
 1

A Flexible Genetic Algorithm Chip

Shian-De Chen, Pei-Yin Chen and Yung-Ming Wang
Department of Electronic Engineering
Southern Taiwan Univ. of Technology

Tainan, Taiwan 710, R. O. C.
tedvip@yahoo.com.tw, pychen@mail.stut.edu.tw and wym1976@giga.net.tw

Abstract

The genetic algorithm (GA) can find an

optimal solution in many complex problems.

Therefore, it has been used widely in many

applications. A flexible VLSI genetic algorithm

processor is proposed in this paper. It can

perform dynamically various fitness functions,

four crossover operations, and over ten thousand

kinds of mutation-rate settings to meet the

requirements of different applications. Because

of its features, the proposed processor is very

suitable for various real-time applications.

Finally, the proposed VLSI architecture is

implemented on FPGA for verification.

Keywords: Genetic Algorithm(GA), Flexible

design, Table-Look-Up Technique.

1. Introduction
The genetic algorithm (GA) can find an optimal

solution by natural selection, so it has been used

widely in many complex applications such as

image processing, fuzzy control, neural network,

communication system, and layout optimization

[1-3]. Generally, genetic algorithm requires very

intensive computations in order to perform the

optimization. Hence, the study of specified VLSI

implementation for it is very important and

inevitable. In the past few years, many VLSI

architectures for genetic algorithm have been

proposed [4-7].

Most previous architectures of GA intended to

improve the processing speed or to reduce the

hardware cost. The main drawback of those

architectures is that each of them can implement

only one specified fitness function in its

architecture. Actually, different applications

require different GA fitness functions. To solve

the problem, we propose a flexible genetic

algorithm processor in this paper. It can perform

dynamically various fitness functions, four

crossover operations, and over ten thousand kinds

of mutation-rate settings to meet the requirements

of different applications. Because of its features,

the proposed processor is very suitable for various

real-time applications.

The paper is organized as follow. In Section 2,

some basic concepts of GA are summarized.

Section 3 describes the proposed VLSI

architecture in detail. In Section 4, the

comparisons of different GA processors are

presented. Conclusions are provided in Section

5.

2. Genetic Algorithm
Figure 1 shows the flowchart of GA. It consists

of six main steps: population initialization, fitness

calculation, termination judgment, selection,

mailto:tedvip@yahoo.com.tw
mailto:pychen@mail.stut.edu.tw
mailto:wym1976@giga.net.tw

 2

crossover, and mutation. At the beginning, the

initial population for GA is generated randomly.

Then the evaluation values of fitness function of

each individual in current population are

calculated. After that, the termination criterion is

checked. If the termination criterion is reached,

the whole GA procedure stops; otherwise, the

following three steps will be performed.

The selection works as the nature’s survival of

the fitness process. The fitness values of all

individuals are evaluated and the elite are selected.

In other words, fitter solutions survive while

weaker ones perish in this step. After selection,

crossover and mutation operations are performed

on the elite to generate the new individuals,

treated as the next generation population. With the

help of crossover and mutation operations, we can

avoid converging to the local optimum and locate

the better solutions. Finally, the termination

criterion is rechecked to decide whether the GA

procedure should continue.

3. The proposed VLSI architecture
The GA VLSI architectures, proposed in [4] and

[5], use redesign method to implement different

fitness functions. In [6] and [7], they generate

different fitness functions by using

re-programmable FPGA board. Since different

optimization problems require different fitness

functions, those previous architectures are not

very suitable. In order to increase the flexibility of

implementing various fitness functions, we

propose a GA processor based on the

table-look-up technique. Besides, our processor

can perform four crossover operations and over

ten thousand kinds of mutation-rate settings to

meet the requirements of different applications.

The block diagram for the proposed GA processor

is shown in Fig. 2. Five main blocks are described

in detail in the following sections.

3.1 Random Number Generator (RNG)
Generally speaking, there are two methods to

implement the random number generator (RNG):

linear feedback shift register (LFSR) or linear

cellular automata (LCA). Most RNG are realized

with LCA because it has been demonstrated to

generate better random sequences than LFSR [8].

Hence, we adopt LCA method to generate

necessary individuals. Besides, two most popular

rules, Rule-90 and Rule-150, in LCA are used to

realize the RNG. The rule-90 operation is given

as ,11 +−
+ ⊕= iii sss where +

is denotes the next

state for site si. The rule-150 operation is given

as .11 +−
+ ⊕⊕= iiii ssss The two rules can be

implemented with the circuits shown in Fig. 3(a)

and 3(b) respectively. Figure 4 shows the block

diagram of 14-bits RNG architecture.

3.2 Selection Module (SM)
Selection module (SM) is one of the most

important operations in genetic algorithm (GA).

Here, we adopt tournament selection for this

operation, and illustrate its architecture in Fig. 5.

It consists of two parts: initial selection module

(ISM) and selection record module (SRM). The

ISM, the upper block of Fig. 5, will execute

tournament selection and compare the fitness

values of two individuals every time. According to

different applications, users can decide to select

the maximum or minimum by using sel_com.

After tournament selection, the two advantageous

(or survival) individuals are stored in the winner

individual A’ and B’ registers and sent to the

crossover module. At the same time, Mux2 can be

used to select a proper control signal to the

following SRM to determine whether replacing

the individuals in the population memory. Finally,

the best individuals will be decided and stored in a

 3

register named as Best Individual Register (BIR).

The SRM, the bottom block of Fig. 5, will be used

to record the addresses of worse individuals and

execute the replacement operations.

3.3 Crossover Module (CM)
Crossover module (CM) is used to perform the

crossover operation on two winner individuals A

and B. Fig. 6 show that the block diagram of

crossover module respectively. In the design, we

offer four crossover operations including uniform

crossover, single point crossover, two points

crossover and cross crossover. Users can choose

one of them according to their needs. The output

chromosomes denoted as A’ and B’ are send to the

following mutation module.

3.4 Mutation Module (MM)
Mutation module (MM) is quite important in

GA. Figure 7 shows its hardware structure. It

consists of two registers, fourteen comparators.

The mutation operation is used to avoid

converging to the local optimum and locate the

better solutions [9]. Here, a flexible mutation-rate

settings scheme is used. The ranges of dynamic

mutation rate are from 1/16383 to 1. Users can

choose an appropriate mutation rate dynamically

and easily based on their needs. In the design, the

mutation operation is performed when the

user-defined mutation rate exceeds the threshold

(generated by RNG and stored in the 14-bit shifter

register), and is used to generate the new

chromosome. Finally, the new chromosomes are

generated and feed into the population memory.

3.5 Fitness Module (FM)
In order to perform the calculations of various

fitness functions quickly and efficiently, our

processor adopts the table-look-up technique.

Different fitness functions can be implemented

with the pre-designed software programs, and

then the corresponding output values can be

calculated and stored into the tables. Those

various and complex fitness functions can be

realized easily in our processor with the manner

of table mapping, and the computation time as

well as the complexity required for fitness

calculation can be reduced largely.

4. Comparisons and Implementation
 Table 1 shows the comparisons of different GA

processors. Our processor is the only one that

adopts dynamic mutation-rate settings. With the

table-look-up technique, the proposed processor

can perform various fitness functions easily and

quickly. Finally, the proposed GA processor is

realized with Verilog hardware description

language. Figure 8 shows the layout of the

processor. To further verify our design, we

implemented the processor on FPGA and

integrated it to a completed demo system shown

in Fig. 9. Simulation results show that it works

very well.

5. Conclusions
 Genetic algorithm requires very intensive

computations in order to perform the optimization.

Hence, a dedicated VLSI implementation for it is

necessary. In this paper, we propose a more

flexible genetic algorithm processor architecture

that can perform various fitness functions both

quickly and dynamically to meet the requirements

of different applications. Because of the features,

the proposed processor is very suitable for various

real-time applications.

References
[1] J.-M. Rouet, J.-J. Jacq, and C. Roux,

“Genetic algorithms for a robust 3-D MR-CT

 registration,” IEEE Trans. on Information

Technology in Biomedicine, vol. 4, pp.

126-136, June 2000.

 4

[2] C.-C. Chen, and C.-C. Wong,

“Self-generating rule-mapping fuzzy

controller design

 using a genetic algorithm,” Proc. of IEE, vol.

149, pp. 143-148, March 2002.

[3] C. Ergün, and K. Hacioglh, “Multiuser

Dete- ction using a genetic algorithm in

CDMA communications systems,” IEEE

Trans. on Communications, vol. 48, no. 8,

pp. 1374-1383, Aug. 2000.

[4] S. D. Scott, A. Samal, and S. Seth, “HGA:

A hardware based genetic algorithm,”

ACM/SIMDA 3rd Int. Symposium on FPGA,

pp. 53-59, 1995.

[5] N. Yoshida, and T. Yasuoka, “Multi-GAP:

Parallel and distributed genetic algorithm

in VLSI,” IEEE Int. Conf. on System, Man,

and Cybernetics, vol. 5, pp. 571-576, 1999.

[6] S. Wakabayashi, T. Koide, K. Hatta, Y.

Nakayama, M. Goto, and N. Toshine,

“GAA: a VLSI genetic algorithm

accelerator with on-the-fly adaptation of

crossover operators,” IEEE Int. Symposium

on Circuits and Systems, vol. 2, pp.

268-271, 1998.

[7] J. J. Kim, and D. J. Chung,

“Implementation of genetic algorithm

based on hardware optimization,” IEEE

Region 10 Conf. (TENCON), vol. 2,

pp.1490-1493, 1999.

[8] M. Serra, T. Slater, J. C. Muzio, and D. M.

Miller, “The analysis of one-dimensional

linear cellular automata and their aliasing

properties,” IEEE Tran. on CAD, vol. 9, pp.

767-778, July 1990.

[9] R. L. Haupt, “Optimum population size

and mutation rate for a simple real genetic

algorithm that optimizes array factors,” in

Proc. IEEE Int. Symposium, vol. 2, pp.

1034-1037, 2000.

Fig. 1. The flowchart for GA.

Fig. 2. Block diagram for the proposed GA

processor.

(a) (b)

Fig. 3. a) Rule-90, and b) Rule-150.

Fig. 4. 14 bits RNG based on cellular automata.

 5

Fig. 5. Hardware structure of

selection module.

Fig. 6. Hardware structure of crossover

module.

F

ig. 7. Hardware structure of mutation block.

Fig. 8. The layout of the processor.

Fig. 9. The demo system.

Table 1. Comparison of various GAPs.

 Selection RNG Fitness
Module

Mutation
Rate

[4] Roulette CA Redesign None

[5] Simplified
Tournament CA Re-Program None

[6]
Roulette &
Elitist
strategy

CA Re-Program Without
Architecture

[7] Tournament CA Re-Program Single Point
Multipoint

Our Tournament CA Look Up
Table Dynamic

