# 以全身掃描器建立人體計測資料

王茂駿<sup>1</sup>, 吳文言<sup>2</sup>, 林國照<sup>1</sup>, 楊熙年<sup>3</sup>
<sup>1</sup> 清華大華工業工程與工程管理學系
<sup>2</sup> 義守大學工業工程與管理學系
<sup>3</sup> 清華大學資訊科學系

E-mail: wywu@isu.edu.tw

### 摘要

傳統人體計測是以捲尺和卡尺等接觸式的量測方式,在人體表面目標點位置直接量測尺寸。隨著三度空間掃描器(3-D Scanner)的發展,如 Cyberware(US)、 [TC]²(US)、 Vitronic (Germany)、Telmat (France)等,其高解析度(約1.4-8mm),在掃描一標準姿勢的受測者後會建立超過400,000點的3-D原始資料,這些點模型,使得能夠利用非接觸式三度空間全身掃描器的技術來建立3-D人體模型資料,並進行廣泛運用。本文主要介紹利用全身掃描器建立人體計測資料庫的工作,以 Virtronic 全身掃描器得到的3D與彩色資料,配合身上所預置的37個標記點座標資料,以得到人體計測所需量測項目。

關鍵詞:人體計測,標記點,全身掃描器

### 1. 緒論

3-D人體資料在資料的完整性與再利用性上明顯與優於傳統計測[5,10,11,15],因此在國內外已廣泛的運用三度空間掃描器,進行龐大的研究計劃。在 CAESAR (Civilian American and European Survey of Anthropometry Research)計劃中,使用最新的三度空間量測技術在美國量測 4000 人,在荷蘭和義大利量測10,900人,建立18-65歲的三度空間人體計測資料庫,這些資料可得到人體特徵變化,可用來有效設計任何有關人類穿著和工作的事物,這也是美國和歐洲第一個使用3-D全身人體計測研究[3,14]。

日本 HQL 協會 (Research Institute of Human Engineering for Quality Life)早在1992-1994年時,利用三度空間雷射掃描器量測 34,000位 7-90歲的男性和女性,建立 3-D人體資料庫。並計劃於 1999-2002年更新資料庫資料,並致力研發新的 3-D 量測系統(3-D Body Surface Measurement System)和可以分析 3-D人體外型(3-D Human Body Shape)的新資料格式[9, 16]。

英國 3-D 電子商務中心(The Centre for 3-D Electronic Commerce)開發三度空間全身掃描器技術在衣服銷售和製造上,於 2000 年開始利用 3-D 掃描器量測 30,000 人(分男性、女性和小孩各 10,000 人),並開發相關軟體,

一但開發成功,也將對服裝零售、3-D設計和醫療界產生很大的衝擊[17]。

在國內也開始有三度空間全身掃描器 (3-D Whole Body scanner)量測技術的研究,有利用三度空間掃描器所建立的資料庫,並由 3-D 資料庫建立成衣尺碼分類系統[18]。透過三度空間全身掃描器的使用,我們將能快速建立完整且詳細的 3-D 數位人體模型資料(3-D digital body model),並能運用此資料做不同的運用,以利用三度空間全身掃描器較早的日本為例,大多運用在服裝業(43%)和汽車工業(25%)[8, 13, 16]。

本研究使用 Vitronic Viro 3D 1600 三度空間全身掃描器(如圖 1),掃描一成年男性完整人體,系統會產生約 400,000 點的 3-D 點座標資料與彩色資料,利用其產生的點座標檔(BSF)和彩色檔(BTF)分析辨識出掃描前所貼的特徵點,本研究利用尋找身體各部位特徵,在加上原始檔案中的彩色(RGB值)資料來減少雜點干擾,以完成更可靠的辨識,然後才能更進一步進行相關的人體尺碼計算和重要的人體體型(shape)擷取,這些尺碼和體型資料便成為剪裁系統的尺寸資料來源。



圖 1. Vitronic Viro 3-D 1600 三度空間全身掃描 器外觀圖

#### 2. 人體計測量測資料

經相關文獻探討發現最佳量測角度約在 相鄰較近的兩個掃描器間,約75°之間,經由 本實驗儀器測試也得到相同的結果,所以量測 位置採取面向75°兩雷射掃描器鏡頭組之間, 如圖2,這樣的方向對我們所需偵測的標記點 會產生最佳的影像效果[2]。

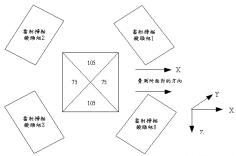



圖 2. 量測位置採取面向 75 兩雷射掃描器鏡頭組間之上視圖

受試者的標準姿勢,採取雙腳張開約30cm寬,雙手自然下垂向外張25~35°伸直, 五指微張攤平手掌朝前,抬頭挺胸平視前方,標準姿勢可使掃描影像獲得最佳掃瞄效果,立 姿標準量測姿勢如圖3。量測前除確定受試者 姿勢位置正確外,如果掃描過程中受試者呼吸 或是身體微微搖晃,都會影響掃描品質[3,4], 所以我們請受試者在量測前幾秒微吸一口氣,在量測過程中不可呼吸並維持受測姿勢, 以得到較佳的掃描品質。




圖 3. 立姿標準量測姿勢

本研究共選出 37 個重要的人體特徵點, 所採用的標記點有黃、綠、紅三種顏色螢光 紙,其中有6個黃色點、1個綠色和30個紅 色點,共 37 個顏色定位點,大部分的標記點 尺寸為 1.5\*1.5 cm的正方,1 個 2\*2.5 cm (中 指指尖處,因掃描影像容易不完整),和11個 為 2.5\*1.5 cm的立體標記點, 之所以會使用立 體標記點和加大標記點尺寸,是因雷射光性質 的因素,對掃描邊界處會有取像上的限制 [11], 所以在邊界處需使用凸起的標記點和加 大尺寸,經測試後決定將邊界處的特徵點使用 2.5\*1.5 cm 立起的標記點,指尖處使用 2\*2.5 cm 的標記點,各特徵點編號、名稱和所使用 的標記點顏色大小如表 1, 相關位置如圖 4, 標記點顏色大小如圖 5。本研究希望將 3-D 全 身掃描器所得到的原始資料,透過標記點自動 辨識,得到各特徵點的 3-D 座標,並運用各特 徵點資料進行尺寸的計算。 本研究以成衣尺碼 分類系統中選出 20 項成衣製造之重要尺寸進 行計算,如表2。

表 1. 特徵點編號、名稱、顏色和大小

| 編號 | 位置                          | 顏色 | 額色編號 | 大小(cm)          |
|----|-----------------------------|----|------|-----------------|
| 1  | <br>眉間                      | Y  | Y001 | 1.5*1.5         |
| 2  | 鼻骨尖                         | Y  | Y002 | 1.5*1.5         |
| 3  | 領下點                         | Y  | Y003 | 1.5*1.5         |
| 4  | 胸上點                         | Y  | Y004 | 1.5*1.5         |
| 5  | 胸下點                         | Y  | Y005 | 1.5*1.5         |
| 6  | 肚臍                          | Y  | Y006 | 1.5*1.5         |
| 7  | 頸點 C7                       | G  | G001 | 1.5*1.5         |
| 8  | 鼻樑點                         | R  | R001 | 1.5*1.5         |
| 9  | 左下頦角                        | R  | R002 | 2.5*1.5(立)      |
| 10 | 右下頦角                        | R  | R003 | 2.5*1.5(立)      |
| 11 | 左頸根外側                       | R  | R004 | 2.5*1.5(立)      |
| 12 | 右頸根外側                       | R  | R005 | 2.5*1.5(立)      |
| 13 | 左肩峰                         | R  | R006 | 2.5*1.5(立)      |
| 14 | 右肩峰                         | R  | R007 | 2.5*1.5(立)      |
| 15 | 左腋窩前點                       | R  | R008 | 1.5*1.5         |
| 16 | 右腋窩前點                       | R  | R009 | 1.5*1.5         |
| 17 | 左腋窩後點                       | R  | R010 | 1.5*1.5         |
| 18 | 右腋窩後點                       | R  | R011 | 1.5*1.5         |
| 19 | 左乳頭                         | R  | R012 | 1.5*1.5         |
| 20 | 右乳頭                         | R  | R013 | 1.5*1.5         |
| 21 | 右乳下點                        | R  | R014 | 1.5*1.5         |
| 22 | 右肩胛下點                       | R  | R015 | 1.5*1.5         |
| 23 | 右肘尖下點                       | R  | R016 | 2.5*1.5(立)      |
| 24 | 右尺骨莖突                       | R  | R017 | 1.5*1.5         |
| 25 | 右中指第三指<br>節(掌骨-指骨)<br>右中指指尖 | R  | R018 | 1.5*1.5         |
| 26 | (指骨遠側)                      | R  | R019 | 2*2.5           |
| 27 | 右手腕中點                       | R  | R020 | 1.5*1.5         |
| 28 | 右手肘中點                       | R  | R021 | 1.5*1.5         |
| 29 | 左髂膌                         | R  | R022 | 2.5*1.5(立)      |
| 30 | 右髂膌                         | R  | R023 | 2.5*1.5(立)      |
| 31 | 左大轉子                        | R  | R024 | 2.5*1.5(立)      |
| 32 | 右大轉子                        | R  | R025 | 2.5*1.5(立)      |
|    | 右臀後緣(最                      |    |      | ( <del></del> / |
| 33 | 大臀)                         | R  | R026 | 1.5*1.5         |
| 34 | 右臏骨中點                       | R  | R027 | 1.5*1.5         |
| 35 | 右脛骨前下點                      | R  | R028 | 1.5*1.5         |
| 36 | 右膝?                         | R  | R029 | 1.5*1.5         |
| 37 | 右外踝點                        | R  | R030 | 1.5*1.5         |
|    |                             |    |      |                 |

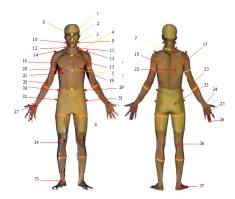



圖 4. 各特徵點相關位置

表 2 成衣製造之重要尺寸定義與計算方法

| 表  |                              | 之重要尺寸定                   | 義與計算方法             |
|----|------------------------------|--------------------------|--------------------|
| 編號 | 尺寸                           | 尺寸定義                     | 計算方式               |
| 1  | 身高<br>(Stature)              |                          | 人體頭頂最高點<br>減腳底最低點之 |
|    | (Stature)                    | 直距離                      | 垂直距離               |
| 2  | 頸椎高                          |                          | 頸椎點減腳底最            |
|    | (Cervical height)            | 之垂直距離                    | 低點之垂直距離            |
| 3  | 肩膀傾斜角度                       | 切「肩頸點                    | 頸根外側點切水            |
|    | (Shoulder slope)             | (SNP)」平面與切<br>「肩頸點(SNP)- | 平面與肩峰之夾<br>角       |
|    | siope)                       | 肩與點(SP)」平                | н                  |
|    |                              | 面之夾角                     |                    |
| 4  | 頭圍<br>(Head girth)           | 眉間點與後頭點<br>繞一圈之周長        | 過眉間點切一橫<br>狀面      |
| 5  | _                            | 經後頸椎點                    | 77. 過兩側頸根外         |
|    | (Neck base                   | (BNP)、肩頸點                | 側點切橫斷面之            |
|    | girth)                       | (SNP) 前頸點                | 圍度                 |
|    |                              | (FNP)環繞一圈<br>之周長         |                    |
| 6  | 胸圍                           | 通過左右乳頭點                  |                    |
|    | (Bust girth)                 |                          | 點,切一橫斷面            |
| 7  | 下胸圍                          | 周長<br>乳房直下部繞一            | 之圍度<br>過乳下點切一橫     |
| ′  | (Underbust                   | 那次且下部<br>一個水平之周長         | 断面之圍度<br>斷面之圍度     |
| 0  | firth)<br>腰圍                 | 温叶麻乳软体之                  | 過肚臍點切一橫            |
| 0  | 放圖<br>(Waist girth)          | 週1日<br>園度                | 過加加納<br>断面之圍度      |
| 9  | <b>臀</b> 圍                   | 在臀部最凸處,                  | 臀部最凸處 , 切          |
|    | (Hip girth)                  | 水平環繞測量一<br>圈之圍度,臀圍       | 一橫斷面之圍度            |
|    |                              | 個之風及,背風線(HL)             |                    |
| 10 | 膝圍                           | 通過膝蓋骨中央                  |                    |
|    | (Knee girth)                 | 水半一圏之圍度                  | 點 , 切一橫斷面<br>之圍度   |
| 11 | <br>肩寬                       | 左、右肩峰點距                  | 兩肩峰點相減之            |
|    | (Shoulder                    | 離                        | 直線長度               |
| 12 | length)<br>背寬                | 左、右後腋窩點                  | 左、右兩後腋窩            |
|    | (Posterior                   | 間之距離                     | 點相減之長度             |
| 13 | chest width)<br>胸寬(Interior  | 左、右前腋窩點                  | 左、右兩前腋窩            |
|    | chest width)                 | 間之距離                     | 點相減之長度             |
| 14 | 乳間點(Nipple breadth)          | 左、右乳尖點<br>(BP)間之直線距      | 左、右乳頭點間<br>相減之馬度   |
|    | orcaum)                      | (DF)间之且脉距<br>離           | ™~ KIZ             |
| 15 | 袖長(Sleeve                    | 從肩峰點(SP)經                |                    |
|    | length)                      | 肘後點至尺骨莖<br>突點之距離         | 加肘後點減尺骨<br>莖突之長度   |
| 16 | 肘長(Upper                     |                          | 量失之改及<br>肩峰減肘後點之   |
|    | posterior arm                | 肘點之距離                    | 長度                 |
| 17 | length)<br>下肢長(Lower         | 轉子點至腳底之                  | 大轉子減腳底最            |
|    | extremity                    | 距離                       | 低點之垂直長度            |
| 18 | length)<br>腰圍高(Waist         | 從腰圍線(WL)                 | 肚臍減腳底之垂            |
|    | height)                      | 至腳底之後正中                  |                    |
|    |                              | 線垂直距離                    |                    |
| 19 | 腰膝長(Waist<br>to knee length) |                          | 肚臍減膝蓋骨中<br>心點之垂直長度 |
|    | w knee length)               | 離                        | ・ご・神人士旦以及          |
| 20 | 褲長(Waist to                  |                          | 肚臍減外踝點之            |
|    | ankle length)                | 至外踝點之直線<br>距離            | <b>亜</b> 直長度       |
|    |                              | <b>ル</b> 上  4  正         |                    |



圖 5. 所使用的標記點顏色大小,由左至右分別為紅色 2.5\*1.5(cm)立體,紅色 2\*2.5(cm),紅色 1.5\*1.5(cm),黃色 1.5\*1.5(cm),綠色 1.5\*1.5(cm

周長及面積計算需利用平面凸多邊型 (convex hull polygon)的方法[1,7,19],找尋可以完整描述形狀的特徵點,先將多邊型分離成四部分,如圖6所示。

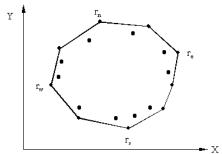



圖 6. 平面凸多邊型限制點

藉由四個限制式,將所有的點區分成四部分,限制式如下[1]:

$$\mathbf{r}_{W} \in \sum x_{w} \quad x_{i} \text{ for all } 0 \quad i \quad N$$
 (1)

$$\mathbf{r}_e \in \sum x_e \quad x_i \text{ for all } 0 \quad i \quad N$$
 (2)

$$\mathbf{r}_n \in \sum y_n \quad y_i \text{ for all } 0 \quad i \quad N$$
 (3)

$$\mathbf{r}_s \in \sum y_s \quad y_i \text{ for all } 0 \quad i \quad N$$
 (4)

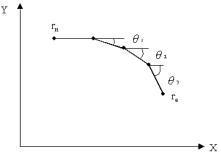



圖 7. 最小相鄰向量決定凸多邊型

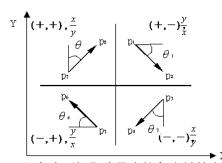



圖 8. 凸多邊形相鄰邊最小的角度計算方式

在四個限制式確定後再利用順時針方向,以後點減前點計算出凸多邊形各點向量, 找出凸多邊型相鄰邊最小的角度向量如圖7, 不同方向所需計算之 角與計算方式如圖8。

以平面凸多邊型法取得圍度特徵點資料, 詳細方法流程如下:

- 1、利用四個限制式找出最邊界的四個點 $(r_e, r_w, r_w, r_m)$ ,然後強制其只有四次方向改變。
- 2、逆時針方向比對取點
  - (a) 以 r<sub>c</sub> 點為起始點:計算方向為(-,-), 計算 r<sub>c</sub>與 r<sub>s</sub>間所有點的 值,取角度 值最小的點,在以該點計算與 r<sub>s</sub>間所 有點的 值,取角度值最小的點,最 後會取到 r<sub>s</sub>點。
  - (b) 以  $r_s$  點為起始點: 計算方向為(-, +), 計算  $r_s$ 與  $r_w$ 間所有點的 值,取角度 值最小的點,最後會取到  $r_w$ 點。
  - (c) 以  $r_w$  點為起始點:計算方向為(+, +), 計算  $r_w$  與  $r_n$ 間所有點的 值, 取角度值最小的點, 最後會取到  $r_n$ 點。
  - (d) 以  $r_n$  點為起始點: 計算方向為(+, -), 計算  $r_n$ 與  $r_e$ 間所有點的 值,取角度值最小的點,最後會取到  $r_e$ 點。

所得到的凸多邊型剛好符合人體計測時,在凹陷處捲尺或數位卡尺會以拉直線方式來量測,如圖9,但這樣的方式我們卻無法得到原始切面形狀,原始切面形狀也是設計時一個很重要的參考點,這也是三維量測優於二維量測的地方,如果我們要取得沿體表周長、面積和形狀,無法以此種方式直接取得,需加一些方法輔助。

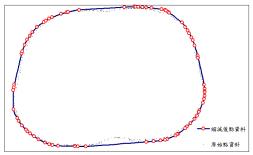



圖 9. 平面凸多邊型法擷取點資料

由於原始點資料分佈散亂如圖 10, 凸多 邊型法無法直接沿邊緣取得特徵點,本研究透 過將資料縮減,利用各點座標與中心座標找出 各點與中心座標的 i值,在以角度的關係將 點資料縮減,方法如下:

$$\boldsymbol{q}_i = \tan^{-1} \left( \frac{y_i - y_c}{x_i - x_c} \right) \tag{5}$$

其中  $x_i, y_i$ :點座標值,  $x_c, y_c$ :中心點座標值, 當  $(x_i-x_c, y_i-y_c)=(+,+)$ , i=i, (-,+), i=180-i, (-,-), i=180-i

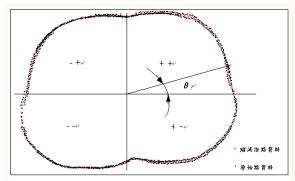



圖 10. 利用角度關係做點資料的初步縮減

將點資料依 值排列,即可利用角度將圍度劃分成 n 等份,每一等份中所有值平均,即得該範圍的代表值,因所使用的 Vitronic Viro 3-D 1600 全身掃描器水平解析度為 1mm,所以縮減後兩點座標距離盡可能接近 1mm,才可以保有 Scanner 原來的精確度,但也不能太小,否則失去縮點的功效,因此我們以推估的周長除以 2mm,即得該分幾等份,這樣也可以確保無論尺寸大小,縮減後兩點的間隔接約為 2mm,以增加系統性的準確度,角度初步縮縮減後如圖 10,所保留下的點資料,即為影像變異的平均值。

縮減後的點資料還很雜亂,無法代表正確的形狀變化,需以局部凸多邊型法尋找代表性特徵點,方法跟凸多邊型法一樣,只是不分四段計算,而是以角度局部尋找的方式(一次增加10度),依每一段本身的變化來判斷前進方向,因此每一段都能找到最外圍點,即可找出能表現出形狀變化的特徵點,如圖11。

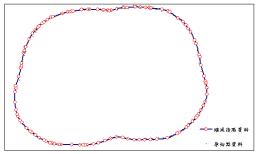



圖 11 局部平面凸多邊形法擷取沿體表點資料

在重要特徵點取得後,可進行周長及面積計算,周長可以以兩點距離公式求得。面積可利用多個三角形面積所組成,如圖 12,三角

形面積可以以向量方式求得,如圖13。

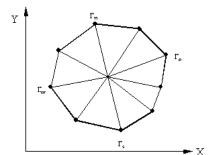



圖 12 圍度面積為多個三角形所組成

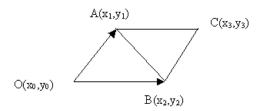



圖 13 以向量方式求三角形面積

三角形面積向量法如下:

$$\triangle OAB = \frac{1}{2} \square OACB$$
 (7)

$$\vec{A} = (x_1 - x_0) \vec{i} + (y_1 - y_0) \vec{j}$$
 (8)

$$\vec{B} = (x_2 - x_0) \, \vec{i} + (y_2 - y_0) \, \vec{j} \tag{9}$$

$$\vec{A} \times \vec{B} = [(x_1 - x_0)(y_2 - y_0) - (x_2 - x_0)(y_1 - y_0)] \vec{k}$$
(10)  
$$|\vec{A} \times \vec{B}| = \{ [(x_1 - x_0)(y_2 - y_0) - (x_2 - x_0)(y_1 - y_0)]^2 \}^{1/2}$$

$$= [(x_1-x_0)(y_2-y_0)-(x_2-x_0)(y_1-y_0)]$$
 (11)

$$\triangle \text{ OAB} = \frac{1}{2} \left| \vec{A} \times \vec{B} \right|$$

$$= \frac{1}{2} (x_1 - x_0)(y_2 - y_0) - (x_2 - x_0)(y_1 - y_0)$$
 (12)

# 3. 實驗結果

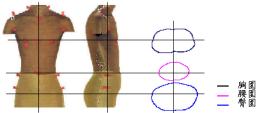



圖 14. 胸圍、腰圍、臀圍、人體正面和側面的 體型分析

3D 的特性能夠保留體型的資料,在運用上 比傳統 2D 增加了很多優勢,能夠廣泛運用, 可作為人檯,為衣服設計時的參考標準,亦可 用於護具設計時的依據,如圖 14。在醫學上 也可將胸圍、腰圍和臀圍重疊,來了解身體體型狀況,如是否有脊椎測彎,做為矯正時的判斷依據,如圖 15。

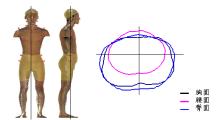



圖 15 胸圍、腰圍、臀圍重疊體型分析

本研究程式利用 Borland C++ Builder 所撰寫,所使用的電腦設備為 DURON-950 和256M RAM,由於所處理的是大量 3D點資料運算,所以對電腦的執行速度上需要求較高等級,才能減少運算時間。從讀取原始資料 BSF和 BTF 至標記點辨識和尺寸計算完成,所需的總執行時間約 85 秒,主要時間依序為讀檔約 13 秒、結合成 model 檔約 13 秒、對 40 萬點排序約 7 秒、將排序過的 model 檔寫出約28秒,剩餘的有分割約2秒、找邊線約1秒、點資料過濾評分約8秒、標記點辨識約2秒、只寸計算約2秒。執行過的檔案,開啟舊檔時只需8秒。

在程式結束後所產生的檔案資料,都會記錄在與讀取的原始檔案(BSF)同一個資料夾,各個檔都有不同的用途,詳述如下:

- 1、辨識結果:可隨時增加不同尺寸的計算和 人體計測資料庫建立
- 2、尺寸計算結果:可作為資料庫的建立。
- 3、排序後的人體資料,和切割後資料:方便需對人體不同部位研究的人使用。
- 4、、身體邊線資料:為身體邊線資料,未來所 貼的標記點較多時,可將邊線資料做為辨 識的判斷依據。
- 5、 顏色評分結果:可了解顏色性質,在增加別 種顏色點時可以此判斷顏色點好壞,另外 在補缺陷點時,也需利用此一資料。
- 6、評分結果以顏色表示:可用視覺看出結果,方便做判斷。
- 7、 原始圍度點資料:了解圍度原始掃描結果。
- 8、體型點資料:將沿體表點資料和凸邊型點 資料保留,在做設計時能用到 3D 所保留 的形狀特徵。

程式執行後所記錄的體型資料,可在尺寸計算結果表中點選所需的圍度,即可呈現出該 圍度的形狀如圖 16,本研究有兩種體型資料:

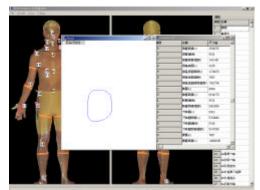



圖 16.圍度形狀的呈現

第一種為沿體表的體型資料,只要點選圍度後面標有"體表"字樣,即可呈現出沿體表資料,如圖 17(a),另外只要點選 draw point 選項,可呈現出所找出的原始點資料,如圖 17(b),第二種為使用凸多邊型法所擷取的體型資料,符合人體計測時在凹陷處以拉直線的方式計算,只要點選圍度後面標有"c'字樣,即可呈現出,如圖 18(a),另外只要點選draw point 選項,可呈現出所找出的原始點資料,如圖 18(b),在標記點辨識之後,即可利用結果進行各項的尺寸計算,結果如表 3。

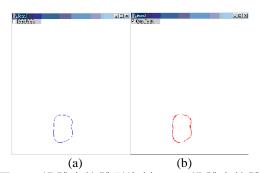



圖 17. 沿體表的體型資料:(a) 沿體表的體型,(b) 特徵點原始資料

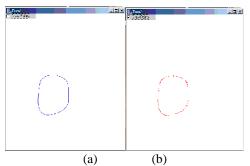



圖 18. 凸多邊型法所擷取的體型資料:(a)凹陷處以拉直線的,(b) 特徵點原始點資料

表 3. 尺寸計算結果(單位: 0.01cm)

|    | 化3. 八寸可弄和木(千世,0.010111) |         |    |              |         |  |  |  |
|----|-------------------------|---------|----|--------------|---------|--|--|--|
| 編號 | 尺寸                      | 結果      | 編號 | 尺寸           | 結果      |  |  |  |
| 1  | 身高                      | 16605   | 22 | 胸圍(c)        | 9984    |  |  |  |
| 2  | 頸椎高                     | 13998   | 23 | 胸圍面積(c)      | 6044613 |  |  |  |
| 3  | 肩膀傾斜角度                  | 62.3    | 24 | 胸圍(體表)       | 10166   |  |  |  |
| 4  | 肩寬                      | 3526    | 25 | 胸圍面積(體<br>表) | 5319701 |  |  |  |
| 5  | 背寬                      | 3243    | 26 | 下胸圍(c)       | 10012   |  |  |  |
| 6  | 胸寬                      | 2843    | 27 | 下胸圍面積(c)     | 5844121 |  |  |  |
| 7  | 乳間點                     | 1596    | 28 | 下胸圍(體表)      | 10180   |  |  |  |
| 8  | 袖長                      | 5764    | 29 | 下胸圍面積(體表)    | 4915429 |  |  |  |
| 9  | 肘長                      | 3245    | 30 | 腰圍(c)        | 12544   |  |  |  |
| 10 | 下肢長                     | 8461    | 31 | 腰圍面積(c)      | 6910811 |  |  |  |
| 11 | 腰圍高                     | 9602    | 32 | 腰圍(體表)       | 12538   |  |  |  |
| 12 | 腰膝長                     | 5094    | 33 | 腰圍面積(體<br>表) | 4654265 |  |  |  |
| 13 | 褲長                      | 9146    | 34 | 臀圍(c)        | 14650   |  |  |  |
| 14 | 頭圍(c)                   | 5781    | 35 | 臀圍面積(c)      | 8906186 |  |  |  |
| 15 | 頭圍面積(c)                 | 2581821 | 36 | 臀圍沿(體表)      | 14606   |  |  |  |
| 16 | 頭圍(體表)                  | 5803    | 37 | 臀圍面積(體<br>表) | 5732749 |  |  |  |
| 17 | 頭圍面積(體<br>表)            | 2472361 | 38 | 膝圍(c)        | 6936    |  |  |  |
| 18 | 頸基底圍(c)                 | 3902    | 39 | 膝圍面積(c)      | 2731225 |  |  |  |
| 19 | 頸基底圍面積<br>(c)           | 1069478 | 40 | 膝圍(體表)       | 9171    |  |  |  |
| 20 | 頸基底圍(體<br>表)            | 3780    | 41 | 膝圍面積(體<br>表) | 2162443 |  |  |  |
| 21 | 頸基底圍面積<br>(體表)          | 998377  |    |              |         |  |  |  |

C: 以平面凸多邊型法所得的結果 體表: 以沿體表法所得的結果

### 4. 結論

3D 比傳統 2D 提供設計時更多參考資訊,在運用上也更加廣泛,能做出更適配設計,許多國家都投入大量的人力物力,結合不同領域的人員進行相關研究工作,如人體計測、服裝尺碼自動擷取、頭盔設計、防護衣設計、設備的配適性、醫療診斷、3D 體型分類和虛擬模擬等,並且建立大量的3D人體資料庫,本研究僅在辨識和尺寸計算上略有進展,未來尚需更多不同領域的人力參與研究,建立符合國人的3D資料,才能設計更配適國人使用的產品。

本研究利用平面凸多邊型法,找尋最可以完整描述體型形狀的關鍵特徵點,圍度計算以直線的方式相加,不過身體圍度是較圓滑的,如以bi-arc curves 趨近,曲線將較圓滑。因此未來人體掃描前,需以數位捲尺量測人體一些

重要圍度,才能對本研究所得結果與數位捲尺 做一有系統且大樣本的驗證。

### 誌謝

本文承蒙國科會研究計畫補助(編號:NSC89-2218-E- 007-003 & NSC89-2213-E-007-117)特此誌謝。

## 參考文獻

- 1. Bez, H. E., Edwards, J., Distributed Algorithm for the Planar Convex Hull Problem, *Computer-Aided Design*, 22, pp. 81-86 (1990).
- Brunsman, M. A., Daanen, H. M., and Robinette, K. M., "Optimal postures and positioning for Human Body Scanning," Proceeding of International Conference on 3-D Digital Imaging and Modeling, pp. 226-273 (2000).
- 3. CASEAE Project, http://www.hec.afrl.al.mil/cardlab/Caesar/summary.html
- 4. Daanen, H. A. M., Brunsman, M. A., and Robinette, K. M., "Reducing movement artifacts in whole body scanning," *Proceedings of International Conference on Recent Advances*, pp. 262-265 (1997).
- 5. Daanen, H. A. M. and Water, G. J., "Whole body scanners," *Displays*, 19, pp. 111-120 (1998).
- 6. Deason, V. A., "Anthropometry: the human dimension," *Optics and Lasers in Engineering*, 28, pp. 83-88 (1997).
- Douros, I., Dekker, L., Buxton, B. F., An improved algorithm for reconstruction of the surface of the human body from 3D scanner data using local B-spline patches, *Proceedings of IEEE International Workshop*, pp. 29-36 (1999).
- 8. Geisen, G. R., Mason, C. P., Houston, V. L., Whitestone, J. J, McQuiston, B. K., and Beattie, A. C., "Automatic detection, identification, and registration of anatomical landmarks," *Proceeding of the Human and Ergonomics Society 39th Annual Meeting*, 1995.
- 9. HQL, http://www.hql.or.jp
- 10.Marc, R., "Colour 3D electronic imaging of the surface of the human body," *Optics and Lasers in Engineering*, 28, pp. 119-135 (1997).
- 11. Nurre, J. H. and Addleman, S., "3D scan systems integration," *DLA-ARN Final Report*, 1998.
- 12. Pargas, R. P., Staples, N. J., and Steven, D. J., "Automatic measurement extraction for a three-dimensional body scan," *Optics and Lasers in Engineering*, 28, pp. 157-172 (1997).

- 13.Pargas, R. P., "Automating information extraction from 3D scan data," *DLA-ARN T2p5 Project Report*, 1998.
- 14. Robinette, K. M., Daanen, H., and Paquet, E., "The Caesar project: a 3-D surface anthropometry survey," *Proceedings of the Second International Conference on 3-D Digital Imaging and Modeling*, pp. 380-386 (1999).
- 15. Steven, P., David, J. B., Brian, D. C., Peng Li., and Thomas, O., "Automated extraction of anthropometric data from 3D images," *Proceedings of the IEA 2000/HFES 2000 Congress*, 6, pp. 727-730 (2000).
- 16.Suzuki, K., "Prospect of the next-term human body measure in Japan," *Proceedings of the IEA 2000/HFES 2000 Congress*, 6, pp. 748-750 (2000).
- 17. The Centre for 3D Electronic Commerc, http://www.3dcentre.co.uk.
- 18. Wang, M. J., Wang, E. M. Y., Lin, Y. C., Anthropometric data book of the Chinese people in Taiwan, Ergonomic Society of Taiwan, Hsinchu, Taiwan (2002).
- 19.Ye, Q. Z., A fast algorithm for convex hull extraction in 2D images, *Pattern Recognition Letters*, 16, pp. 531-537 (1995).