

A Design Framework for Embedded Linux Drivers
Kuan Jen Lin, Shin Wen Chen and Jian Lung Chen

Department of Electronic Engineering, Fu Jen Catholic University, Taiwan

E-mail: kjlin@mails.fju.edu.tw

ABSTRACT

 A device driver is a software layer to talk
to peripheral hardware device. Because of the
need for hardware knowledge and the lack of
appropriate assistant tool, writing device drivers
has always been tedious and error-prone. This
paper proposes a design framework to facilitate
the driver development for embedded Linux OS.
The framework provides a structural design ap-
proach and automatic tools for design. It consists
of a two stage design process. The first stage is
to automatically generate a driver code skeleton
from user-specified configurations. In the second
stage, a user can complete the driver code using
C language and our proposed Embedded
Driver-Specific Language (EDSL). The driver
code written in EDSL not only is more concise
and easier verified, but also can be automatically
synthesized to C codes. A preliminary imple-
mentation of the design framework has been
applied to develop device drivers for an
ARM7-based platform and obtained favorable
results.

KEY WORDS: Embedded Linux, Device driver,
Design framework, Software synthesis, Open
source.

1. INTRODUCTION
A device driver is a software layer to talk to pe-
ripheral hardware device. It is a necessary part to
release a new peripheral device and IC. Nowa-
days, the rapid progress in assistant tools has
significantly reduced the development time for
hardware parts, while the development of device
drivers has made little progress. The availability
of device driver often delays the release of a new
device or IC. For Linux users, the problem is
even more troublesome since the driver support
for Linux generally is scheduled after for Mi-
crosoft OSs. According to a recent survey [7],
the availability of device drivers becomes the
most concern for designers of embedded systems
to adopt Linux as their OS.

It is a tedious and error-prone task to write
device drivers because it needs knowledge of
target device hardware and technique of ker-

nel-mode programming. Nevertheless, a device
driver generally needs to be rewritten for differ-
ent OSs and different processors [14]. As a result,
the assistant tool and effective design approach
to facilitate the development process have al-
ways been highly desirable. Current commercial
assistant tools like Jungo’s WinDriver [15] and
Bsquare’s WinDk [16] (basically specific to Mi-
crosoft Windows OS) provide a graphical user
interface for specifying the main features of a
driver and can automatically generate a code
skeleton that is comprised of coarse-grained
functions. Another facility of these tools is to
provide libraries which wrap kernel functions
and allow users to access hardware resource via
user-mode programming. However, the approach
incurs performance penalty and more difficulty
to handle shared devices.

Most of research works in literature attempt
to automatically generate fine-grained driver
code from a high level specification and/or
maximize the source-portability across different
platforms. Various Domain-Specific Languages
(DSL), like Devil and ProGram, are proposed as
high level specifications to design device drivers
[9, 11, 13]. A DSL is a programming language
tailored for a specific application and provides
more expressive power over the application do-
main. The generally claimed benefits of using
DSL approach include higher-level abstraction,
increased productivities, and better error report-
ing. However, as pointed out in [3], DSL also
incurs a number of disadvantages such as the
costs of education for users and the potential loss
efficiency when compared with general pro-
gramming language. The work [2] dealing with
the interface HW/SW co-synthesis also ad-
dresses the task of automatically generating de-
vice drivers from a high level specification.
However, the generated software driver is not in
the context of an OS, but rather to emulate the
signaling of bus interface in software. As for the
portability, the industrial ongoing project UDI
[17] separates the OS-dependent part and de-
vice-dependent part from a device driver and
normalizes the interface between them and the
rest of driver, which essentially is OS independ-
ent and device-vendor independent. The system
proposed by Katayama et al. does a similar work,
though only Unix-like OSs considered [8]. Our

current work aims at supporting embedded
Linux (uClinux) [19] running at ARM-7 plat-
form only. The portability issue will not be stud-
ied in this paper.

This paper proposes a new design frame-
work to facilitate the development of Linux de-
vice drivers. The framework provides a struc-
tural design approach and automatic tools for
design. It consists of a two stage design process.
The first stage is to automatically generate a
driver code skeleton according to user-specified
configuration. The driver skeleton is composed
of a set of parameterized templates which con-
tain coarse-grained functions. The second stage
is based on our proposed Embedded
Driver-Specific Language (EDSL) which offers
specific expressive power over the driver domain
and allows one to complete the driver code from
the skeleton. Specifically, the EDSL is a kind of
DSL, but it is embedded in the C language. The
programming scheme retains the expressive
power of C language for users as well as offers
expressive power over the domain of device
drivers. The driver code written in EDSL not
only is more concise and easier verified, but also
can be automatically synthesized to C codes. A
preliminary implementation of the design
framework has been applied to design device
drivers for an ARM7-based platform and ob-
tained favorable results.

 The reset of the paper is organized in the
following way. The next section overviews our
design framework and introduces the input
specification to our framework. Then the two
primary components, skeleton-generator and
EDSL approach, will be described in detail in
Section 3 and Section 4 respectively. Preliminary
assessment for our approach will be shown in
Section 5. Final section concludes the paper and
presents some line of future work.

.

2. SYSTEM OVERVIEW

Fig. 1 shows our design framework for embed-
ded Linux device driver. The framework consists
of a two stage design process. The first-stage
process accepts API (Application Program In-
terface) and resource configuration files as input
specifications. API is an abstraction of functions
provided by the peripheral device, through that
operation system (on behalf of application pro-
grams) can communicate with devices. Fig. 2
shows the operation scheme. The key idea be-
hind the first-stage process is based on that
Linux OS has defined a set of standard API
function prototypes (such as read, open and ioctl)
for various kinds of device [12], that is, character,
block and network device. A practical driver is
comprised of a subset of the API set. We prepare
a code template for each API function of the
character-type device (currently block and net-
work devices having not been considered),
which consists of optional codes and substitut-
able string variables. The API configuration file
determines what subset of APIs and what spe-
cific features to be provided by a driver. An API
function performed generally involves certain
hardware resources, like IO registers, interrupt
and DMA. Their features are defined in the re-
source configuration file.

 API and resource configurations are parsed
by the skeleton generator and relevant parame-
ters derived are passed to a C-preprocessor to
instantiate code templates. These templates are
written in C language with preprocessing direc-
tives. Though there are more powerful preproc-
essing languages such as perl and Ksh,

Fig.1: The design framework for embedded Linux
driver.

API Configuration

Code-Skeleton Generator
Code
Templates

Code Synthesizer

CPP

EDSL
Descrip-
tions

Manual coding

C-program device driver

Resource Configuration

Fig. 2: The API system call and the Linux device driver.

User mode

Kernel mode
API system call

Driver function routines

Application programs

Virtual file system

Device
file-operation
table

open
read
write
ioctl
….
…..
release
interrupt

Interrupt
handler

Device

C-preprocessor, which can perform string sub-
stitution and conditional statements, is enough
for our need. All the generated codes templates
are assembled to build a skeletal device driver.
In addition, a header file and a Makefile are also
generated in the process.

In the second stage, one can start from the
code skeleton and continue to complete the
driver with C language and our proposed EDSL.
The EDSL is a small language and is expressive
uniquely over the specific features of device
drivers. The programming scheme attempts to
retain the expressive power of C language for
users as well as offers expressive power over the
driver features. Presently, the EDSL provides
three kinds of descriptive capability: accessing
registers, software-driven signaling and de-
scribing state machines. They will be further
detailed in a later section. After added with C
statements and EDSL statements, the driver code
is then fed into the code synthesizer. It trans-
forms the EDSL statements to C codes and tries
to optimize the code size and/or performance.
The final output is a device driver in C language.

3. SKELETON GENERATOR

The skeleton generator accepts API and re-
source configurations as input specifications and
outputs a skeletal driver that is built from a set of
predefined code templates. This section firstly
introduces the syntax and semantics of the con-
figuration files and then describes the operation
of the skeleton generator.

The API configuration file determines not
only what kinds of API the driver supports but
also what functional facilities every API pro-
vides. Roughly, the syntax of the API configura-
tion can be stated as follows:

<file> :== { <param- line> } EOF

< param-line > :== <ApiName> { ',' <pa-
ram-item> } '\n'

<param- item> :== <NAME '=' VALUE >

 Each of Linux API functions has a unique
ApiName, for instance, ReadApi for read() func-
tion. Associated with each ApiName, there are
certain parameters to differentiate various opera-
tion modes and services that the API function

provides. For example, a read() function can be
either blocking or non-blocking and use buffer
or not. Fig. 3 lists a set of parameters associated
with the read() function and Fig. 4 shows a sim-
ple example file. It specifies that the read()
function does not support nonblocking mode and
uses a circular buffer with the size of 2048 bytes
to hold data, which is moved to memory via a
DMA operation. This configuration file also de-
fines two ioctl commands. An ioctl command is
defined by three parameters, namely Cmd
(Command name) name, Dir (access direction)
and Argu (the type of argument).

The resource configuration of a device involves
device registers, interrupt, DMA and IO memory.
The device registers can be viewed as a pro-
gramming interface for device function. Gener-
ally, a device register is partitioned into several
bit fields each of which represents a certain at-
tribute (i.e. status or configuration) of the device.
In our framework, each bit field is called as a
device attribute and each attribute can be ac-
cessed individually in EDSL statements. The
configuration file defines the physical address of
device register and the bit-range for each device
attribute. Fig. 5 shows an example of resource
configuration file for a UART device. The syn-
tax of the file is the same as API configuration.
In the example, the name of device is specified
as “UART” and the physical base address
0x3ff0000. The device has a register which re-
sides at the offset 0xD0000 and named as
“UART_ULCON0”. The register contains five
device attributes (IR, SC, PMD, STB and WL)
whose bit positions are at bit 7, bit 6, bit 5~3, bit
2 and bit 1~0 respectively. Other bits are not
used and denoted as “U”. Besides of register
declarations, the features of interrupt and DMA
used by the device are also specified in the file,
which shows that the interrupt number used by
the UART device is 7 and its type is “slow”
(means its served priority is low). Furthermore,

NonBlock ; indicates whether nonblocking mode is used..
UseBuf ; indicates whether a buffer is used to hold input data.
BufSize ; the size of read buffer
BufFull ; indicates the approach used when the buffer is full (types: CirCu-

lar/Signal/Discard)
Access ; indicates the operation type to read data (e.g. directly read, read via DMA)

Fig. 3: A list of parameters used to specify the read() function.

ReadApi NonBlock=No, UseBuf = Yes,
ReadApi BufSize = 2048, Access = DMA
IoctlApi Cmd=UART_BAUDRATE, Dir=WR, Argu=int
IoctlApi Cmd=UART_STATUS, Dir=RD, Argu=char

Fig 4. A sample of API configuration file.

its corresponding service routine uses bot-
tom-half mechanism [12].

The first task of the skeleton generator is to
parse the API and resource configurations and to
pass the derived parameter values to the template
instantiater (i.e. C preprocessor). The grammar
of these two configuration files is rather simple
(i.e. regular language). We have implemented its
parser in C language. The parameter-value pairs
parsed are given to the template instantiater.
Each of standard API functions and device ini-
tialization procedure has a corresponding code
template. These templates are written in C lan-
guage with preprocessing directives. Specifically,
it consists of optional codes and substitutable
string variables. Fig. 6 is a template example of
device initialization procedure. The template
uses parameter “DEVNAME” to do several
string substitutions and parameter “INT” to de-
termine whether the codes about interrupt are
included. According to the resource configura-
tion in Fig. 5, the parser will issue the command,
“gcc –E –DDEVNAME=uart –DINT –c tem-
plate.c”, to generate the needed code template.
The second task of the skeleton generator is to
collect all generated code templates into a file
and to produce relevant header file and Makefile
for the driver. The header file contains all the
symbol definitions and function prototypes. For
examples, INTNUM is defined as “7” and
ULCON0 is defined as “IOBASE+0xD0000” in
the header file.

4. EMBEDDED DRIVER-SPECIFIC
LANGUAGE

Starting from driver skeleton, users can complete
the driver in C language and EDSL. The EDSL
is a kind of DSL, but it is embedded in the C
language. The programming scheme retains the
expressive power of C language for users as well
as offers expressive power over the domain of
device drivers. The descriptive capability of the
EDSL provided is associated with the functional
partition of a device, as shown in Fig. 7. It shows
that a driver can be separated into three parts:
bus interface, device attributes and device core.
A bus is made up of both an electrical interface

and a programming interface. EDSL currently
provides capability to emulate electrical inter-
face in software. The attributes (stored in regis-
ters) abstract the status and the configuration
setting of the device. EDSL allows a user to ma-
nipulate them individually. The device core is
responsible for performing device functions.
EDSL currently provides state-machine descrip-
tion to help a driver to maintain the device re-
source. The followings give examples to illus-
trate their descriptions.

Fig 5. A sample of resource configuration
file.

Device Name=UART, IOBASE=0x03ff0000
INT IntNum = 7, Type=Slow, UseBH=Yes
DMA DmaChan=0
REG Name=ULCON0, Addr=0xD0000, \

24:1:1:3:1:2=U:IR:SC:PMD:STB:WL
REG Name=BRDDIV0, Addr=0xD014, \
16:12:4=U:CNT0:CNT1

#define DEV_INIT(s) DEV_INITX(s)
#define INTISR(s) INTISRX(s)
#define FOPS(s) FOPSX(s)
#define STR(s) STRX(s)
#define DEV_INITX(s) int s## _init(void)
#define INTISRX(s) s## _interrupt
#define FOPSX(s) &## s## _fpos
#define STRX(s) #s
int major = 0;
DEV_INIT(DEVNAME)
{
 int result;
#ifdef INT
 if(request_irq(INTNUM, INTISR(DEVNAME), 0,
STR(DEVNAME), NULL)) {
 printk(STR(DEVNAME) " IRQ %d is not free.\n",
INTNUM);
 return -EIO;
 }
#endif
 /* Register a character device */
 if ((result = register_chrdev(major, STR(DEVNAME),
FOPS(DEVNAME))) < 0) {
 printk(KERN_WARNING STR(DEVNAME)
"can't get major %d\n",major);
 return result;
 }
}

Fig 6. A code-template of device_init()

Peripheral bus

Bus interface

Device attributes

Device Core

edsl_signal
edsl_delay

edsl_register

edsl_state

Fig. 7: A functional partition of a device and the associ-
ated EDSL facilities for each part.

Accessing registers: The registers of a device
can be viewed as a programming interface of the
device function. Through accessing registers, a
driver can configure the device, read device
status and do data transaction. As stated in a pre-
vious section, a register may contain more than
one device attribute and each one can be ma-
nipulated individually. The manipulation of de-
vice attribute requires bit mask and shift opera-
tions which are error-prone in a general pro-
gramming language such as C. A driver code
generally consists of many such bit operations,
which can represent up to 30% of driver code [9].
The EDSL allows users to specify the access of
device attribute individually, and the bit opera-
tion and type consistency checking will be per-
formed implicitly in our framework. The fol-
lowings show a code segment of EDSL to access
device attributes (referring to Fig. 4 and Fig. 5
configurations):

edsl_register(ULCON0_WL=0x2,
ULCON0_STB=StbLength,
ULCON0_OTH=UNCHAN);
edsl_register(baudrate = BRDDIV0_CONT0);

The above statements can be transformed to the
followings:

 temp = *(ULCON0);
 temp = temp & 0xFFFFFFF8; /* Other
bits are unchanged */
 temp = temp | 0x2;
 temp = temp | (stbLength << 2) ;

*(ULCON0) = temp;
baudrate = (*(BRDDIV0) & 0x0000FFF0)

>> 4;

The above transformation is performed by the
code-synthesizer in the framework. Some kinds
of optimization can be further explored in the
transformation, such as the combining consecu-
tive accesses of the same register into single
access and explicitly register caching. They have
not been included in our current framework.

Software-driven signaling: Embedded comput-
ing systems seldom adopt standard IO buses,
such as PCI or ISA for PC systems, to commu-
nicate with hardware devices. The communica-
tion interfacing can be maintained by aided
hardware or software. We call the emulation of
bus interface in software to be software-driven
signaling. It is applicable for low speed and low
cost applications. The following EDSL statement
requests a CPU to generate an active high signal
having the duration of at least 200ms through the
IO port ADC_RESET.

edsl_signal(ADC_RESET, Active = HIGH, DUR
= 200ms);

To realize the above action, the driver needs the
invocation of timer and prepares associated han-
dler. Our framework will automatically generate
these codes. Furthermore, the insertion of delay
between consecutive register accesses sometimes
is required for low speed IO devices. This can be
achieved by busy-waiting or invoking a timer.
The edsl_delay() directive is proposed to specify
the behavior.

Describing state machines: State machines are
usually used to model protocol-based network
layered devices and to manage shared resources
[10]. EDSL provides a directive to describe a
state table, as shown below:

edsl_state(S0, x >= 3 && y == 4, S1, do_play);
edsl_state(S1, x<= 2 || y != 4, S0, do_exit);

The four fields of the edsl_state statement repre-
sent current state, conditions, next state and ac-
tion performed before changing to next state,
respectively. Currently, we transform the state
table to C codes using procedure scheme in [5].
In recent years, optimal code synthesis for con-
trol-dominated machine attracts much attention
in EDA research community [1, 4, 6]. Partial
results of them can be directly applied to our
framework. However, for certain kinds of de-
vices, a driver needs to distribute state manage-
ment among different API functions, which
needs additional techniques to optimize the
codes. The optimization techniques have not
been included in our framework.

5. ASSESSMENT

To assess the proposed design framework, a pre-
liminary implementation has been applied to
develop device drivers for an ARM7-based plat-
form from Wiscore corporation [18]. The plat-
form contains an SOC (Samsung 3C4510B) that
includes an ARM7 as CPU and most of periph-
eral devices, such as timer, DMAC and UART.
We connect a LCD to the platform for experi-
ment. Two drivers under uClinux OS for UART
and LCD respectively have been designed for
the assessment. The UART device is pro-
grammed to issue a DMA request each time
when it receives one byte data. Its driver should
collect data in a buffer and provide blocking read.
The driver for LCD involves many ioctl calls to
set character attributes and needs delay-insertion
statements because the response of LCD is rather
slow. Both drivers heavily rely on register access.
In addition, our code template for read() func-
tion contains the codes for DMA transfer.
Therefore, about 80% of both driver codes can
be covered by the generated driver skeleton and
EDSL statements.

6. CONCLUSION AND FUTURE
WORK

We have presented a new design framework to
facilitate the development of embedded Linux
device drivers. The framework provides a two
stage design process and automatic tools for de-
sign. The first stage is to automatically generate
a driver skeleton based on a set of parameteriz-
able templates. The second stage is to allow us-
ers to complete the driver with the new proposed
EDSL. The driver code written in EDSL has
been shown more concise and easier verified.
Furthermore, the EDSL codes can be automati-
cally synthesized to C language. A preliminary
implementation of the design framework has
been applied to design device drivers for an
ARM7-based embedded platform and obtained
favorable results.

The future works include the exploration of
optimal code synthesis for EDSL and the im-
plementation of an integrated GUI development
environment based on our design framework.

7. ACKNOWLEDGMENTS

This work was supported by the National Sci-
ence Council, Taiwan, R.O.C. under grant NSC
91-2213-E-030-017.

8. REFERENCES

[1] Felice Balarin et. al., “Synthesis of Software
Programs for Embedded Control Applica-
tions,” IEEE Trans. on CAD, vol. 18, no. 6,
pp. 834-849, June, 1999.

[2] P. Chou, R. B. Ortega and G. Borriello, “In-
terface Co-synthesis Techniques for Em-
bedded Systems,” Proceedings of
IEEE/ACM International Conference on
Computer-Aided Design, pp. 280-287, 1995.

[3] A. Deursen et al., “Domain-Specific Lan-
guages: An Annotated Bibliography,” ACM
SIGSOFT Software Engineering Notes,
Nov. 2001.

[4] S. Edwards, “Compling Esteral into Sequen-
tial Code,” In Proc. of DAC, 2000.

[5] Paul Fischer, “State Machines In C,” C/C++
Users Journal, Dec, 1990

[6] Y. Jiang and R. K. Brayton, “Software Syn-
thesis from Synchronous Specifications Us-
ing Logic Simulation Techniques,” In Proc.
of DAC, pp. 319-324, 2002.

[7] R. Lehrhaum, “The State of Embedded
Linux,” presented in Embedded Linux Expo
& Conference, June 2001.

[8] T. Katayama, K. Saisho and A. Fukuda,
“Prototype of the Device Driver Generation
System for UNIX-like Operating Systems,”
Proceedings of International Symposium on
Principles of Software Evolution, pp.
302 –310, 2000.

[9] F. Merillon, L. Réveillère, C. Consel, R.
Marlet, and G. Muller, “A DSL Approach to
Improvee Productivity and Safety in Device
Drivers Development,” Proceedings of the
15th International Conference on Automated
Software Engineering, 2000.

[10] Thomas Nelson, “The Device Driver as
State Machine,” C/C++ Users Journal,
March, 1992.

[11] M. O’Nils and A. Jantsch , “Operating
system sensitive device driver synthesis
from implementation independent protocol
specification,” Proceedings of Design,
Automation and Test in Europe Conference
and Exhibition, pp. 563-567, 1999.

[12] A. Rubini and J. Corbet, Linux Device
Driver, 2nd Edition O’Reilly, 2001.

[13] S. A. Thibaut, R. Marlet and C. Consel,
“Domain-Specific Language: From Design
to Implementation Application to Video De-
vice Drivers Generation,” IEEE Tran. On
Software Engineering, pp. 363-377,
May/June 1999.

[14] E. Tuggle, “Writing Device Drivers,” Em-
bedded Systems Programming, pp. 42-65,
Jan 1993.

[15] Jungo Ltd, WinDriver V5 Users Guide,
URL: http://www.jungo.com

[16] Bsquare, WinDk Users Manual, URL:
http://www.bsquare.com.

[17] .UDI Core Specification,
http://www.project-udi.org.

[18] http://www.wiscore.com.tw

[19] http://www.uclinux.org.

