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ABSTRACT 

We survey several frequent smoothing 
methods used by language models for 
Mandarin. Due to the problem of data 
sparseness, smoothing techniques  are 
employed to re-estimate the probability for all 
events while calculating the probability of 
occurrence. Among well-known smoothing 
methods, Good-Turing is employed widely. 
We have proposed a set of properties to 
analyze the behaviors of Good-Turing in this 
paper. Two novel smoothing methods are 
proposed. Finally, we implement three n-gram 
for Mandarin and then analyze the entropy 
and related problems of the Good-Turing; 
such as cut-off value and types of events . 

Keywords: Language models , smoothing 
methods, statistical behavior, entropy. 

1、Introduction 
In natural language processing (NLP), 

language models  have been employed in many 
domains: information retrieval [Pronte, Croft, 
1998; Djoerd, 2002], Part-of-speech (POS) 
taggers [Chen et al., 1994], speech recognizers 
[Katz, March 1987, Jelinek, 1997], and so on. 
For instance, Language models (LMs) are used 
to decide the correct target word sequence W. 
The conditional probability P(W), where 
W=w1w2w… wm is a possible translation of Str, 
can be represented as: 

P(w1w2w3,… wm).                  (1) 
The chain rule of probability is used to 

decompose this probability as:    

                    

                                (2) 

In general, the word sequence Wmax with 
maximum conditional probability P(W) in 
n-gram model will be expressed as: 

                                          (3) 

                                                   (4) 

                                                  

   As shown in Eq. (4), the probability for each 
event can be obtained by training the bigram 
model.  A generalization of LMs is repressed in 
Eq. (5), called the n-gram LMs. In physical 
applications of NLP, n can be 3, 4, even up to 5.   

                                    (5) 

where C(．) denotes  the count of word wi in 
training corpus. The probability P of Eq. (4) is 
the relative frequency and such a method of 
parameter estimation is called maximum 
likelihood estimation  (MLE).  

1.1 Smoothing Issue  of LMs 
Basically, traditional language models rely 

on the estimation of the 2-gram or 3-gram 
models; which calculate the probability of each 
event by using its frequency in training corpora. 
Even though we do best to collect training 
corpora, it is on finite size. The new event (like 
new words or unknown words) will occur in 
future.  

This situation leads to the zero frequency of 
event and furthermore zero probability while 
calculate the probability of word sequence W. 
For instance, if bigram wi-1wi (for bigram models) 
never occur in the training corpus, then C(wi-1wi) 
is equal to 0. It leads to zero of Eq. (2).  

1.2 Why Smoothing Methods must be 
Considered 

It is unreasonable to assign probability 0 to 
the unseen events which don’t occur in training 
data. If we should assign certain probability to 
such novel events, how is the probability 
assigned effectively? The schemes used to 
resolve the problems are called smoothing 
methods. The probability obtained from MLE 
will be adjusted and redistributed. Such a 
process will maintain the total probability to be 
unity. Usually, the smoothing methods can 
improve the performance language models.  

It is almost impossible that for us to collect 
all possible permutations of events in natural 
language. The issue of zero probability should be 
accounted for. Therefore, smoothing methods 
must be considered in detail to generate the 
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robust and effect language model. 
  In fact, there are many works to be alternative 
methods to alleviate or improve the zero 
probability of LMs; such as extend language 
models to X-gram [Knerser, 1996; Chebra et al., 
1997; Fong and Wu, 1995], the situation of 
smoothing should be considered in detail on 
n-gram modeling approach.  

1.3 Questions of Smoothing Methods 
   A basic question is how the smoothing 
methods affect the performance of LMs. 
Individual smoothing uses various features. 

One key point is that smoothing can avoiding 
assign zero to all the novel events. From the 
statistical point, the summation of total 
probability assigned to all possible events is 
equal to unity. Other question is that how much 
probability mass should be re-allocated to all 
novel events.  

1.4 Characteristics of Chinese  
   The smoothing approaches are used 
principally by LMs on other languages. Chinese 
has some special attributes and challenges. First, 
there is no standard definition of a word, and 
there are no spaces between characters (字). A 
Chinese word (詞) is composed of one to several 
characters(字 ). The combination of one to 
several such characters gives an almost unlimited 
number of words, in which some of them are 
frequently used and can be found in Chinese 
dictionaries. Second, linguistic data resources are 
not yet plentiful, so the best source of training 
data may be the web.  

Chinese word (詞) is the elementary unit 
which has specific meanings. Because of the 
absence of word delimiters (like white space) in 
a sentence, it is necessary to segment a sentence 
into one more than words. During the processing 
of Chinese language, each sentence is segmented 
into one to several words for further processing. 

2. Overview of Smoothing  
The principal purpose of smoothing is to 

alleviate the zero count problems, as described 
above. In this section we will describe the 
formalisms of smoothing methods in detail. 
There are several well-known smoothing me- 
thods in various applications: Additive 
discounting , Good-Turing, Witten-Bell and Katz. 
In this section, we propose two novel methods.  

In all the following sections, we assume that 
the domain of smoothed probabilities and related 
properties analysis of language models is limited 
only on bigram models for clarity. It is evident 
that these smoothing methods can be easily 
expanded into higher order n-grams models , for 
Mandarin or other languages.  

2.1 Additive Discount Method 
Additive  smoothing method is intuitively 

simple. A small amountδ is added into all 
n-grams (including all seen and unseen n-grams). 
Clearly, the count of each type of bigrams is 
increased by 1. According to the previous 
experiments [Chen and Goodman, 1999], the 
performance was usually degraded by using 
add-one smoothing. 

2.2 Good-Turing Method 
Good-Turing is first described by Good in 

1953 [Good, 1953]. Some previous works are 
[Chen and Goodman, 1999; Jelinek, 1997; Na
das, 1985]. Notation nc denotes the number of 
n-grams with exactly c count in training corpus. 
For example, n0 represent that the number of 
n-grams with zero count and n1 means the 
number of n-grams which exactly occur once.                              

Similarly, the recounted count c* for n-grams 
can be derived. Good-Turing smoothing just 
employs the n-gram models to smooth the 
probability, rather than interpolating higher and 
lower order models (such as n-1 grams). Hence, 
Good-Turing is usually used as a tool by other 
smoothing methods. 

2.3 Witten-Bell Method 
Here we discuss only one of five smoothing 

schemes: methods A (called W-B A), introduced 
by Wetten-Bell1[ Ney and Essen, 1991]. Other 
four work can be referred in [Chen and 
Goodman, 1999].  

In this method, just one count is allocated to 
the probability that an unseen bigram will occur 
next. The probability mass Pmass assigned to all 
unseen bigrams can be summed up to 1/(N+1).      

2.4 Katz Method 
Katz first proposed the smoothing method in 

1987 [Katz, 1987]. Previous works are of [Chen 
and Goodman, 1999, Juraskey and Martin, 2000]. 
The basic concept is that n-grams can be 
computed by using the count of n-gram and 
lower order count, such as  up to unigram models. 
If the count of bigrams is 0, then use count of 
unigram.  

Note that the total smoothed probability 
should be summed up to 1. The smoothing 
criterion is the well-known BackOff; Katz is the 
most typical method. 

2.5 Our Smoothing Methods  
Several well-known smoothing schemes for 

estimating probability of bigrams have been 
explained in this section, such as Good-Turing, 
Katz, etc. We have proposed five properties (in 
Appendix A), which are employed to analyze the 
statistical behaviors of these smoothing methods. 
None of four methods comply with all these 

                                                 
1 There are 5 methods in [Ney and Essen, 1991]; 

method A, B , C, P and X. We only discuss one 
of them in this paper. 
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properties. In other words, from statistical point, 
they have some weaknesses or drawbacks while 
employed in language models. 

 We propose two novel smoothing methods 
(Method A and B, hereafter) and then analyze 
the statistical behaviors of these five methods.  

Method  A: 

  In case for a bigram, Method A calculates the 
smoothed probabilities as: 

 

                                (6)                                                            

where dA denotes a constant (0<dA<1) and 
independent of U. 

When computing the smoothed probability, 
our proposed method don’t employ interpolating 
scheme to combine the high order models and 
lower order models. As shown of Eq. (6), 
(N+1-dA)/(N+1) is the normalization factor for 
Q* of seen bigrams. The probabilities for all the 
seen bigrams will be discounted by the 
normalization factor and then the accumulated 
probability then is re-distributed to the unseen 
bigrams. All the unseen bigrams will share 
uniformly the distribution mass dA/(N+1),  

                                    (7) 
 

  Obviously, Eq. (7) of Method A is similar to  
W-B A . Instead of the constant 1 of numerator in  
W-B  A, it is replaced with a constant dA (0<dA<1.) 
It is necessary that we will evaluate dA with 
respect to perplexity for language models  in the 
next section. Hence, the better value of dA for 
lower perplexity can be found. 

Method B 

   Method B describes other smoothing 
scheme; in which the probability mass for 
unseen bigrams is assigned UdB/(N+1). 
Consequently, it varied with N and U; the 
number of training data and types of unseen 
bigrams.  

 The smoothed probabilities will be calculated 
as follows: 

                            (8) 

                                                             

and     

                                    (9) 

When computing the smoothed probability 
P*, our proposed method don’t employ 
interpolating scheme to combine the high order 
models with lower order models. As shown of 
Eq. (9) ,  (N+1-UdB)/(N+1) is the normalization 
factor of Q*  for seen bigrams. The probabilities 

Q will be discounted by the normalization factor 
and then the remained Q* are redistributed to 
unseen bigrams; which share uniformly the 
distributed probability mass UdB/(N+1): 

        (10) 

 
3. Properties Analysis of 
Good-Turing Smoothing 

3.1 Why the properties are needed? 
As shown in Appendix A, we have proposed 

five properties which can be used to analyze the 
statistical behaviors of smoothing. Basically, the 
estimation of probability of event, supposed for 
bigram models, is calculated based on several 
variables; type U of unseen bigrams, type S of 
seen bigrams in a corpus,the size N of training 
data,: size V of vocabulary, type B  of all the 
n-grams  (B=V2 and B=U+S), probability mass 
Pmass re-distributed to all unseen bigrams  by a 
smoothing method.  

It is obvious that these variables are varied 
and will affect each other. The statistical 
behaviors of smo othing should be analyzed 
using these properties and to observe specially it 
on various training data N. The Statistical 
behavior will affect smoothing methods and 
furthermore lead to the performance of LMs. 
3.2 Analysis of Good-Truing  

In previous section, several well-known 
smoothing methods are introduced. Due to the 
limit of size, we just analyze the statistical 
properties of the widely-used Good-Truing 
smoothing. Smoothed probability for bigrams 
computed from various smoothing methods 
should still comp ly with these properties.  
  Total number of smoothed count c*can be 

                                    (11)  
 
   It is apparent that property 1, 2 and 3 does 
not hold. For instance, look at following case: 
when nm is equal 0,                 
(violating property 1 and 2) and      
                            (violating 
property 1). The results also violate property 3. 
   It is possible that one of nm for certain 
amount of training set is zero. The smoothed 
probability for unseen and seen bigrams with c 
counts, property 4 does not hold.  

When a new bigram bnext is read in, then 
training size is increased by one (N=N+1). The 
smoothed count            Supposed that the 
bigram bnext is ever seen with c  counts on 
training size  N, upon the bnext appears, N=N+1, 
nc=nc-1 and nc+1=nc+1+1, the smoothed 
probability for bigrams with c on training size N  
and N+1 can be computed as: 
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According to inequality Eq. (A7), 
Eq. (12) should be greater than 1. In fact, N>>nc  
and N>>nc+1. Eq. (12) may be < 1 on certain 
situation, while it is also possibly greater than 1. 
Hence, property 5 does not hold.  
    For the bigram bnext, what is the relationship 
between the smoothed probabilities P* on train- 
ing size N  and N+1?  
                             ,     then: 

 
                                    (13) 
                                   
   According to Eq. (A8), Eq. (13) should be 
less than 1. It is obvious that Eq. (13) may be 
greater than 1 in certain situations, while it is 
possibly less than 1. Therefore, property 5 does 
not hold. 

4. The Evaluations 
In this section, first the empirical data sets 

and three Mandarin models  are evaluated. The 
probability mass Pmass assigned to unseen events 
by various smoothing methods are analyzed. The 
entropy of all smoothing method discussed for 
three models are shown. We further discuss the 
relationship between the Pmass and entropy which 
is a metric for evaluating a LM.  

Whether the volume of Pmass affecting the 
entropy H of LM or not will be shown. Finally, 
we further discuss some special problems in 
Good-Turing for Mandarin models. We will 
suggest the best cut-off kb in term of training size 
N for Mandarin corpus.  

4.1 Data Sets and Models  

   In the following experiments, two text 
sources are used as data sets; the news texts 
collected from Internet and ASBC corpus 
[Huang, 1995]. The HTML tags and all 
unnecessary symbols are extracted and there are 
about 7M Mandarin characters in news texts. 
The Academic Sinica Balanced Corpus version 
3.0 (ASBC) includes 316 text files distributed in 
different fields, occupying 118MB memory and 
about 5.22 millions of words labeled with a POS 
tag. Our corpus contains totally up to 12M 
Mandarin characters.  

In our experiments, we construct three 
models to evaluate the entropy of smoothing 
methods discussed in the paper; Mandarin 

character unigrams, character bigrams and word 
unigrams model. The entropy of each method is 
calculated on various data size N in our 
experiments, from 1 M to 12M Mandarin 
characters. The first two models employ up to 
12M Mandarin characters (unigrams and 
bigrams) and the 3rd model use about up to 5M 
Mandarin words in ASBC corpus. Table 1 
displays the entropy of smoothing methods on 
various size N for unigram character Mandarin 
model; the entropy of Good-Truing and Katz is 
similar. On the bottom of Table 1, entropies of 
Method A, B and Witten-Bell are shown; 
Method B is higher than others on all various N 
and Method A is similar to Witten-Bell. 

Table 1. (top)the entropy of four methods on 
various size N for unigram character 
Mandarin model. 

         (bottom) entropy of four methods on 
various size N for bigram character 
Mandarin model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
4.2 Probability Mass Assigned to 

Unseen Events 
Table 2 shows the probability mass Pmass to be 

redistributed to all unseen bigrams and 
normalized factor for each seen bigram. Pmass  is 
varied primarily with the smoothing methods 
and then with respect to the parameters N, U, S  
and some constants. It is obvious that the 
normalization factor (NF) will affect the 
probability discounted from the probability P  
assigned to the events with c counts (c >= 1) 
prior to smoothing process. Note that Katz isn’t 
shown in Table 1 because the method adopts the 
Backoff scheme to calculate the probability. 
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Table 2: The probability mass Pmass and 
normalization factor (NF). 

    perperty

method 

probability 
mass for all 

novels 

N. F.  for all seen events 

Additive U/(N+U) N/(N+B) 
 

Good-Turing 
  

Witten-Bell (A) 1/(N+1) N/(N+1) 
Witten-Bell (C) S/(N+S) N/(N+S) 

 
Katz2 

  

Absolute  DT/N 3 
Method A dA/(N+1) (N+1-dA)/(N+1) 
Method B UdB/(N+1) (N+1-UdB)/(N+1) 

 

4.3 Cut-off k for Recount of Events  

Good-Turing has been employed in many 
natural language applications. Previous works 
[Chen and Goodman, 1999] and [Nadas, 1985] 
discussed the related parameters, such as cut-off 
k  in Good-Turing method. However, these works 
employ English corpora only. In this section, we 
will focus on the Good-Turing method in 
Mandarin corpus and further analyze the 
problems  of Good-Turing for Mandarin texts, 
such as cut-off k  and discounted counts for seen 
and unseen bigrams.  
   Good-Turing re-estimate the count c* of all 
events in term of original count c and event 
number nc and nc+1. In practice, the discounted 
count c* is not used for all count c. It is assumed 
that larger counts are much reliable. The recount 
c* are set by Katz [Katz, 1987] as: 

 
 
 
                               (14) 
 
 
 

where:  
c denotes the count of an event,  
c* denotes the recount of an event, suggested by 

Katz ,1987 for English data.  
ni denotes  the number of bigrms with i counts. 
k  denotes the cut-off value. 

Good-Turing was first applied as a smoothing 
method for n-gram models by Katz [Katz, 1987]. 
Until now, few papers discuss the related 
problems between cut-off k  and entropy for 
Mandarin corpus, even for English. Katz  in 
                                                 
2  In the paper, we employ the Good-Turing 

method to discount the count of each event.  
3  Interpolating high order bigram with lower 

order unigrams. 

[Katz, 1987] suggested a cut-off k  at 5 as 
threshold for English corpus. Another important 
parameter of Good-Turing is the best kb (not ever 
discussed in previous works) in term of training 
size N, which will lead to minimum entropy at 
different N. We will analyze these related 
problems for Mandarin in this section.  

4.4 Type Number nc of Events with c 
    For Mandarin character unigram model, we 
first calculate the recount c* (c>=0). Referring to 
the empirical results, some recounts c* are 
negative (<0). In such case, furthermore it leads 
to negative probability P) and violate the 
statistical principle. For instance, c=8, n8=106, 
n9=67, k=10, recount c* can be calculated and is 
negative (-20.56). This situation also happens to 
some other recounts in character unigram model. 
Therefore, we must exclude the problem when 
Good-Turing is employed as smoothing method 
for Mandarin character unigram model.  

One way to solve the problem of negative 
recount is that we must define a cut-off k 
carefully. When we decide the cut-off k , only the 
count c less than k  will be re-calculated while the 
counts c >= k  is not calculated. In other words, 
we should choose a suitable k based on the 
empirical observation to avoid the negative 
situation. For the example above, we may 
choose k=8. Therefore, all the counts c>=8 need 
not be re-calculated. For the Mandarin character 
bigrams and words unigram models, based on 
the results, the negative recount situation doesn’t  
happen through all the training size N of two 
corpora. 

The type number nc of counts  c and recount c* 
of English words and Mandarin characters (12M) 
bigram model are listed in Table 3. Church and 
Gale [Church and Gale, 1991] used the 22M 
English corpus from Associated Press (AP) to 
calculate the recount of character bigrams . 
4.49E+5 bigrams have a count c of 2 and recount 
c* of 1.26.  
Table 3:  The events number nc and recount c* 
by Good-Turing discounting for English word 
bigrams and Mandarin character bigram. 

English4 
bigrams (22M) 

Mandarin char. 
bigrams (12M) 

models 

count c nc c* nc c* 

0 7.46E+10 2.70E-5 1.69E+8 2.11E-3 
1 2.01E+6 4.46E-1 3.57E+5   7.50E-1 
2 4.49E+5 1.26 1.34E+5 1.51 
3 1.88E+5 2.24 6.81E+4 2.58 
4 1.05E+5 3.24 4.39E+4 3.54 
5 6.83E+4 4.22 3.12E+4 4.47 
6 4.81E+4 5.19 2.33E+4 5.51 

                                                 
4 22 million (2.2*10+7) words bigrams from 

Associated Press (AP). 
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5. Conclusion 
We survey several smoothing methods used 

by Mandarin language models. Evaluations 
based on entropy are implemented. Good-Turing 
is analyzed on the parameters, such as mass 
redistributed to unseen event, cutoff k  and type 
number of event, observing the statistical 
behavior of smoothing methods. 
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Appendix A. The Proposed Properties  
We have proposed five properties which can 

be used to analyze statistical behaviors of 
language models. The properties are analyzed 
briefly on bigram model.  

Property 1 
   The smoothed probability for any one 
bigram bi with i counts should falls between 0 
and 1 (0,1), which is described as follows:    

For all bigram on various N   (A1) 
Property 2 

The summation of smoothed probability P* 
for all the bigrams is necessarily equal to 1 on 
any training size N. Total probability P is 
summed as:             
                                               

,     (A2) 
 

where B denotes the total number of bigrams.  
Property 3 
   The smoothed probability assigned to the 
bigrams b with different count should satisfy all 
the following inequality equations5: 

               for c=0,1,2,… ,        (A3) 
   Smoothed probability for any bigram bi and 
bj with same count (bi ≠ bj, i=j) should be same 
on any training size N. Instead, the probability 
for bigram bi+1 with c+1 counts should be larger 
than that of bigrams with c counts. 
Property 4 
   Comparing to the probability P prior to 
smoothing process, the smoothed probability P*  
for all bigrams will be changed. Property 4 can 
be expressed as follows: 

//for all unseen bigrams  (A4) 
               //for all seen bigrams   (A5) 

Property 4 shows     for unseen bigrams will 
be larger than original   while will be 
decreased for all bigrams with more than one 
count (c>=1).  
Property 5 

 Three notations B, S and U can be expressed 
as B=S+U for bigram models . When the number 
of training size  is increased, all the smoothed 
probability Q* for bigrams with same counts  on 
training size N+1 should be decreas ed a bit while 
comparing to the Q* on training size N. The 
smoothed probability Q* on N+1 training set 
should be less than the probability Q* on N for 

0≥c , except the P* for the incoming bigram 
bnext: 

           .                      (A6) 

   In other words, in addition to the P* of bnext 
at training size N+1, all other smoothed 
probability Q* at training size N+1 will be 
decreased than those at training size N. Although 
both the numerator and denominator of Eq. (31) 
are increased by 1, due to N>>c, so the 
inequality equation            will hold. In 
summary, property 5 can be expressed as: 
            for all bigrams with c >=0,  (A7) 
             for new bigram bnext.      (A8) 
where           denote the smoothed prob- 
ability for bigram with c on size  N and N+1.  
                                                 
5  The property was first proposed in [Ney and 
Essen. 1991] and we make a little modification. 
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