
 1

階層式動態物件更新控制之研究

Hierarchical Consistency Control for Caching of Dynamic
Contents

Jonathan C. Lu (呂俊賢) Huang-Chu Chen (陳皇助)
jonlu@csie.fju.edu.tw ivan0904@yahoo.com.tw

Department of Computer Science and Information Engineering
Fu Jen Catholic University, Taipei, Taiwan

Abstract

With the help of increasing bandwidth and

advanced software technologies, dynamic web
pages have been widely applied to various web
sites. HTTP/1.1 has provided new control
headers for caching the dynamic pages at the
proxy efficiently, but it still cannot satisfy all the
requirements for dynamic web caching. In this
work we present a mechanism to maintain data
consistency of various degrees by using active
push. We developed an analytic formula for
calculation of the update interval ∆ given the
tolerance value defined by the users depending
on the type of object requested. We then
designed a hierarchical structure where for each
object requested a dissemination tree is created
rooted at a leader proxy selected via a hash
function. Object updates are pushed from the
server to the leader, and further disseminated
along the tree only when necessary. We
evaluated our design by conducting a
trace-based simulation, and the numerical results
showed that our analytic formula agreed with the
simulation very well. The results also displayed
a twenty-eight percent saving in communication
bandwidth for the hierarchical tree structure over
the flat one.

Keyword: Consistency control, caching,
dynamic objects, performance analysis

1. Introduction

Recent studies have shown that an increasing
fraction of the data on the Web has become
time-varying because they are often generated
on-the-fly at the server using dynamic
mechanisms. Unfortunately, those dynamic web
pages cannot be cached easily at the proxy
servers, which has limited the hit rate and
presented a performance bottleneck.

To generate dynamic web pages, the server

usually has to retrieve information from
databases and perform additional computing and
processing. By contrast, static web pages are
often generated from reading local files only. We
can see that the generation of dynamic web
pages consumes much more resources, which
results in heavier server load and longer
response time. If dynamic web pages can be
cached at the proxy servers, both the bandwidth
requirement and the server’s load can be
decreased, which in turn reduces the latency for
the client requests.

In caching web pages to improve the hit rate,

one important task of the proxy server is to
maintain data consistency between the cached
copy and its original data on the server. Instead
of requiring strong consistency, however, users
may have different tolerances for data
consistency, depending on the type of the web
pages. For example, a user may be willing to
access pictures posted several hours ago, but
would not accept a stock quote unless it is
up-to-date. However, the contents of web pages
may change in different rates, and if we try to
maintain data consistency by traditional
client-pull methods, the server may not be able
to set a single suitable TTL value for all the
cached pages in order to meet various
requirements from the clients.

In this work, we will focus on how to

maintain data consistency of various degrees
when caching dynamic web pages at proxies.
The server and proxy cooperate by using active
push instead of passive pull. The rest of this
document is organized as follows: Chapter two
describes the related work. In Chapter three, we
will develop an analytical model that computes
the time interval between consecutive data
pushes. This can help reduce the use of
communication bandwidth. We will also propose
a hierarchical dynamic object replacement
architecture to make proxy servers interwork
with each other. This architecture will offload
from the server and distribute among the proxies.

 2

Chapter four presents the numerical results
obtained from a trace-input simulation, and
Chapter five concludes the paper.

2. Related Work

There have been some researches that
provided solutions for the caching of dynamic
web pages. A cooperative consistency solution
along with a mechanism called clustered lease
was presented in [2] to achieve data consistency
and load balancing between the servers and
proxies in a content distribution network (CDN).
Server notifications were propagated to cluster
of proxies in a scalable manner. A technique for
disseminating dynamic data such as stock prices
and real-time weather information was proposed
in [3]. It is based on an optimized efficient
dissemination tree to maintain the data
consistency between server and proxy by
pushing the data to appropriate intermediate
nodes at the right time. A method was presented
in [4] that combine the Push-based and
Pull-based techniques for handling time-varying
web data such as sports scores and stock prices.
These methods tried to take advantage of the
features of both approaches in order to better
satisfy diverse temporal consistency
requirements.

3. System Architecture

3.1 System Operations
We assume that the client is allowed to specify

the degree of data consistency depending on the
type of object instead of always requiring
complete strong consistency. For each object the
client needs to register a value of consistency
tolerance ranging from zero to one. For example,
a tolerance of 0.1 for an object means that the
proxy is allowed to return an object that may be
inconsistent with the origin server for no more
than ten percent of the requests. Because
different clients may have different consistency
tolerances on the same object, the server does
not need to push the new content to all the
clients every time the data is updated. When the
proxy registers the specified object at a server,
one lease is granted. The lease denotes the
interval of time during which the server agrees
to notify the proxy when the specified object is
modified. If the lease has expired and the proxy
receives a new requirement, the proxy is
required to obtain a new lease. Although the
lease with long duration can make a server push
the updated data to the proxy constantly and
result in faster response to the clients, it can also
possibly waste the bandwidth if the updated data
pushed to the proxy has not been accessed by the
clients very often. This work will not cover the

problem of how to determine the optimal lease
duration. Interested reader can refer to [7].

3.2 System Architecture Overview

Figure 1. System architecture diagram.

In this subsection we provide an overview of

own system architecture. Figure 1 shows a
typical web access architecture with proxy
servers. We assume that for each object
requested the client needs to express its
consistency requirement by registering an error
tolerance value, ε, to the proxy server. For the
same object, different clients may specify
different tolerance value depending on their
requirement. Upon receiving a request for an
object currently not cached, the proxy forwards
the request to the server. The server employs a
∆-Consistency mechanism, which means that it
agrees to send to the proxy at most one update
notification every ∆ time units (no matter how
many updates have happened) and no later than
∆ time units after an update. The server then
computes the update interval ∆ according to the
tolerance value sent by the proxy, and decides
whether to accept the request based on the
calculated ∆ and its available resource. If yes,
the server will notify the proxy of both the value
of ∆ and the length of the lease.

3.2.1 Calculation of ∆

Figure 2. Data update interval.

We assume that requests for the same dynamic

object arrive at the system following a Poisson
process with an arrival rate λ. The intervals
between consecutive changes of an object follow
an exponential distribution with mean equal to
1/µ. Figure 2 displays a data update interval. Let

 3

T0 be the instant of last data push. Assume the
object changes its values at T0 + X. Since the
new value is not pushed to the proxy until T0 + ∆,
any request arriving at the proxy between the
time interval (T0 + X, T0 + ∆) will retrieve an
incorrect result. Let Pk denote the probability that
k requests arrive in such an interval and obtain
erroneous results. We have

()[] (1)
!

 x)-(dxee
k

xP x
k

k
µλ µλ −∆−∆

0∫
−∆

=

Let E be the average numbers of requests in
error during an update interval. E can be
computed as follows:

()[] ()

() ()[]
()

()

()

() (2) 1 1

! 1

!

0

1

1

0

1
0

1

−−∆=

−∆=

−
−∆

−∆=

−∆
==

∆−

∆ −

−−∆−
∞ −

∆

−−∆−
∞ ∆ ∞

∫

∑∫

∑ ∫ ∑

µ

µ

µλ

µλ

µ
λ

µλ

µλλ

µλ

e

dxex

dxee
k

xx

dxee
k

xkkPE

x

xx
k

xx
k

k

 The error rate is defined as the number of
requests in error divided by the total number of
requests. Therefore, we have

() (3) 1 1 1 ∆−−
∆

−=
∆

= µ

µλ
eERateError

Given an error tolerance rate specified by the
client, the server will use equation 3 to calculate
the update interval length ∆. Note that when µ∆
is a very small value, equation 3 can be further
simplified as ()() ∆=∆+∆−−

∆
− µµµ

µ
221 1 11 .

Thus,
µ

rateError
=∆ .

3.3 Server System Modules

Figure 3 shows the modules that are added to
the server.

Figure 3. Server system architecture diagram.

3.3.1 Resource Manager
When a proxy sends an initial request or a

request to modify the current tolerance value, the
server first calculates the update interval length
∆, and then runs the Resource Manager to check
if there is sufficient resource to satisfy the
request. The resources may include CPU

utilization, bandwidth of network connection,
memory storage, etc. In this work, we only
consider the bandwidth of network connection in
the system. Since there will be at most one
update sent out every ∆ time units and the update
happens once every 1/µ time units on the
average, for an object of size S the required
bandwidth at the server is roughly equal

to

∆
∗ µ,1minS . The request will be

rejected by the server if its available bandwidth

is less than

∆
∗ µ,1minS .

3.3.2 Object Manager

The function of the Object Manager is to
compute the time of next push. In principle,
there will be at most one push every ∆ time units.
However, if the object did not change its value
within the last ∆ time units, the push will be
deferred to the instant when the object changes.
Note that the push will be executed only if the
lease for the object has not expired.

3.4 Proxy System Modules

The proxy includes four modules: Resource
Manager, Object Manager, Leader Selection and
Tree Manager. The Resource Manager and
Object Manager are identical to those on the
server. Figure 4 displays the structure of a proxy.

Figure 4. Proxy system architecture diagram.

3.4.1 Leader Selection

In order to reduce the load at the server, a
leader selection algorithm is executed to select a
leader proxy for each object. Upon receiving a
request for an object, the proxy will forward the
request to the selected leader. This leader is
responsible for propagating update notifications
to the other proxy servers. The leader gathers the
requests from the proxy server group and
presents only the smallest ε value to the server.

 4

Figure 5. Singular object system architecture
diagram.

Figure 5 illustrates the tree structure created to
maintain the data consistency for a single object.
The leader is responsible for communicating
with the server and maintaining of the tree. A
hierarchical tree is created for each object
requested, thus there can be thousands of trees in
the system. The proxy leader of an object can be
determined by employing a hashing function
such as the MD5 hash [8] of the object URL. An
advantage of the hash-based approach is better
load balancing among the proxies. Figure 6
depicts the sequence of leader selection.

Figure 6. Leader selection procedure.

3.4.2 Tree Manager

Figure 5 show that clients may specify
different tolerance values to a proxy for the same
object. We use the minimum value to represent
the error tolerance value at the proxy. When a
client requests an object from the proxy, the
proxy will send a request message to the leader.
However, instead of pushing updates directly to
all the proxies that it serves, it organizes the
proxies as a tree structure where proxies with
smaller ∆ are placed closer to the root of the tree.
Each node in the tree receives updates from its
parent and propagates down to its children. For
example, let ∆P and ∆Q (where ∆P ≤ ∆Q) denote
the ∆ values of a proxy P and its child node Q in
the tree, respectively. To meet node Q’s
requirement, proxy P only needs to forward one
update to Q for every [∆Q/∆P] updates it receives,
where [x] denotes the largest integer less than or
equal to x. There will be some bandwidth waste
if the ratio ∆Q/∆P is not exactly an integer, so we
always try to insert a new proxy Q as a child of
P where ∆Q is as close to an integer multiple of

∆P as possible.

The algorithm is as follows: When a proxy Q

needs to be inserted, we first identify the nodes
whose ∆ value are less than ∆Q. We then divide
∆Q by each of these ∆ values and record their
remainder. The node with the minimal remainder
will be designated as the parent. The shape of the
tree will certainly affect the system performance.
A wider tree means that each node has many
children. Consequently, the parent node needs to
send updates to many proxies (child nodes),
which will increase the computing delay. On the
other hand, a slender and deeper tree will
increase the transmission delay for update
notification to propagate to nodes at lower
levels.

The maintenance of the tree includes Insert,
Relocate and Delete operations, which are
explained in the following:

 Insert: When a proxy receives a first

request for an object from a client, it will
send a registration message to the leader,
who then inserts the proxy to a proper
position in the tree. Figure 7 illustrates the
sequence of proxy insertions into a tree. In
step 1 there is an empty tree initially. In
step 2 a node A with ∆ = 20 is inserted
under the leader directly since the tree is
empty. Step 3 shows that another node B
with ∆ = 10 needs to be inserted. Because
∆B is smaller than ∆A, we place node B
under the leader directly also, and change
the leader’s ∆ to 10. Finally, a node C with
∆ = 30 needs to be inserted. It is positioned
as a child of B since ∆C is an integer
multiple of ∆B. Step 4 displays the final
tree.

Figure 7. Example of node insertion.

 Relocate: When a proxy receives a request
from a different client asking for an object
that has been previously requested, it will
first compare the new error tolerance value
to the current one. If the new value is
smaller (i.e., more stringent) than the
current one, the proxy will send a request
to the leader to have its update interval ∆

 5

shortened in order to meet the more
stringent consistency requirement. Since
the new ∆ for the proxy becomes smaller,
the proxy may no longer be in a proper
position and the leader needs to rearrange
the proxy and all its subtrees in the tree.
Figure 8 illustrates this rearrangement.
Step 1 shows the initial tree. Now assume
that node D receives a move stringent
request and its ∆ is reduced from 30 to 25.
Step 2 shows that D is rearranged as a
child of A because ∆D is now closest to a
multiple of ∆A. Step 3 and 4 display that
the left and right subtrees of node D are
rearranged to their proper places following
the rule, respectively.

Figure 8. Example of node relocation.

 Delete: When the lease of an object is

expired, the leader will notify all the
proxies in the tree, and then delete the tree.

4. Simulation Results

Based on the proposed architecture, we have
developed a simulator in Visual C++ to evaluate
the performance of our design. The workload for
our simulator is generated using the UC
Berkeley Home IP Web Traces [9] which
contains information that was gathered from
November 1st to November 7th, 1996. The
information includes client IP address, server IP
address, request URL, the time of the request,
the length of the response data, etc. The
simulator runs on Pentium 4 1.6 GHz PCs with
Microsoft Windows XP installed. The
characteristics of the trace are shown in Table I
and Table II.

Table I. Trace Characteristics.
Subject Server Client Object Request
Quantity 7094 6024 43381 1324870

 Table II. Object Types.
Type Object file

extension
Total number
of request

Average
lifetime

0 gif , jpg 37827 16.8
hours

1 html , shtml 4637 5.6 hours
2 cgi , class , asp 1417 2.4 hours

We first verified the correctness of our
analytic model for calculating ∆. Based on
observations in [4] [6], we divide the objects into
three types: Type 0 objects are primarily static
images that change very infrequently, Type 1
objects consist of static texts that change slowly,
and Type 2 objects are the components generated
dynamically using techniques such as CGI, ASP
or JSP that change their values frequently. The
average lifetimes for Type 0, 1 and 2 objects are
assumed to be 16.8, 5.6 and 2.4 hours,
respectively.

 Figure 9 shows the relationship between the
tolerance ε and update interval ∆ obtained from
both analytic modeling and simulation. It shows
that as the tolerance value increases (i.e., less
stringent), the update interval becomes longer.
Note that our analytical results agree with the
simulation very well.

Figure 9. Relationship between ε and update
interval ∆ (A:anaytical, S:simulation).

The server will reject a request if it does not
have sufficient resource available. We can see in
Figure 10 that given fixed communication
bandwidth at the server, the percentage of
rejected request is very high when the client
requirement is stringent (i.e. with small ε). The
rejection rate drops as ε becomes large. We can
also see that the rejection rate for the case of a
longer lease is higher because each lease holds
up the resource at the server much longer. The
rejection of requests can be alleviated and even

 6

completely eliminated if we equip the server
with enough amount of bandwidth (=1.5Mbps in
the simulation), which can be seen in Figure 11.

Figure 10. Rejection Rate (Bandwidth =
56Kbps).

Figure 11. Rejection Rate (Lease = 100000s).

Control messages are exchanged between the
server, the leader and the proxies when initial
request for an object or requests to modify ε
values are issued. Figure 12 and 13 plot the
number of control messages exchanged in the
system. When ε is small and many request are
rejected, a lot of control message are exchanged
because each rejected request would first contact
the leader, which in turn contacts the server
before being rejected. As ε becomes larger, more
requests will be accepted. Once a request has
been accepted, all the subsequent requests for
the same object do not need to be forwarded to
the server unless the associated ε is smaller.
Therefore, the number of control message
decreases.

Figure 12. Number of Control Messages
(Bandwidth = 56Kbps).

Figure 13. Number of Control Messages (Lease
= 100000s).

To understand the benefit of using a
hierarchical tree for disseminating updates, we
measure the total number of push updates for
both the case of hierarchical tree and the case of
flat structure where all the proxies requesting the
same object are positioned as direct children of
the leader. In the latter case, the leader is
assumed to broadcast the update to all its
children as soon as it receives one from the
server. As shown in Figure 14, there is little
number of updates when ε is small since many
requests have been rejected. As ε becomes large
and more requests have been accepted, the
number of updates increases. As ε increases
further, however, the corresponding ∆ becomes a
large value and the server sends updates less
often than before, which causes the number of
updates to drop a little bit as can be seen from
the figure. The saving in number of updates is
about twenty-eight percent for using hierarchical
tree over the flat structure. If the server is
equipped with sufficiently large bandwidth
(=1.5Mbps in the simulation), then the number
of updates is at its peak when ε is small because
all the requests are accepted, as shown in Figure
15. Again, the number of updates drops as ε
increases.

 Figure 16 and 17 display the total number of
bytes pushed versus ε. Because most of the
object size in the trace falls in the range of one to
ten kilobytes, the results are similar to those in
Figure 14 and 15.

Figure 14. Number of Push Updates (Bandwidth
= 56Kbps).

 7

Figure 15. Number of Push Updates (Lease =
100000s).

Figure 16. Number of Bytes Pushed ε

(Bandwidth = 56Kbps).

Figure 17. Number of Bytes Pushed (Lease =
100000s).

5. Conclusions

In this work we proposed a mechanism of
∆-consistency for the server and proxy that
provide services for time varying web pages
(such as stock quotes). We developed an analytic
formula for calculation of the update interval ∆
given the tolerance value defined by the users
depending on the type of object requested. We
then designed a hierarchical structure where for
each object requested a dissemination tree is
created rooted at a leader proxy selected via a
hash function. Object updates are pushed from
the server to the leader, and further disseminated

along the tree only when necessary. We
evaluated our design by conducting a
trace-based simulation. Numerical results
showed that our analytic formula agreed with the
simulation very well. The result also displayed a
twenty-eight percent saving in communication
bandwidth for the hierarchical tree structure over
the flat one.

Acknowledgment

This work was sponsored by the National
Science Council of Taiwan R.O.C. under
contract number NSC91-2745-P-030-004.

References

[1] D. Xu, C. Chun Tung, Y. Zongkai, C.

Wenqing and H. Jiaqing, “A Self-Organizing
Scheme for Cache Consistency“,
Proceedings of the ICT 2003, March 2003.

[2] A. Ninan, P. Kulkarni, P. Shenoy, K.
Ramamritham and R. Tewari, “Scalable
Consistency Maintenance for Content
Distribution Networks”, Proceedings of the
11th World Wide Web Conference, May 2002.

[3] S. Shah, K. Rammamritham and P. Shenoy,
“Maintaining Coherency of Dynamic Data
in Cooperating Repositories”, Proceedings
of the 28th VLDB Conference, 2002

[4] B. Krishnamurthy and J. Rexford, Web
Protocols and Practice: HTTP/1.1,
Networking Protocols, Caching, and Traffic
Measurement, 2001, Addison Wesley
Professional.

[5] P. Deolasee, A. Katkar, A. Panchbudhe, K.
Ramamritham and P. Shenoy, “Adaptive
Push-Pull: Disseminating Dynamic Web
Data”, Proceedings of the 10th World Wide
Web Conference, May 2001.

[6] L. Breslau, P. Cao, L. Fan, G. Phillips, and S.
Shenker, “Web Caching and Zipf-lik
Distributions: Evidence and Implications.”,
Proceedings of INFOCOM, March 1999.

[7] J. Yin, L. Alvisi, M. Dahlin, and C. Lin,
“Using Leases to Support Server-Driven
Consistency in Large-Scale Systems”, in
International Conference on Distributed
Computing Systems, 1998.

[8] D. Karger, E. Lehman, T. Leighton, M.
Levine, D. Lewin, and R. Panigrahy.
“Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving
Hot Spots on the World Wide Web”,
Proceedings of the 29th ACM Symposium
on Theory of Computing, 1997.

[9] Steven D. Gribble, “UC Berkeley Home IP
 HTTP Traces”, July 1997. Available at

http://www.acm.org/sigcomm/ITA/.

