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ABSTRACT 

 A device driver is a software layer to talk 
to peripheral hardware device. Because of the 
need for hardware knowledge and the lack of 
appropriate assistant tool, writing device drivers 
has always been tedious and error-prone. This 
paper proposes a design framework to facilitate 
the driver development for embedded Linux OS. 
The framework provides a structural design ap-
proach and automatic tools for design. It consists 
of a two stage design process. The first stage is 
to automatically generate a driver code skeleton 
from user-specified configurations. In the second 
stage, a user can complete the driver code using 
C language and our proposed Embedded 
Driver-Specific Language (EDSL). The driver 
code written in EDSL not only is more concise 
and easier verified, but also can be automatically 
synthesized to C codes. A preliminary imple-
mentation of the design framework has been 
applied to develop device drivers for an 
ARM7-based platform and obtained favorable 
results. 

KEY WORDS: Embedded Linux, Device driver, 
Design framework, Software synthesis, Open 
source. 

1. INTRODUCTION 
A device driver is a software layer to talk to pe-
ripheral hardware device. It is a necessary part to 
release a new peripheral device and IC. Nowa-
days, the rapid progress in assistant tools has 
significantly reduced the development time for 
hardware parts, while the development of device 
drivers has made little progress. The availability 
of device driver often delays the release of a new 
device or IC. For Linux users, the problem is 
even more troublesome since the driver support 
for Linux generally is scheduled after for Mi-
crosoft OSs. According to a recent survey [7], 
the availability of device drivers becomes the 
most concern for designers of embedded systems 
to adopt Linux as their OS.   

It is a tedious and error-prone task to write 
device drivers because it needs knowledge of 
target device hardware and technique of ker-

nel-mode programming. Nevertheless, a device 
driver generally needs to be rewritten for differ-
ent OSs and different processors [14]. As a result, 
the assistant tool and effective design approach 
to facilitate the development process have al-
ways been highly desirable. Current commercial 
assistant tools like Jungo’s WinDriver [15] and 
Bsquare’s WinDk [16] (basically specific to Mi-
crosoft Windows OS) provide a graphical user 
interface for specifying the main features of a 
driver and can automatically generate a code 
skeleton that is comprised of coarse-grained 
functions. Another facility of these tools is to 
provide libraries which wrap kernel functions 
and allow users to access hardware resource via 
user-mode programming. However, the approach 
incurs performance penalty and more difficulty 
to handle shared devices. 

Most of research works in literature attempt 
to automatically generate fine-grained driver 
code from a high level specification and/or 
maximize the source-portability across different 
platforms. Various Domain-Specific Languages 
(DSL), like Devil and ProGram, are proposed as 
high level specifications to design device drivers 
[9, 11, 13]. A DSL is a programming language 
tailored for a specific application and provides 
more expressive power over the application do-
main. The generally claimed benefits of using 
DSL approach include higher-level abstraction, 
increased productivities, and better error report-
ing. However, as pointed out in [3], DSL also 
incurs a number of disadvantages such as the 
costs of education for users and the potential loss 
efficiency when compared with general pro-
gramming language. The work [2] dealing with 
the interface HW/SW co-synthesis also ad-
dresses the task of automatically generating de-
vice drivers from a high level specification. 
However, the generated software driver is not in 
the context of an OS, but rather to emulate the 
signaling of bus interface in software. As for the 
portability, the industrial ongoing project UDI 
[17] separates the OS-dependent part and de-
vice-dependent part from a device driver and 
normalizes the interface between them and the 
rest of driver, which essentially is OS independ-
ent and device-vendor independent. The system 
proposed by Katayama et al. does a similar work, 
though only Unix-like OSs considered [8]. Our 



 

current work aims at supporting embedded 
Linux (uClinux) [19] running at ARM-7 plat-
form only. The portability issue will not be stud-
ied in this paper.  

This paper proposes a new design frame-
work to facilitate the development of Linux de-
vice drivers. The framework provides a struc-
tural design approach and automatic tools for 
design. It consists of a two stage design process. 
The first stage is to automatically generate a 
driver code skeleton according to user-specified 
configuration. The driver skeleton is composed 
of a set of parameterized templates which con-
tain coarse-grained functions. The second stage 
is based on our proposed Embedded 
Driver-Specific Language (EDSL) which offers 
specific expressive power over the driver domain 
and allows one to complete the driver code from 
the skeleton. Specifically, the EDSL is a kind of 
DSL, but it is embedded in the C language. The 
programming scheme retains the expressive 
power of C language for users as well as offers 
expressive power over the domain of device 
drivers. The driver code written in EDSL not 
only is more concise and easier verified, but also 
can be automatically synthesized to C codes. A 
preliminary implementation of the design 
framework has been applied to design device 
drivers for an ARM7-based platform and ob-
tained favorable results. 

 The reset of the paper is organized in the 
following way. The next section overviews our 
design framework and introduces the input 
specification to our framework. Then the two 
primary components, skeleton-generator and 
EDSL approach, will be described in detail in 
Section 3 and Section 4 respectively. Preliminary 
assessment for our approach will be shown in 
Section 5. Final section concludes the paper and 
presents some line of future work. 
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2. SYSTEM OVERVIEW 

Fig. 1 shows our design framework for embed-
ded Linux device driver. The framework consists 
of a two stage design process. The first-stage 
process accepts API (Application Program In-
terface) and resource configuration files as input 
specifications. API is an abstraction of functions 
provided by the peripheral device, through that 
operation system (on behalf of application pro-
grams) can communicate with devices. Fig. 2 
shows the operation scheme. The key idea be-
hind the first-stage process is based on that 
Linux OS has defined a set of standard API 
function prototypes (such as read, open and ioctl) 
for various kinds of device [12], that is, character, 
block and network device. A practical driver is 
comprised of a subset of the API set. We prepare 
a code template for each API function of the 
character-type device (currently block and net-
work devices having not been considered), 
which consists of optional codes and substitut-
able string variables. The API configuration file 
determines what subset of APIs and what spe-
cific features to be provided by a driver. An API 
function performed generally involves certain 
hardware resources, like IO registers, interrupt 
and DMA. Their features are defined in the re-
source configuration file. 

 API and resource configurations are parsed 
by the skeleton generator and relevant parame-
ters derived are passed to a C-preprocessor to 
instantiate code templates. These templates are 
written in C language with preprocessing direc-
tives. Though there are more powerful preproc-
essing languages such as perl and Ksh,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1: The design framework for embedded Linux 
driver. 
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Fig. 2: The API system call and the Linux device driver. 
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C-preprocessor, which can perform string sub-
stitution and conditional statements, is enough 
for our need. All the generated codes templates 
are assembled to build a skeletal device driver. 
In addition, a header file and a Makefile are also 
generated in the process. 

In the second stage, one can start from the 
code skeleton and continue to complete the 
driver with C language and our proposed EDSL. 
The EDSL is a small language and is expressive 
uniquely over the specific features of device 
drivers. The programming scheme attempts to 
retain the expressive power of C language for 
users as well as offers expressive power over the 
driver features. Presently, the EDSL provides 
three kinds of descriptive capability: accessing 
registers, software-driven signaling and de-
scribing state machines. They will be further 
detailed in a later section. After added with C 
statements and EDSL statements, the driver code 
is then fed into the code synthesizer. It trans-
forms the EDSL statements to C codes and tries 
to optimize the code size and/or performance. 
The final output is a device driver in C language. 

3. SKELETON GENERATOR 

The skeleton generator accepts API and re-
source configurations as input specifications and 
outputs a skeletal driver that is built from a set of 
predefined code templates. This section firstly 
introduces the syntax and semantics of the con-
figuration files and then describes the operation 
of the skeleton generator. 

The API configuration file determines not 
only what kinds of API the driver supports but 
also what functional facilities every API pro-
vides. Roughly, the syntax of the API configura-
tion can be stated as follows: 

<file> :==  { <param- line> } EOF 

< param-line > :== <ApiName> { ',' <pa-
ram-item> } '\n' 

<param- item>  :==  <NAME '=' VALUE >  

 Each of Linux API functions has a unique 
ApiName, for instance, ReadApi for read() func-
tion. Associated with each ApiName, there are 
certain parameters to differentiate various opera-
tion modes and services that the API function  

 

 

 

 

 

 

provides. For example, a read() function can be 
either blocking or non-blocking and use buffer 
or not. Fig. 3 lists a set of parameters associated 
with the read() function and Fig. 4 shows a sim-
ple example file. It specifies that the read( ) 
function does not support nonblocking mode and 
uses a circular buffer with the size of 2048 bytes 
to hold data, which is moved to memory via a 
DMA operation. This configuration file also de-
fines two ioctl commands. An ioctl command is 
defined by three parameters, namely Cmd 
(Command name) name, Dir (access direction) 
and Argu (the type of argument). 

 

 

 

 

 

 

The resource configuration of a device involves 
device registers, interrupt, DMA and IO memory. 
The device registers can be viewed as a pro-
gramming interface for device function. Gener-
ally, a device register is partitioned into several 
bit fields each of which represents a certain at-
tribute (i.e. status or configuration) of the device. 
In our framework, each bit field is called as a 
device attribute and each attribute can be ac-
cessed individually in EDSL statements. The 
configuration file defines the physical address of 
device register and the bit-range for each device 
attribute. Fig. 5 shows an example of resource 
configuration file for a UART device. The syn-
tax of the file is the same as API configuration. 
In the example, the name of device is specified 
as “UART” and the physical base address 
0x3ff0000. The device has a register which re-
sides at the offset 0xD0000 and named as 
“UART_ULCON0”. The register contains five 
device attributes (IR, SC, PMD, STB and WL) 
whose bit positions are at bit 7, bit 6, bit 5~3, bit 
2 and bit 1~0 respectively. Other bits are not 
used and denoted as “U”. Besides of register 
declarations, the features of interrupt and DMA 
used by the device are also specified in the file, 
which shows that the interrupt number used by 
the UART device is 7 and its type is “slow” 
(means its served priority is low). Furthermore, 

NonBlock    ; indicates whether nonblocking mode is used.. 
UseBuf  ; indicates whether a buffer is used to hold input data. 
BufSize  ; the size of read buffer 
BufFull ; indicates the approach used when the buffer is full (types: CirCu-

lar/Signal/Discard) 
Access ; indicates the operation type to read data (e.g. directly read, read via DMA) 

Fig. 3: A list of parameters used to specify the read() function. 

ReadApi  NonBlock=No, UseBuf = Yes, 
ReadApi  BufSize = 2048, Access = DMA 
IoctlApi Cmd=UART_BAUDRATE, Dir=WR, Argu=int
IoctlApi Cmd=UART_STATUS, Dir=RD, Argu=char 

Fig 4. A sample of API configuration file. 



 

its corresponding service routine uses bot-
tom-half mechanism [12]. 

 

 

 

 

 

 

 

 

The first task of the skeleton generator is to 
parse the API and resource configurations and to 
pass the derived parameter values to the template 
instantiater (i.e. C preprocessor). The grammar 
of these two configuration files is rather simple 
(i.e. regular language). We have implemented its 
parser in C language. The parameter-value pairs 
parsed are given to the template instantiater. 
Each of standard API functions and device ini-
tialization procedure has a corresponding code 
template. These templates are written in C lan-
guage with preprocessing directives. Specifically, 
it consists of optional codes and substitutable 
string variables. Fig. 6 is a template example of 
device initialization procedure. The template 
uses parameter “DEVNAME” to do several 
string substitutions and parameter “INT” to de-
termine whether the codes about interrupt are 
included. According to the resource configura-
tion in Fig. 5, the parser will issue the command, 
“gcc –E –DDEVNAME=uart –DINT –c tem-
plate.c”, to generate the needed code template. 
The second task of the skeleton generator is to 
collect all generated code templates into a file 
and to produce relevant header file and Makefile 
for the driver. The header file contains all the 
symbol definitions and function prototypes. For 
examples, INTNUM is defined as “7” and 
ULCON0 is defined as “IOBASE+0xD0000” in 
the header file.  

4. EMBEDDED DRIVER-SPECIFIC 
LANGUAGE 

Starting from driver skeleton, users can complete 
the driver in C language and EDSL. The EDSL 
is a kind of DSL, but it is embedded in the C 
language. The programming scheme retains the 
expressive power of C language for users as well 
as offers expressive power over the domain of 
device drivers. The descriptive capability of the 
EDSL provided is associated with the functional 
partition of a device, as shown in Fig. 7. It shows 
that a driver can be separated into three parts: 
bus interface, device attributes and device core. 
A bus is made up of both an electrical interface 

and a programming interface. EDSL currently 
provides capability to emulate electrical inter-
face in software. The attributes (stored in regis-
ters) abstract the status and the configuration 
setting of the device. EDSL allows a user to ma-
nipulate them individually. The device core is 
responsible for performing device functions. 
EDSL currently provides state-machine descrip-
tion to help a driver to maintain the device re-
source. The followings give examples to illus-
trate their descriptions. 

Fig 5. A sample of resource configuration 
file. 

Device Name=UART, IOBASE=0x03ff0000 
INT IntNum = 7, Type=Slow, UseBH=Yes 
DMA DmaChan=0 
REG Name=ULCON0, Addr=0xD0000, \ 

24:1:1:3:1:2=U:IR:SC:PMD:STB:WL 
REG Name=BRDDIV0, Addr=0xD014, \ 
16:12:4=U:CNT0:CNT1

#define DEV_INIT(s) DEV_INITX(s) 
#define INTISR(s) INTISRX(s) 
#define FOPS(s) FOPSX(s) 
#define STR(s) STRX(s) 
#define DEV_INITX(s) int s## _init( void) 
#define INTISRX(s)  s## _interrupt 
#define FOPSX(s) &## s## _fpos 
#define STRX(s) #s 
int major = 0; 
DEV_INIT(DEVNAME) 
{ 
 int result; 
#ifdef INT   
 if(request_irq(INTNUM, INTISR(DEVNAME), 0, 
STR(DEVNAME), NULL)) { 
    printk(STR(DEVNAME) " IRQ %d is not free.\n", 
INTNUM); 
  return -EIO; 
 } 
#endif  
 /* Register a character device */ 
 if ((result = register_chrdev(major, STR(DEVNAME), 
FOPS(DEVNAME))) < 0) { 
  printk(KERN_WARNING STR(DEVNAME) 
"can't get major %d\n",major); 
  return result; 
 } 
} 

Fig 6. A code-template of device_init( ) 
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Fig. 7: A functional partition of a device and the associ-
ated EDSL facilities for each part. 



 

Accessing registers: The registers of a device 
can be viewed as a programming interface of the 
device function. Through accessing registers, a 
driver can configure the device, read device 
status and do data transaction. As stated in a pre-
vious section, a register may contain more than 
one device attribute and each one can be ma-
nipulated individually. The manipulation of de-
vice attribute requires bit mask and shift opera-
tions which are error-prone in a general pro-
gramming language such as C. A driver code 
generally consists of many such bit operations, 
which can represent up to 30% of driver code [9]. 
The EDSL allows users to specify the access of 
device attribute individually, and the bit opera-
tion and type consistency checking will be per-
formed implicitly in our framework. The fol-
lowings show a code segment of EDSL to access 
device attributes (referring to Fig. 4 and Fig. 5 
configurations): 

edsl_register(ULCON0_WL=0x2, 
ULCON0_STB=StbLength, 
ULCON0_OTH=UNCHAN); 
edsl_register(baudrate = BRDDIV0_CONT0); 
 
The above statements can be transformed to the 
followings: 

 temp = *(ULCON0); 
 temp = temp & 0xFFFFFFF8; /* Other 
bits are unchanged */ 
 temp = temp | 0x2; 
 temp = temp | (stbLength << 2) ; 

*(ULCON0) = temp; 
baudrate = (*(BRDDIV0) & 0x0000FFF0 ) 

>> 4; 

The above transformation is performed by the 
code-synthesizer in the framework. Some kinds 
of optimization can be further explored in the 
transformation, such as the combining consecu-
tive accesses of the same register into single 
access and explicitly register caching. They have 
not been included in our current framework. 

Software-driven signaling: Embedded comput-
ing systems seldom adopt standard IO buses, 
such as PCI or ISA for PC systems, to commu-
nicate with hardware devices. The communica-
tion interfacing can be maintained by aided 
hardware or software. We call the emulation of 
bus interface in software to be software-driven 
signaling. It is applicable for low speed and low 
cost applications. The following EDSL statement 
requests a CPU to generate an active high signal 
having the duration of at least 200ms through the 
IO port ADC_RESET. 
 
edsl_signal( ADC_RESET, Active = HIGH, DUR 
= 200ms ); 

To realize the above action, the driver needs the 
invocation of timer and prepares associated han-
dler. Our framework will automatically generate 
these codes. Furthermore, the insertion of delay 
between consecutive register accesses sometimes 
is required for low speed IO devices. This can be 
achieved by busy-waiting or invoking a timer. 
The edsl_delay() directive is proposed to specify 
the behavior. 

Describing state machines: State machines are 
usually used to model protocol-based network 
layered devices and to manage shared resources 
[10]. EDSL provides a directive to describe a 
state table, as shown below: 

edsl_state(S0, x >= 3 && y == 4, S1, do_play); 
edsl_state(S1, x<= 2 || y != 4, S0, do_exit); 

The four fields of the edsl_state statement repre-
sent current state, conditions, next state and ac-
tion performed before changing to next state, 
respectively. Currently, we transform the state 
table to C codes using procedure scheme in [5]. 
In recent years, optimal code synthesis for con-
trol-dominated machine attracts much attention 
in EDA research community [1, 4, 6]. Partial 
results of them can be directly applied to our 
framework. However, for certain kinds of de-
vices, a driver needs to distribute state manage-
ment among different API functions, which 
needs additional techniques to optimize the 
codes. The optimization techniques have not 
been included in our framework. 

5. ASSESSMENT 

To assess the proposed design framework, a pre-
liminary implementation has been applied to 
develop device drivers for an ARM7-based plat-
form from Wiscore corporation [18]. The plat-
form contains an SOC (Samsung 3C4510B) that 
includes an ARM7 as CPU and most of periph-
eral devices, such as timer, DMAC and UART. 
We connect a LCD to the platform for experi-
ment. Two drivers under uClinux OS for UART 
and LCD respectively have been designed for 
the assessment. The UART device is pro-
grammed to issue a DMA request each time 
when it receives one byte data. Its driver should 
collect data in a buffer and provide blocking read. 
The driver for LCD involves many ioctl calls to 
set character attributes and needs delay-insertion 
statements because the response of LCD is rather 
slow. Both drivers heavily rely on register access. 
In addition, our code template for read( ) func-
tion contains the codes for DMA transfer. 
Therefore, about 80% of both driver codes can 
be covered by the generated driver skeleton and 
EDSL statements. 



 

6. CONCLUSION AND FUTURE 
WORK 

We have presented a new design framework to 
facilitate the development of embedded Linux 
device drivers. The framework provides a two 
stage design process and automatic tools for de-
sign. The first stage is to automatically generate 
a driver skeleton based on a set of parameteriz-
able templates. The second stage is to allow us-
ers to complete the driver with the new proposed 
EDSL. The driver code written in EDSL has 
been shown more concise and easier verified. 
Furthermore, the EDSL codes can be automati-
cally synthesized to C language. A preliminary 
implementation of the design framework has 
been applied to design device drivers for an 
ARM7-based embedded platform and obtained 
favorable results. 

The future works include the exploration of 
optimal code synthesis for EDSL and the im-
plementation of an integrated GUI development 
environment based on our design framework.  
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