
An Ultra-Peer-Based Message Routing Architecture for
Heterogeneous P2P File Sharing Networks∗

Chung-Ming Huang
Department of Computer Science

and Information Engineering
National Cheng Kung University

Taiwan,R.O.C.
huangcm@locust.csie.ncku.edu.tw

Tz-Heng Hsu
Department of Computer Science

and Information Engineering
National Cheng Kung University

Taiwan, R.O.C.
hsuth@locust.csie.ncku.edu.tw

ABSTRACT
A P2P file sharing network provides a resource sharing
platform for Internet users. To increase higher-degree re-
source sharing, heterogeneous P2P file sharing networks
need a way to collaborate and communicate with each other.
Based on the approach of interconnecting heterogeneous
P2P file sharing networks, users on one P2P file sharing
network can share resources and search data with other
P2P file sharing networks. The main objective of our work
is to enable connectivity and universal access among het-
erogeneous P2P file sharing networks. A novel architec-
ture for P2P file sharing networks interconnection called
Shoran is proposed to serve peers’ requests and route peers’
requests to other P2P file sharing networks. Shoran pro-
vides (i) a message routing mechanism to route query mes-
sages among different P2P file sharing networks and (ii)
an uniform message format that can ease the message ex-
change among heterogeneous P2P file sharing networks.

Keywords
File Sharing Network, Ultra-Peer, Peer-to-Peer (P2P), XML,
Resource Description Framework (RDF), Resource Shar-
ing.

1. INTRODUCTION
Peer-to-peer (P2P) overlay networks have recently been re-
alized through file sharing applications such as Napster
[1], Gnutella [2], and Freenet [3]. In P2P overlay net-
works, computers can act as both clients and servers. P2P
overlay networks have many interesting characteristics such
as self-organization, distributed computing, scalability, and
tolerating to network failures. Additionally, P2P overlay
networks make resources, e.g., storages, CPU cycles, and
media contents, available at the edges of the Internet.

The initial designs of previous P2P systems have several
serious problems. For example, Napster uses a centralized
directory approach, which makes it hard to scale and has

∗This research is supported by the National Science Coun-
cil of the Republic of China under the grant NSC 92-2213-
E-006-025.

.

vulnerable of service failure. Gnutella employs a flooding-
based query mechanism. However, Gnutella’s flooding-
based approach limits the searching scope at some points.
In order to retrieve decentralized resources, several peer-
to-peer query protocols have been proposed [3, 4, 5]. How-
ever, few of them can efficiently service requests under the
environment of unstable connectivity and unpredictable net-
work congestion. The need for efficiently locating data and
routing query mechanism makes several research groups
to design a new generation of scalable P2P overlay net-
works. Most of them use the distributed hash table (DHT)
techniques, including Pastry [6], Tapestry [7], Chord [8],
and Content Addressable Networks (CAN) [9]. The dis-
tributed hash table (DHT) technique associates resources
with a key (produced by hashing the resource name), and
each peer in the P2P overlay networks is responsible for
storing data and routing queries based on the given key.

P2P overlay networks can survive on a limited number
of users, but P2P overlay networks that are associated with
a limited number of users make them difficult to find and
share resources. Without a resource exchange mechanism,
users can only retrieve resources within one P2P overlay
network with a limited number of users. For example, a
user in the Gnutella network looks for songs containing the
word ”holiday” may get no response from the query. How-
ever, the song may exist on the other P2P file-sharing ap-
plications such as Morpheus [10], KaZaA [11], and iMesh
[12]. As both the number and the variety of P2P overlay
networks continue to increase, resources sharing between
heterogeneous P2P overlay networks is becoming an im-
portant issue. That is, since file-sharing applications are
increasing rapidly, how to collaborate and communicate in
different P2P file-sharing applications becomes an impor-
tant issue. Therefore, an architecture for resource sharing
among heterogeneous P2P overlay networks is required.

The main objective of our work is to enable connectiv-
ity and universal access among heterogeneous P2P file-
sharing networks. In order to achieve the resource shar-
ing in heterogeneous P2P file-sharing networks, we pro-
pose a novel architecture named ”Shoran”. Shoran is a
peer-to-peer network, and it provides (i) a message rout-
ing mechanism to route query messages among different
P2P file sharing networks and (ii) a message exchanging
mechanism that can ease the communication among het-
erogeneous file sharing applications.

The remaining part of this paper is organized as follows:

1



Gnutella

eDonkey

Gateway

Gateway

Gnutella
to/from Chord
conversion

Gnutella
to/from eDonkey
conversion

Gnutella
to/from CAN
conversion

Freenet

Gateway

Gnutella

to/from Freenet
conversion

Figure 1: Traditional gateway approach.

Section 2 introduces some existing works of P2P overlay
networks. Section 3 introduces the Shoran architecture.
Section 4 discusses the design issues of the proposed ar-
chitecture. Section 5 depicts the uniform message format
(UMF). Section 6 presents experiment results and analy-
sis of the proposed Shoran architecture. Section 7 has the
conclusion remarks.

2. PRELIMINARY
The basic operation in existing DHT-based P2P overlay

networks is lookup(key), which returns an identifier of
the peer that stores the resource with the given key. The
DHT technique has proved to be an efficient mechanism
for locating data and routing query on large distributed sys-
tems. Peers that use the DHT technique construct a P2P
overlay network. In the P2P overlay network based on the
DHT technique, each peer has several message routing in-
formation of other neighbor peers. When a lookup(key)
is issued, the lookup query is routed through the overlay
network to the peer that is responsible for the given key.
There are several different routing algorithms based on the
DHT techniques [6, 7, 8, 9]. Based on the DHT technique,
several projects were proposed to build distributed stor-
age systems [13], application-layer multicast services [14],
and event notification services [15].

Both flooding-based and DHT-based mechanisms pro-
vide solutions to solve the problems of locating data and
routing query in P2P overlay networks. It is hard to figure
out which approach is the best solution for locating data
and routing query in P2P overlay networks. Each approach
has its own benefits and drawbacks. In addition to the is-
sues of locating data and routing query, there are several
limitations in current P2P overlay networks.

Resource sharing among heterogeneous P2P overlay net-
works is an important issue. Morpheus, KaZaA, Limewire,
and eDonkey are the currently most popular P2P file shar-
ing applications. They are built on top of current IP net-
work. These P2P file sharing applications provide file lookup
services and resource retrieval services. Each application
has its special design to satisfy users’ requirements. How-
ever, these applications cannot share resource among each
other. For example, a Limewire’s user cannot access the
resource that is hold by a eDonkey’s user. Therefore, a
new communication architecture is needed to overcome
this problem.

One solution to solve this problem is to design a gate-
way for the transmission of both query messages and data
over the P2P file sharing networks. In [16], Lui and Kwok
proposed a framework to integrate various P2P file sharing

Ultra
Peer

Ultra
Peer

Ultra
Peer

Ultra
Peer

Ultra
Peer

Ultra
Peer

Ultra
Peer

Ultra
Peer

File Sharing
Network

File Sharing
Network

File Sharing
Network

File Sharing
Network

Figure 2: Shoran’s abstract architecture.

protocols using a P2P gateway. For a given P2P overlay
network, the gateway approach needs to provide multiple
communication interfaces in order to connect with other
P2P overlay networks. For example, a Gnutella gateway
that wants to connect with Freenet and eDonkey needs
to provide two communication interfaces for transferring
query messages and resource data. Figure 1 shows the tra-
ditional architecture for communicating different P2P file
sharing networks.

By connecting directly to different P2P file sharing net-
works, the gateway approach can seamlessly integrates into
existing P2P file sharing applications. However, the lack
of a standardized exchange agreement makes the complex-
ity of message converting among heterogeneous resource
sharing protocols. Developers need to write many pro-
grams to provide multiple communication interfaces for
message converting among heterogeneous P2P file shar-
ing networks. Besides, the gateway architecture embeds a
centralized component into the P2P systems, which makes
it be the bottleneck. Peers that use different P2P file shar-
ing networks need to communicate through the gateways
which make them unscalable.

3. SYSTEM ARCHITECTURE
The proposed Shoran method provides a convenient so-

lution to simplify the design of message converting among
heterogeneous P2P systems and applications. The goals of
Shoran are to resolve the following concerns:

• Simplicity: Shoran provides a uniform message for-
mat to ease the communication among heterogeneous
P2P file sharing networks. Developers can be free
from hardship in converting messages among differ-
ent message formats.

• Availability: Shoran makes resources (storages, CPU
cycles, and media contents) available among hetero-
geneous P2P file sharing networks. The resources
can be easily found among heterogeneous P2P file
sharing networks.

In order to achieve the above goals, Shoran uses an ultra-
peer topology for routing message among heterogeneous
P2P file sharing applications. An ultra-peer provides rout-
ing service and data exchanging service for heterogeneous
P2P file sharing applications. Several ultra-peers form an
ultra-peer network for resource discovery among hetero-
geneous P2P file sharing networks. The ultra-peer is able
to provide (i) a message routing mechanism to route the

2



Lookup Routing
Module

Message Exchange
Module

Protocol Adaptation Module

Result Cache Module

Resource Retrieval

Resource Lookup

Heterogeneous File Sharing NetworkSharing Network

Figure 3: Shoran’s ultra-peer components.

query messages among heterogeneous P2P file sharing net-
works and (ii) a message exchanging mechanism that can
ease the communication among heterogeneous P2P file shar-
ing networks. Figure 2 depicts the abstract architecture of
Shoran. Each ultra-peer consists of five components: (1) a
lookup routing module that provides message routing ser-
vice over the ultra-peer network, (2) a message exchange
module that provides the message converting service for
heterogeneous P2P file sharing networks, (3) a protocol
adaptation module that provides resource retrieval service
for heterogeneous P2P file sharing networks, (4) a result
cache module that provides the cache service for query/
response message, and (5) a XML-based uniform message
format (UMF) defines the communication protocol for het-
erogeneous P2P file sharing networks. Figure 3 depicts the
abstract diagram of Shoran’s ultra-peer components.

The lookup routing module is responsible for routing
the messages that are based on the uniform message for-
mat (UMF) to/from different ultra-peers. The message ex-
change module is responsible for converting network de-
pendent query messages to/from the UMF-formatted mes-
sages that the ultra-peer network can understand. The uni-
form message format (UMF) is used to define the net-
work independent messages for finding resources that are
stored in heterogeneous P2P file sharing networks. A stan-
dardized message format can simplify the complexity of
managing multiple communication message format. Us-
ing the XML technique, each ultra-peer can convert net-
work dependent query messages to/from UMF-formatted
messages. In other words, it will be much easier for devel-
opers to add new P2P file sharing protocols using UMF.

In the remaining part of this Section, we introduce the
modules of Shoran’s ultra-peer in detail. The details of
UMF are introduce in Section 5.

3.1 Lookup Routing Module
The lookup routing module consists of (i) a message

queue that stores incoming messages, (ii) a message queue
manager that controls and maintains state information of
the message queue, (iii) a forward engine that performs
message forwarding according to the message routing ta-
ble, and (iv) a message routing table that holds ultra-peers’
addresses. The ultra-peers’ addresses are referenced by a
set of indexes, which determine the corresponding address
mapping from an incoming message to an outgoing mes-
sage. The message routing table can be configured stati-
cally or dynamically. Figure 4 depicts the abstract archi-
tecture of the proposed lookup routing module.

The lookup routing module is responsible for routing
messages in the ultra-peer network. Two main functions
of the lookup routing module are (i) managing incoming
messages and (ii) forwarding messages to the correspond-
ing ultra-peer. When one ultra-peer sends a UMF-formatted
query/response message to another ultra-peer, the lookup

Message Queue
Manager

Forward
Engine

Message Queue

Routing
Table

Ultra-Peer Network

Message Routing

Incoming /OIncoming / Outgoing Messages

Figure 4: The abstract diagram of the lookup routing
module.

Lookup Routing
Module

Ultra-Peer
Network

File Sharing
ApplicationUltra-Peer

UMF

Application-dependent
protocol

Message Exchange
Module

UMF

Figure 5: The abstract diagram of message exchange
module.

routing module scans the routing table for an address of
other ultra-peer and forwards the message to the selected
ultra-peer. When a selected ultra-peer receives a UMF-
formatted message, it then converts the UMF-formatted
messages and sends the converted messages to its under-
lying P2P file sharing network by using the message ex-
change module.

In order to avoid message flooding problem, the mes-
sage routing module uses similar techniques of the Gnutella
protocol to prevent loops and indefinite propagation in the
ultra-peer network. If the lookup routing modules receives
a query message, the forward engine forwards the incom-
ing message to all ultra-peers that are connected with it
except the ultra-peer from which it receives the message.
By using the Time To Live (TTL) counter to limit the range
of message forwarding, the indefinite propagation can be
avoided. By using a Globally Unique Identifiers (GUIDs),
an ultra-peer will not receive same message twice.

3.2 Message Exchange Module
The message exchange module consists (i) a message

converter that performs the message conversion, (ii) a mes-
sage state table that records the state information of the
query message, and (iii) a message translation table that
stores transition information for converting messages. These
tables are used for processing ultra-peers’ queries and re-
sponses.

Two main functions of the message exchange module
are (i) converting each underlying P2P file sharing net-
work’s message format to/from the uniform message for-
mat (UMF) and (ii) providing protocol interoperability amo-
ng various P2P file-sharing applications. The message ex-
change module handles all messages of its underlying P2P
file sharing network. When the message exchange mod-
ule receives query messages from its underlying P2P file
sharing network, it converts these messages to the uni-
form message format (UMF). These UMF-formatted mes-
sages are routed through the lookup routing module, and
then reach the destination ultra-peer. The destination ultra-
peer then converts these UMF-formatted messages into the

3



Protocol Adaptors

1. request (ftp) 2. request (http)

3. response (http)6. response (ftp)

Temporal
Buffer

4. store5. load

HTTP Adaptor

Protocol Adaptation Module

Resource
Provider

Figure 6: Steps involved in protocol adaptation among
heterogeneous P2P file sharing networks.

message format that is understood by the destined P2P file
sharing network. Figure 5 shows the abstract diagram of
the message exchange module.

3.3 Protocol Adaptation Module
The protocol adaptation module consists of a set of pro-

tocol adaptors which offer data transfer services for het-
erogeneous P2P file sharing applications. The protocol
adaptor provides the adaptation of one resource retrieval
protocol to another resource retrieval protocol so that re-
sources can be retrieved among different resource-sharing
applications. In current P2P file sharing networks, there
is a need to integrate various protocols for different P2P
resource-sharing applications. For example, Gnutella uses
HTTP as its data retrieval protocol, but Napster uses its
own application dependent protocol as the data retrieval
protocol. Without protocol adaptation, file-sharing appli-
cations cannot share data with each other.

Shoran supports the protocol adaptation among hetero-
geneous P2P file sharing networks. The protocol adaptor
acts as a proxy module, which includes a temporal buffer
for storing the resource data. Upon receiving a request
from a peer, the message exchange module passes it to a
selected protocol adaptor. If the resource provider (peer) is
ready, the protocol adaptor sends a request to retrieve the
data and then stores the data into a temporal buffer. After
finishing the data retrieval, the protocol adaptor sends the
data back to the peer that sends the request. The develop-
ers can write their own adaptors to integrate various pro-
tocols such as HTTP, FTP, TCP and application dependent
protocols. Shoran provides access interfaces for exposing
protocol adaptors’ parameters, which enables the message
exchange module to choose a suitable protocol adaptor for
transforming data. Through the use of the protocol adap-
tor, different P2P resource-sharing applications are able to
share resources among each other. Figure 6 depicts steps
involved in protocol adaptation among heterogeneous P2P
file sharing networks.

3.4 Result Cache Module
In Shoran, two data structures that each ultra-peer main-

tains are (i) a query result cache that contains recently
query/response information and (ii) a data cache for pro-
cessing data retrieval request. The query result cache is a
list containing an entry for every unique query request re-
ceived and processed. Each entry contains the following
fields: a string stores the original query message, a query
message identifier, a source identifier (requester’s id), a
destination identifier (resource provider’s id), the time of a
query message that was lastly used for searching resource,
and the number of times that a query message is found in a

(a) Pure P2P model (b) Hybrid P2P model

Peer

Peer

Peer

Peer

Peer

Peer

Peer

Server

Peer

Peer

Peer
Peer

Peer

Search
Download

Figure 7: The relationships of ultra-peer network and
heterogeneous file sharing networks.

result cache. A query result entry which has not been used
for more than QueryLifeTime seconds is deleted.

The data cache is a list containing an entry for every
unique data request. Each entry contains the following
fields: a source identifier (requester’s id), a destination
identifier (resource provider’s id), a session number of the
data request, a source protocol description, a destination
protocol description, a set of ultra-peers that cooperate to
deliver the data, and a record stores status of the data re-
quest.

4. DISCOVERY STRATEGIES
The architectures of current file sharing applications can

be classified into two models: pure and hybrid. In the pure
model, peers are responsible for resource discovery and no
centralized server exists for resource lookup. Gnutella and
Freenet are examples of the pure P2P model. In the hybrid
model, one or more servers are responsible for resource
discovery. Peers uses these servers to query resources and
then retrieve resources using the peer-to-peer retrieval pro-
tocol. Napster, eDonkey, and iMesh are examples of the
hybrid P2P model. Figure 7 shows the architectures of
current file sharing applications.

In order to achieve resource sharing among heteroge-
neous P2P file sharing applications, Shoran uses various
approaches to integrate ultra-peers with heterogeneous P2P
file sharing networks. In the pure P2P model, an ultra-peer
acts as a normal peer that cooperates with other peers in a
file sharing network. When an ultra-peer receives a query
from other peers, it forwards the query to both the ultra-
peer network and the original file sharing network. From a
normal peer’s view, the ultra-peer is nothing different with
other normal peers despites it forwarding message to/from
ultra-peer network. In the hybrid P2P model, an ultra-
peer acts as a server that provides resource lookup service
for a file sharing network. When an ultra-peer receives a
query message from peers, it forwards the query message
to the ultra-peer network if it cannot find any result from
its lookup service. Figure 8 shows the relationship of the
ultra-network and file sharing networks.

For file sharing applications that uses the pure P2P model,
the resource discovery mechanisms can be classified into
two methods: flooding and distributed hash table (DHT).
In flooding-based discovery methods, each peer receives
query messages from other peers and then floods (broad-
cast) these messages to connected peers until the query
is responded or a maximum number of flooding hops is
reached. In DHT-based discovery methods, each peer is
assigned a random ID and knows routing information of

4



(a) Pure P2P model (b) Hybrid P2P model

Peer

Peer

Peer

Peer

Peer

Peer

Peer

Peer

Peer

Peer
Peer

Peer

Search
Download

Ultra
Peer

Ultra
Peer

Ultra-Peer Network

Figure 8: The architectures of current file sharing ap-
plications.

B

Peer

UA

UB

UC

Peer

Peer

A

Peer

Peer

Peer

Peer
Peer

(1)

(2)

(2
)

(3)

(3
)

(3
)

(3)

Search
Response

(4)

(5)

(6
)

(1)

(1)

File Sharing Network A

File Sharing Network B

File Sharing Network C

(7)

Figure 9: The query message flow in Shoran.

neighbor peers. The basic operation in DHT-based file
sharing networks is lookup(key), which returns an identi-
fier of the peer that stores the resource with the given key.
When a lookup(key) is issued, the lookup query is routed
through the file sharing network to the peer that is respon-
sible for the given key.

Shoran is capable of sending requests from flooding-
based P2P networks to networks of the same type or DHT-
based P2P networks. However, Shoran does not allow re-
quests from DHT-based networks to other P2P file sharing
networks. It is due to the way DHT works: in a DHT
network, an ultra-peer cannot see all requests despites the
request that routes through it. Therefore, an ultra-peer is
not able to forward all requests to the ultra-peer network.
In order to ensure that the ultra-peer can catch the requests,
the ultra-peer needs to know keys of all the outside files.
From a practical view, it is hard to do it unless all peers in
DHT networks are ultra-peers.

In Shoran, a message received by an ultra-peer is for-
warded to all its neighbors, except the one from which
message was received. Each message is in the UMF for-
mat and has a Time To Live (TTL) field. The TTL field is
decremented by one at each visited ultra-peer. When the
value of TTL reaches zero, the message is stop forwarding.
Each message has a 32 byte identifier to uniquely identify
it on the ultra-network. When a message is passed through
an ultra-peer, the ultra-peer keeps the identifiers of mes-
sages. If an ultra-peer receives a message with the same
identifier which it has received before, the message is ig-

nored and is not forwarded. By checking the identifiers of
messages, Shoran can prevent loops and indefinite prop-
agation in ultra-peer network. Figure 9 depicts the query
flow diagram of the proposed architecture. The query flow
is explained as follows:

1. Peer A issues a searching request for finding a de-
sired resource.

2. When the request is received by ultra-peer UA, ultra-
peer UA translates the A-formatted message into the
UMF format. ultra-peer UA then broadcasts the UMF-
formatted message to all connected ultra-peers.

3. When ultra-peer UB and ultra-peer UC receive the
UMF-formatted messages, they convert the UMF-
formatted messages into their own query message
format. After converting the UMF-formatted mes-
sages, ultra-peer UB and ultra-peer UC forwards the
B-formatted and C-formatted messages to peers with-
in its internal file sharing network.

4. When peer B receives the B-formatted query mes-
sage, it checks the resource list to find the desired
resource. Peer B responses a resource-found mes-
sage to ultra-peer UB if it has the resource that Peer
A is required.

5. When the ultra-peer UB receives the B-formatted
response message, it converts the message to the
UMF format and then sends the UMF-formatted mes-
sage to ultra-peer UA.

6. When ultra-peer UA receives the UMF-formatted re-
sponse message, it converts the UMF-formatted mes-
sage to its own A-formatted message and then sends
the message to the original peer A.

7. Peer A receives the A-formatted response message
and is ready for resource retrieving.

In some cases, queries may not be answered by ultra-
peer UB due to network congestion or system failure. In
order to solve such problems, ultra-peer UA has a timeout
policy. When the timeout has elapsed and no response is
sent from ultra-peer UB or ultra-peer UC , ultra-peer UA

sends a response message that indicates no resource found
for peer A.

5. UNIFORM MESSAGE FORMAT
Most of currently existing P2P file sharing applications

use application dependent discovery format for resource
searching. Some of them just support filename matching
using a simple query string. For example, Gnutella and
Napster share resources by matching user specified query
string. For P2P file-sharing applications, searching files by
matching string may be enough. However, it restricts these
applications to extend their systems to share other types of
resources. The lack of a standard way for describing re-
sources makes resource discovery more and more difficult
among heterogeneous P2P file sharing applications.

In order to solve the problem of resource discovery in
different P2P applications, we proposed an XML-based
Uniform Message Format (UMF) for the resource discov-
ery in P2P file sharing networks. The UMF consists of

5



a query request and a query response. We adopt the Re-
source Description Framework (RDF) [17] as the resource
description part of UMF. In this Section, we introduce the
Resource Description Framework (RDF) at first and then
introduce the components of UMF.

5.1 Resource Description Framework
Resource Description Framework (RDF) is developed

by the W3C for Web-based metadata [17]. RDF uses XML
as an interchange syntax for resource description. RDF’s
essential aim is to make work easier for finding resources
precisely in the WWW space [18]. In RDF, resources
are represented by Uniform Resource Identifiers (URIs).
The advantage of RDF is that it can extend the resource
description to the format that machines are readable. A
search engine can use standard cataloging metadata to find
the resource precisely. For example, the Dublin Core spec-
ification for library-like metadata is useful in describing
the web resources [19]. Figure 10 depicts an example of a
book description that uses the Dublin Core specification.

<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/">
<rdf:Description>

<dc:title>The Lord of the Rings</dc:title>
<dc:creator>J. R. R. Tolkien</dc:creator>
<dc:format>Book</dc:format>
<dc:identifier>ISBN 0618260587</dc:identifier>

</rdf:Description>
</rdf:RDF>

Figure 10: An example of a book description that uses
the Dublin Core specification.

The Dublin Core elements are started by the namespace
name dc. The namespace gives the semantics required by
particular types of resources. In the example depicted in
Figure 10, a book description of ”The Lord of the Rings”
is given. A variety of namespaces can be depicted using
RDF. In the book space, an additional definition may be
the ISBN number; in the movie space, it may be the digital
video identifier.

The uniform message format (UMF) can be a uniform
query exchange mechanism for P2P file sharing networks.
The UMF uses the RDF as the standardized query for-
mat for resource description. An XML schema defines the
terms that will be used in UMF statements and gives spe-
cific meanings to them. A variety of schema forms can be
adopted using UMF. An example is given in Figure 11.

<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:mv="http://p2p.example.com/movies/0.1">

<rdf:Description about="http://video.example.com/
two_towers.mov">

<dc:title>The Lord of the Rings: The Two Towers<
/dc:title>
<dc:creator>J. R. R. Tolkien</dc:creator>
<dc:format>Movie</dc:format>
<mv:director>Peter Jackson</mv:director>
<mv:producer>New Line Cinema </mv:producer>

</rdf:Description>
</rdf:RDF>

Figure 11: An example of a resource description in P2P
file sharing networks.

In Figure 11, the namespace ”http://p2p.example.com//
movies/0.1” provides the movie information schema in P2P
file sharing networks. The Description element indicates

the subject of the enclosed statements. Attribute about in
the Description element points to an external resource
”http://video.example.com/two tower s.mov”. The remain-
ing statements give the detailed description of the movie
”The Lord of the Rings: The Two Towers”.

When a peer sends a query to find the movie ”The Lord
of the Rings: The Two Towers”, the peer receives a RDF
description about the movie and then can retrieve the movie
according to the about attribute in the Description ele-
ment.

5.2 Query Message
In UMF, the query message can be considered as a re-

source that is described using the RDF syntax. The query
message is contained within the envelope < query >
... < /query >. Query messages are uniquely identified
by UUID [20]. The original query protocol is specified in
< protocol > ... < /protocol > tags. The query time
is specified in < date > ... < /date > tags. The detail
information of query data is embedded in the the envelope
< desc > ... < /desc >, and is described using the RDF
description. When an ultra-peer receives a query message
from its own P2P file sharing network, it converts its own
query message into UMF and fill the information into the
corresponding fields. An example is depicted in Figure 12.

<?xml version="1.0" encoding="UTF-8" ?>
<query id="5a389ad2-22dd-11d1-aa77-002035b29192">

<date>Tue, 17 Dec 2002 17:40:11 +0800</date>
<protocol>Gnutella</protocol>
<desc>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description>
<dc:title>The Two Towers</dc:title>

</rdf:Description>
</rdf:RDF>

</desc>
</query>

Figure 12: An example of the query message specified
in UMF.

In Figure 12, a peer wants to query the movie ”The Two
Towers”. The peer uses a file-sharing application based on
the Gnutella protocol to send the query string. When the
ultra-peer receives the query string, it then converts this
query string into the corresponding fields in the UMF for-
mat. After converting the query string, the ultra-peer sends
the UMF-formatted message to other ultra-peers. When
an ultra-peer receives the UMF-formatted message, it then
forwards the UMF-formatted message to other ultra-peers
for resource discovery. When the destined ultra-peer re-
ceives the UMF-formatted message, it converts the UMF-
formatted message to its own query format. The destined
ultra-peer then sends this query message to find the re-
source.

5.3 Response Message
The response message is contained within the envelope

< res − ponse > ...< /response >. The response
messages are also uniquely identified by UUID [20]. The
response protocol is specified in < protocol > ... <
/protocol > tags. The response time is specified in <
date > ... < /date > tags. The response data is a RDF
description and is embedded in < desc > ... < /desc >
tags. When the ultra-peer receives a response message
from its own P2P file sharing network, it converts the re-

6



sponse message into the UMF format and fills the informa-
tion into the corresponding fields. An example is depicted
in Figure 13.

<?xml version="1.0" encoding="UTF-8" ?>
<response id="5a389ad2-22dd-11d1-aa77-002035b29192">

<date>Tue, 17 Dec 2002 17:41:07 +0800</date>
<protocol>Jxta</protocol>
<desc>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:mv="http://p2p.example.com/movies/0.1">

<rdf:Description about="http://video.example.com/
two_towers.mov">

<dc:title>The Lord of the Rings: The Two Towers
</dc:title>
<dc:creator>J. R. R. Tolkien</dc:creator>
<dc:format>Movie</dc:format>
<mv:director>Peter Jackson</mv:director>
<mv:producer>New Line Cinema </mv:producer>

</rdf:Description>
</rdf:RDF>

</desc>
</response>

Figure 13: An example of the response message speci-
fied in UMF.

In Figure 13, a peer that uses a file-sharing application
based on the Jxta protocol has the movie ”The Two Tow-
ers”. The file-sharing application can give the detail in-
formation about the movie ”The Two Towers”. This peer
gives the response message to the ultra-peer. When the
ultra-peer receives the response message, it then converts
the movie information into the corresponding fields in the
UMF format. After converting the response message, the
ultra-peer sends the UMF-formatted response message to
other ultra-peers. Then an ultra-peer forwards the UMF-
formatted message to the original ultra-peer. The origi-
nal ultra-peer converts the UMF-formatted message to the
response message format of Gnutella and then sends the
Gnutella-formatted message to the original peer. When
the original peer receives the response message, it sends
a request to the peer for retrieving the movie ”The Two
Towers”.

6. PERFORMANCE EVALUATION
In order to evaluate Shoran, we have an evaluation test

on a pre-configured network environment. We used two
P2P file-sharing applications to evaluate the performance
of Shoran. The first one is an open source P2P file-sharing
application called Limewire [21]. LimeWire is running on
the Gnutella protocol. Limewire uses a cache schema to
increase the search performance. The second one is a P2P
file-sharing application called eDonkey [22]. eDonkey is
running on its own protocol. The most important feature
of eDonkey is the possibility to download the same file
from several peers at the same time. These two file-sharing
systems are popular in the current P2P file-sharing com-
munity. There are several open source projects that have
developed tools for these two applications.

We performed experiments on computers with 800MHz
Pentium III processors, 256MB RAM, and 30GB disk run-
ning on Windows2000. Figure 14 depicts the network con-
figuration in the file sharing network’s view. A peer P1 is
located in the network domain of Taiwan Academic Net-
work (TANET). Peer P1 is running on the Gnutella pro-
tocol and is used to evaluate the performance of the pro-
posed architecture. Three ultra-peers are located in the
same LAN with 100Mbits/s Ethernet connection. Each
ultra-peer connects to a different P2P file sharing network.

eDonkey2000
Network

LimeWire
Network

Ultra-Peer U1

Ultra-Peer U3

Ultra-Peer U2

Gnutella
Network

Peers

Peers

LAN

Peer 1

Figure 14: The network configuration of the evaluation
test.

Ultra-peer U1 connects with the test peer P1, ultra-peer U2

connects with Limewire network, and ultra-peer U3 con-
nects with the eDonkey2000 network. In order to simplify
the testing and get a precise performance result, Peer P1

does not join any Gnutella network and only connects to
ultra-peer U1 by using the Gnutella protocol. The experi-
ments are designed to measure the following performance
factors:

• Query Hit Ratio (QHR): It is the response ratio that
a peer can find the desired resource.

QHR =
Responsef

Querys

where Querys denotes the number of queries that
are sent to find desired resources, Responsef refers
to the number of responses that the resources are
found. QHR is a good indicator of the possibility
of finding a resource among heterogeneous P2P file
sharing networks.

• Average Response Time: It is defined as the inter-
val between the times that a peer sends a query to
find the desired resource and then receives the re-
sponse from P2P file sharing networks. The average
response time to query resource measures the time
spent in finding the desired resource.

In order to evaluate the performance of the proposed ar-
chitecture, we generate queries by picking a query string
from a dictionary file. The test dictionary file contains
5000 frequent used words in a free on-line lexicon and en-
cyclopedia database [23]. Three traces were collected in-
dependently at ultra-peer S1, S2, and S3. Each entry in the
trace contains the following fields: (1) Protocol Identifier,
(2) Message ID, (3) Query String, (4) Response Time, (5)
Number of Results Found, and (6) File Names of Query
Results. The trace was collected from March 01, 2003
through March 03, 2003, approximately three days. Table
1 depicts the network status of the Limewire and eDon-
key2000 networks when the experiments were triggered.

We observed that Limewire has more participant peers
than eDonkey2000 has. Because the Limewire network
uses super-peer and caching concept to enhance the Gnutella

7



File sharing Network Protocol #Participant Peers #Sharing Files
Limewire Gnutella 23,121 402,743

eDonkey2000 eDonaky 11,272 918,293

Table 1: Status of the file sharing network.

MP3 MPG JPG GIF ZIP EXE AVI
Limewire 13,668 1,675 525 519 451 378 227

eDonkey2000 31,063 4,479 985 869 698 547 535

Table 2: The number of shared files in different media
formats.

protocol, the flooding-based approach doesn’t limit Limewire
to increase its scalability. The eDonkey2000 has less par-
ticipant peers than Limewire has. It is because the eDon-
key network uses a server-like approach for quick search-
ing, which limits its scalability. The number of participant
peers is limit by the server’s computing capacity. How-
ever, eDonkey has no official server, servers can be set at
any IP address. Each eDonkey’s server maintains a list of
other working servers. When peers connect to a server,
each peer is given a server list that contains other known
servers. When a peer finds a connected server is failed, it
can connect to another server according to the server list.
The eDonkey’s approach makes peers be able to always
find a candidate server to searching files, which makes it
more reliable than napster’s approach.

For the lifetime measurements, we receive 22,781 re-
sponses from Limewire network and 53,063 responses from
eDonkey network. Table 2 shows the media distribution in
the trace results. In Table 2, it shows that a significant
amount of shared files is in audio and video formats.

Figure 15 shows the query hit ratio in the trace results.
The Shoran has better query hit ratio than Limewire and
eDonkey. It is because the Shoran can send queries to sev-
eral different P2P file sharing networks. The Limwire’s
and eDonkey’s users can only search resources within their
networks. Therefore, by connecting more and more P2P
file sharing networks, the possibility of finding desired re-
sources is improved. Figure 15 also shows that the eDon-
key has better query hit ratio than Limewire. The reason is
that the eDonkey has more shared files than Limewire has.
The scalability of P2P file sharing networks is an important
factor that affects the query hit ratio of finding resources.

Figure 16 shows the average response time in the trace
results. The eDonkey has a better average response time
than Shoran and Limewire. It is because that eDonkey
uses a server-like approach, which makes it have a quick
searching and response time. Shoran has a better average
response time than Limewire. It shows that Shoran can
reach a balance in average response time. The Limewire
has the worst average response time. Since queries are
flooded in Limewire, the forwarding operations increase
the response times of queries.

7. CONCLUSION
Comparing with related works proposed in the litera-

ture, our work focuses on the resources retrieval in the het-
erogeneous P2P file sharing networks environment. Dif-
ferent P2P file sharing networks may use different resource
retrieval protocols. Therefore, peers need a mechanism to
retrieve resources among heterogeneous P2P file sharing

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
55

60

65

70

75

80

Number of query string

H
it 

ra
tio

 (
%

)

Limewire
eDonkey2000
Shoran

Figure 15: Query hit ratio of the experiment result.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Number of query string

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
 (

m
s)

Limewire
eDonkey2000
Shoran

Figure 16: Average response time of the experiment re-
sult.

networks. A resource retrieval scheme is proposed in our
paper. The peers can retrieve resources with the help of
ultra-peers. The ultra-peers consists a set of protocol adap-
tors, which provide the adaptation of one resource retrieval
protocol to the other resource retrieval protocol. Our future
work includes the in-depth analysis of the relationships of
heterogeneous P2P file sharing networks, and the study of
other more advanced and useful resource discovery mech-
anisms to fast up the speed of finding desired resources.

8. REFERENCES
[1] Napster, http://www.napster.com.
[2] Gnutella, http://gnutella.wego.com.
[3] I. Clarke, O. Sandberg, B. Wiley, and T. W.

Hongang, “Freenet: A Distributed Anonymous
Information Storage and Retrieval System,” Lecture
Notes in Computer Science, VOL. 2009, pp. 46–66,
July 2000.

[4] R. Matei, A. Iamnitchi, and P. Foster, “Mapping the
Gnutella Network,” IEEE Internet Computing,
VOL. 6, NO. 1, pp. 50–57, January 2001.

[5] L. Gong, “JXTA: A Network Programming
Environment,” IEEE Internet Computing, VOL. 5,
NO. 3, pp. 88–95, May 2001.

[6] A. Rowstron and P. Druschel, “Pastry: Scalable,
Distributed Object Location and Routing for
Large-Scale Peer-to-Peer Systems,” IFIP/ACM

8


