server

Jabber Client

XML Stream

XML Stream

Jabber Client
bob@b.com/home

Jabber Server

Jabber Client

XML Stream

XML Stream

Jabber Server to Server Protocol

a.com domain b.com domain

Fig. 1. The Jabber client/server architecture.

Like e-mail, a Jabber domains is defined
by an Internet domain name. The Jabber servers
manage the Jabber domains. The Jabber
addressing format is similar to e-mail address,
like User@domain/resource, except the resource
part. The domain part guides how to relay
messages from one domain to another. The
resource part indicates a particular message
delivery endpoint for a user, e.g.,
Joe@xyz.com/work or Joe@xyz.com/mobile, as
shown in Fig. 2. All Jabber data are delivered to
resources. As shown in Fig. 3, a Jabber server
takes charge of parsing incoming XML streams
and routing outgoing XML packets to the best
and/or preferred client's resource available for a
user. An XML packet contains valid XML
subdocuments.

Jabber Server

Packet
to: Joe@xyz.com

Jabber Client

Joe@xyz.com/mobile
priority: high

Jabber Client

Joe@xyz.com/work
priority: low

Fig. 2. Routing to the best and available
client.

It is worth noting that instant messaging
occurs across space and time. In other words, it
means how to determine where to deliver across
network, and when to reach as soon as recipients
becoming available. Fig. 3 shows that the Jabber
server designs a packet queue to store and
forward the packets from the XML parser.
Instead of defining its own queuing mechanism,
Jabber allows to make use of existing message
queue technologies or products.

Jabber
Client

Session Pool

Session

Packet Handler
Packet Handlers

Session Index

XML

Outgoing Stream
Incoming XML Stream XML ParserXML

Jabber Server

Packet
Queue

Packet

Fig. 3. Basic functional modules of the Jabber
server.

Sender

Recipient Recipient Recipient

Server

Fig. 4. The Jabber server arbitrates all
presence exchanges.

Jabber relies on user presence information
to determine best target for a user. Instead of
having every user sending their presence to other
users, Jabber comes out with the concept of
presence subscription, as shown in Fig. 4.

Subscribers must send a request to the
publisher. The publisher may accept or refuse to
reveal its presence update for privacy concern.
Each user must manage its own publisher and
subscriber presence relationships. As shown in
Fig. 4, the Jabber server hosts, organizes and
maintains user subscriptions, and arbitrates all
presence exchanges via the so-called roster.
Substantially, a roster is similar to a "buddy list."
Each user account has only one corresponding
roster, but many sessions, each with its own
presence status (e.g., your PC is off, but your
mobile handset is at hand). However, people just
care if they can send messages to another person,
regardless of what client or device to be. Jabber
will rely on user presence for message routing
and store-and-forward delivery, in order to reach
the best available client.

Since Jabber is an open and packet-based
design, it uses modules, called transports, which
act as a bridge between Jabber and those foreign
non-Jabber messaging systems. The Jabber
transport acts as the Jabber server plug-in,
translating packets between different instant
message systems, in order to provide seamless
access to both, as shown in Fig. 5.

Jabber Client

Jabber Server

Jabber Transport

c

a.com domain

Jabber network

IM Client

IM Client Proprietary
Protocols

c

Non-Jabber IM domains

IM Server

Jabber Transport for specific IM protocols

convert messages

Fig. 5. The Jabber transport.

Although XML is in human-readable text
format, the content itself may be secured
independently. However, regarding to security
concern, Jabber is open to adopt existing security
technologies and products on the market. As
shown in Table 1, for example, Jabber may adopt
LDAP, Kerebos, or Java Authentication and
Authorization Service (JAAS), for authentication
and authorization. Content itself may be secured
by way of message digest for integrity, digital
signature for non-repudiation, encryption for
confidentiality. Furthermore, concerning with the
security of communication channel, the Jabber
server may utilize SSL to secure its TCP
communications with clients as well.

Table 1. Security Concerns and Solutions.

Security Concern Description Existing
Technology

Authentication
Checking who
it is

LDAP,
JAAS,
Kerebos, …

Authorization
Checking what
its access rights
to be

LDAP,
JAAS, ...

Integrity
Checking if
data remain
intact

Message
digest

Non-repudiation Ensuring the
source of data

Digital
signature

Confidentiality

Ensuring data
to reveal to
only right
entities

Encryption

3. Short Message Peer to Peer
Protocol

For brevity, we focus only on its support with
GSM technology and TCP/IP network. The
SMPP is based on the exchange of request and
response protocol data units (PDUs) between the
external short message entity (ESME) and the
SMSC over an underlying TCP/IP network
connection. Here, the ESME may be a ticket
system, an application for headline news, or an
advertisement broadcast, as shown in Fig. 6.

MSC
SS7

HLR VLR

ESME
Transceiver

ESME
Transmitter

ESME
Receiver

SMSC

S
M
P
P

SS7

TCP/IP
Network

Fig. 6. The SMPP interface.

The SMPP session may be defined in

terms of the following possible states:
§ OPEN (Connected and Bind Pending)

An ESME has established a network
connection to the SMSC but has not yet
issued a bind request.

§ BOUND_TX
A connected ESME has requested to
bind as an ESME transmitter

§ BOUND_RX
A connected ESME has requested to
bind as an ESME receiver.

§ BOUND_TRX
A connected ESME has requested to
bind as an ESME Transceiver. An
ESME bound as a transceiver supports
the complete set of operations
supported by a Transmitter ESME and a
receiver ESME.

§ CLOSED (Unbound and Disconnected)
An ESME has unbound from the SMSC
and has closed the network connection.
The SMSC may also unbind from the
ESME.

An SMPP session always begins with

sending a bind request for authentication first
from ESME to SMSC, before transferring any
message. It finally ends up with a unbind request
to close the session, as shown in Figure 7 and
Figure 8.

ESME SMSC

Bind Transmitter Response

Bind Transmitter

Submit SM Response

Submit SM

...

Unbind Response

Unbind

Figure 7. Typical SMPP session sequence -
ESME transmitter.

ESME SMSC

Bind Receiver Response

Bind Receiver

Deliver SM

Deliver SM Response...
Unbind Response

Unbind

Figure 8. Typical SMPP session sequence -

ESME receiver.

As shown in Table 2, command length, ID,
status, and sequence number are with a type of
4-octet unsigned (big-endian) integer. The PDU
body may contain mandatory and/or optional
parameters corresponding to command ID field,
defined by the SMPP protocol. Moreover, a
GSM short message contains up to 160 7-bit
characters or 140 8-bit octets [7][8]. The 8-bit
data are in UCS-2 [9], 16-bit encoding. A
conversion between Big-5 and UCS-2 is required
for implementation. Thus, the SMPP PDU is
much harder than XML to compose.

Table 2. An overview of the SMPP PDU
format.

SMPP PDU

PDU Header (Mandatory)
Body
(Optional)

Command
Length

Command
ID

Command
Status

Sequence
Number PDU Body

4 Octets Length = (Command Length value - 4) octets

The SMPP uses sequence number to
match request and response packets. The
sending side takes charge of filling in a
packet with sequence number in a unique and
sequential manner. The receiving side must
reply with the same sequence number in its
response packet. The sequence number can
distinguish session information at all. Se-
quence numbers of a user may be interleaved
by numbers of another users.

Since handsets always receive messages
after a certain amount of delay, the ESME
may need to know actual delivery statuses.
The SMSC can answer it via a very practical
message type: delivery receipt, which tells
(via delivery PDU) the final status: delivered,
expired, rejected, undeliverable, unknown,
deleted or accepted.

Typically, the SMSC supports three
message modes:

§ Store and Forward
§ Datagram
§ Transaction mode

The conventional approach stores the
message in a SMSC storage area before for-
warding the message for delivery to the re-
cipient. With this model, the message remains
securely stored until all delivery attempts
have been made by the SMSC. This mode of
messaging is commonly referred to as “store
and forward.”

The datagram mode emulates the data-
gram paradigm, like UDP datagram. This
mode focuses on high message throughput
without the associated secure storage and re-
try guarantees of store-and -forward message
mode. In this mode, the ESME does not re-
ceive any delivery acknowledgement.

The transaction mode is designed for
applications that involve real-time messaging
without the need for long term SMSC storage.
The ESME requires a synchronous
end-to-end delivery outcome. However, this
mode could cause serious performance deg-
radation while system load is heavy. Domes-
tic carrier operators are not willing to open
datagram and transaction modes, due to reli-
ability and performance concerns.

4. Existing Proprietary Interfaces

Currently, every domestic carrier operator opens
one’s own proprietary interfaces to ICP for short
message value-added services, as shown in Fig.
9. Those proprietary interfaces can be mainly
categorized into the following three types:

1. HTTP + Query String, e.g.,

http://a.com?ID=123&MSG=hello&…

2. HTTP POST method + XML body, e.g.,

<?xml version="1.0" encod-
ing="Big5"?>

<sms>
<ID>123</ID>
<MSG>Hello</MSG>
…

</sms>

3. TCP socket + Home -made PDU

Transceiver

Tranmitter

Receiver

SMSC

S
M
P
P

Home-made
Interface

ICP

Internet

ICP

ICP

Firewall

Lease line

Figure 9. Proprietary Interface Overview.

The first type is easy and straightforward
at first glance. However, it introduces some
problems, such as security, version control, and
parsing fields. Obviously, it is vulnerable to
attack. To change the query string formats causes
tedious modifications on both operator and ICP
sides. Meanwhile, the common delimiter, &,
may cause the conflicts while paring and
filtering the query string [12].

The second type resolves the
disadvantages of the first type. Instead of
appending data to URL, it uses the HTTP POST
method to convey enclosed data to remote server
[11]. Business complexity can be hidden inside
the context. It keeps HTTP URL intact and clear.
However, its user-defined XML tags and formats
are still totally proprietary. Other carrier
operators cannot recognize them at all. Thus, an
ICP still has to deal with different XML in order
to speak in a right language with a right operator.
The third type actually seems to take place first.
I t derived from the SMPP directly in certain
degree. Inevitably, it comes along with the
difficulty as much as the SMPP.

However, major instant message service
players are still resistant to proceed for an open
interface. They intentionally use their own
proprietary interface to grape their territory and
exclude any free interconnection, for sake of
securing their investments. Interconnections
become legal issues and require to paying for
permission first.

5. The Proposed Interconnection
The Jabber transport plays a key role to realize
the bridge. The Jabber transport is appointed by
zero or multiple unique Jabber IDs, e.g.,
0987654321@operator.com.tw. Sending
messages to those Jabber IDs cause them to be
handled by this transport component. Then, the
transport will pass those messages to a converter
component to translate data from the XML
format into the SMPP PDU protocol data units.
The converter will pass the SMPP PDU to the
ESME component. The ESME component will
submit them to the SMSC for final delivery and
vice versa, as shown in Fig. 10.

These three components, Jabber transport,
converter, and ESME, can cohere together inside
a single application, or run independently among
different machines or applications, as long as
their data path and throughput being fine.

Jabber Client

Jabber Server

Jabber
Transport

c

a.com domain

Jabber network

ESME

ESME

c

SMS domain

SMSC

ConverterXML SMPP
PDU

XML
Stream SMPP

Figure 10. Interconnection Overview

The start of a Jabber or SMPP session

needs to open a TCP connection first through its
corresponding server port. The scenario is
straightforward and is described as follows:

1. Connect port (e.g. 5222) of Jabber
server.

2. Send an opening <stream:stream> tag
containing server address

3. Wait for the server’s<stream:stream>
reply and record the stream’s session ID

4. Use Jabber authentication protocol to
login

5. Follow Jabber protocols to send packets.
Jabber server will route them to
appropriate recipients

6. Send a closing </stream:stream> tag to
close the stream

7. Close the network connection.

On the other side, assuming that SMSC

has created client accounts and granted access
rights to port X already, the scenario is similar
and is described as follows:

1. Connect SMSC on port X
2. Compose and send both SMPP

bind_transmitter and bind_receiver
PDUs to SMSC.

3. Wait for bind responses.
4. Use submit_sm PDUs to pack and send

messages to SMSC for further delivery.
Then wait for corresponding submit_sm
responses. Or, wait for deliver_sm
PDUs from SMSC for receiving
messages, and then, acknowledge
SMSC with deliver_sm response PDUs.

5. Send Unbind PDUs and close the
connection.

Once the interconnections to both protocol

stacks get ready, conversion between XML and
binary SMPP PDU is the remaining task to plug
in.

While data moving toward mobile network,
the actual delivery may reach real handsets or
another ESME applications since the SMSC is
capable of intercepting a mobile number and
re-route messages to a predefined ESME.
However, an interception of the messages
originated from subscribers of foreign network
requires an advanced feature, so-called virtual
number capability. Technically, the SMSC runs
a virtual HLR inside, which will answer and
guide SS7 network how to route messages to a
virtual mobile number. The virtual mobile
number does not map to any existing handset.
Instead, it is bound with a pre-defined ESME
application by the SMSC. The application is
constantly listening to any incoming messages
for further processing, as shown in Figure 11.

Jabber Server

ESME
Jabber Transport

Operator Netowrk

SS7

Foreign Operator
Netowrks

Jabber Clients

XML

SMSC

ESME

S
M
P
P

Virtual
HLR

Figure 11. SMSC with virtual number
capability

Therefore, the SMSC with virtual number

capability will be capable of receiving and
forwa rding messages originated from mobile
subscribers of all operators to pre-defined ESME
applications. However, the virtual number
capability does not matter with sending message
from an application to any operator network.

By way of the SMSC virtual number, the
Jabber server will save itself from
interconnection with all operators, since it may

receive message originated from all operators via
the SMSC of a single operator.

Furthermore, as shown in Figure 12, carrier
operators may adopt the Jabber XML-based
protocol as an IP-based solution to interconnect
with each other, instead of the conventional SS7
protocol. Such a unified environment will make
everyone to talk each other in a much cheaper
and easier way.

Jabber
Server

Operator A Netowrk

ICP

ICP

ICP

...

Jabber
ProtocolJabber ClientJabber Client

Jabber Client

SMSC

Jabber network

Operator B Netowrk

SMSC

Jabber network

Jabber Comunity

Figure 12. S peaking in one protocol and
reaching everywhere.

6. Conclusion and Future Work
Telecommunication industry and IP-based
network technology progress so quickly that
message traffic volume will boom for sure.
Operators and ICP can gain much more revenue,
and users can enjoy more for sure. By adopting
existing proven XML-based technologies, we
can easily achieve to unify interfaces and cover
up many different hybrid and proprietary
systems. However, there are still certain works to
do in developing and applying the Jabber
protocol to instant message service. Some issues,
such as the guaranteed quality of service and
mission-critical message flow support, are
critical in the design and implementation of
Jabber protocol. Quality of service concerns the
problems including:

1) Time to send and receive,
2) Delivery ordering,
3) Delivery priorities, particularly while

system load is heavy.

References
[1] M. Day, J. Rosenberg and H. Sugano, “A

model for presence and instant messag-
ing,” Internet RFC 2778, Feb. 2000.

[2] M. Day, S. Aggarwal, G. Mohr and J. Vin-
cent, “Instant messaging/presence protocol
requirements,” Internet RFC 2779, Feb.
2000.

[3] Jabber software foundation official web
site, http://www.jabber.org

[4] I. Shigeoka, “Instant Messaging in Java,
The Jabber Protocols,” Manning Publica-
tions, 2002.

[5] W3c XML standards,
http://www.w3.org/XML/.

[6] http://smsforum.net/doc/public/Spec/SMP
P_v3_4_Issue1_2.pdf, October 12, 1999.

[7] ETSI TS 100 900 V7.2.0 (1999-07), Dig i-
tal cellular telecommunications system
(phase 2+), alphabets and lan-

guage-specific information (GSM 03.38
version 7.2.0 release) 1998.

[8] ETSI TS 100 901 V7.4.0 (1999-12), Dig i-
tal cellular telecommunications system
(phase 2+), technical realization of the
short message Service (SMS) (GSM 03.40
version 7.4.0 release) 1998.

[9] The Unicode Standard -
http://www.unicode.org.

[10] Java Programming - http://java.sun.com.
[11] Roy T. Fielding, James Gettys, Jeffrey C.

Mogul, Henrik Frystyk Nielsen, Larry
Masinter, Paul J. Leach, Tim Bern-
ers-Lee – “Hypertext Transfer Protocol --
HTTP/1.1”, Internet RFC 2616, June 1999

[12] Tim Berners-Lee, Roy T. Fielding, Larry
Masinter, “Uniform Resource Identifiers
(URI): Generic Syntax”, Internet RFC
2396, August 1998

