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Abstract 

 
With the help of increasing bandwidth and 

advanced software technologies, dynamic web 
pages have been widely applied to various web 
sites. HTTP/1.1 has provided new control 
headers for caching the dynamic pages at the 
proxy efficiently, but it still cannot satisfy all the 
requirements for dynamic web caching. In this 
work we present a mechanism to maintain data 
consistency of various degrees by using active 
push. We developed an analytic formula for 
calculation of the update interval ∆ given the 
tolerance value defined by the users depending 
on the type of object requested. We then 
designed a hierarchical structure where for each 
object requested a dissemination tree is created 
rooted at a leader proxy selected via a hash 
function. Object updates are pushed from the 
server to the leader, and further disseminated 
along the tree only when necessary. We 
evaluated our design by conducting a 
trace-based simulation, and the numerical results 
showed that our analytic formula agreed with the 
simulation very well. The results also displayed 
a twenty-eight percent saving in communication 
bandwidth for the hierarchical tree structure over 
the flat one. 
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1. Introduction 
 

Recent studies have shown that an increasing 
fraction of the data on the Web has become 
time-varying because they are often generated 
on-the-fly at the server using dynamic 
mechanisms. Unfortunately, those dynamic web 
pages cannot be cached easily at the proxy 
servers, which has limited the hit rate and 
presented a performance bottleneck. 

 
To generate dynamic web pages, the server 

usually has to retrieve information from 
databases and perform additional computing and 
processing. By contrast, static web pages are 
often generated from reading local files only. We 
can see that the generation of dynamic web 
pages consumes much more resources, which 
results in heavier server load and longer 
response time. If dynamic web pages can be 
cached at the proxy servers, both the bandwidth 
requirement and the server’s load can be 
decreased, which in turn reduces the latency for 
the client requests. 

 
In caching web pages to improve the hit rate, 

one important task of the proxy server is to 
maintain data consistency between the cached 
copy and its original data on the server. Instead 
of requiring strong consistency, however, users 
may have different tolerances for data 
consistency, depending on the type of the web 
pages. For example, a user may be willing to 
access pictures posted several hours ago, but 
would not accept a stock quote unless it is 
up-to-date. However, the contents of web pages 
may change in different rates, and if we try to 
maintain data consistency by traditional 
client-pull methods, the server may not be able 
to set a single suitable TTL value for all the 
cached pages in order to meet various 
requirements from the clients. 

 
In this work, we will focus on how to 

maintain data consistency of various degrees 
when caching dynamic web pages at proxies. 
The server and proxy cooperate by using active 
push instead of passive pull. The rest of this 
document is organized as follows: Chapter two 
describes the related work. In Chapter three, we 
will develop an analytical model that computes 
the time interval between consecutive data 
pushes. This can help reduce the use of 
communication bandwidth. We will also propose 
a hierarchical dynamic object replacement 
architecture to make proxy servers interwork 
with each other. This architecture will offload 
from the server and distribute among the proxies. 
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Chapter four presents the numerical results 
obtained from a trace-input simulation, and 
Chapter five concludes the paper. 
 

2. Related Work 
 

There have been some researches that 
provided solutions for the caching of dynamic 
web pages. A cooperative consistency solution 
along with a mechanism called clustered lease 
was presented in [2] to achieve data consistency 
and load balancing between the servers and 
proxies in a content distribution network (CDN). 
Server notifications were propagated to cluster 
of proxies in a scalable manner. A technique for 
disseminating dynamic data such as stock prices 
and real-time weather information was proposed 
in [3]. It is based on an optimized efficient 
dissemination tree to maintain the data 
consistency between server and proxy by 
pushing the data to appropriate intermediate 
nodes at the right time. A method was presented 
in [4] that combine the Push-based and 
Pull-based techniques for handling time-varying 
web data such as sports scores and stock prices. 
These methods tried to take advantage of the 
features of both approaches in order to better 
satisfy diverse temporal consistency 
requirements. 
 

3. System Architecture 
 

3.1 System Operations 
We assume that the client is allowed to specify 

the degree of data consistency depending on the 
type of object instead of always requiring 
complete strong consistency. For each object the 
client needs to register a value of consistency 
tolerance ranging from zero to one. For example, 
a tolerance of 0.1 for an object means that the 
proxy is allowed to return an object that may be 
inconsistent with the origin server for no more 
than ten percent of the requests. Because 
different clients may have different consistency 
tolerances on the same object, the server does 
not need to push the new content to all the 
clients every time the data is updated. When the 
proxy registers the specified object at a server, 
one lease is granted. The lease denotes the 
interval of time during which the server agrees 
to notify the proxy when the specified object is 
modified. If the lease has expired and the proxy 
receives a new requirement, the proxy is 
required to obtain a new lease. Although the 
lease with long duration can make a server push 
the updated data to the proxy constantly and 
result in faster response to the clients, it can also 
possibly waste the bandwidth if the updated data 
pushed to the proxy has not been accessed by the 
clients very often. This work will not cover the 

problem of how to determine the optimal lease 
duration. Interested reader can refer to [7]. 
 
3.2 System Architecture Overview 
 

 
 
Figure 1. System architecture diagram. 

 
In this subsection we provide an overview of 

own system architecture. Figure 1 shows a 
typical web access architecture with proxy 
servers. We assume that for each object 
requested the client needs to express its 
consistency requirement by registering an error 
tolerance value, ε, to the proxy server. For the 
same object, different clients may specify 
different tolerance value depending on their 
requirement. Upon receiving a request for an 
object currently not cached, the proxy forwards 
the request to the server. The server employs a 
∆-Consistency mechanism, which means that it 
agrees to send to the proxy at most one update 
notification every ∆ time units (no matter how 
many updates have happened) and no later than 
∆ time units after an update. The server then 
computes the update interval ∆ according to the 
tolerance value sent by the proxy, and decides 
whether to accept the request based on the 
calculated ∆ and its available resource. If yes, 
the server will notify the proxy of both the value 
of ∆ and the length of the lease. 
 
3.2.1 Calculation of ∆ 
 

 
Figure 2. Data update interval. 

 
We assume that requests for the same dynamic 

object arrive at the system following a Poisson 
process with an arrival rate λ. The intervals 
between consecutive changes of an object follow 
an exponential distribution with mean equal to 
1/µ. Figure 2 displays a data update interval. Let 
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T0 be the instant of last data push. Assume the 
object changes its values at T0 + X. Since the 
new value is not pushed to the proxy until T0 + ∆, 
any request arriving at the proxy between the 
time interval (T0 + X, T0 + ∆) will retrieve an 
incorrect result. Let Pk denote the probability that 
k requests arrive in such an interval and obtain 
erroneous results. We have 
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 The error rate is defined as the number of 
requests in error divided by the total number of 
requests. Therefore, we have 
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Given an error tolerance rate specified by the 
client, the server will use equation 3 to calculate 
the update interval length ∆. Note that when µ∆ 
is a very small value, equation 3 can be further 
simplified as ( )( ) ∆=∆+∆−−

∆
− µµµ

µ
221 1 11 . 

Thus, 
µ

rateError 
=∆ . 

 
3.3 Server System Modules 

Figure 3 shows the modules that are added to 
the server. 

 

 
 
Figure 3. Server system architecture diagram. 
 

3.3.1 Resource Manager 
When a proxy sends an initial request or a 

request to modify the current tolerance value, the 
server first calculates the update interval length 
∆, and then runs the Resource Manager to check 
if there is sufficient resource to satisfy the 
request. The resources may include CPU 

utilization, bandwidth of network connection, 
memory storage, etc. In this work, we only 
consider the bandwidth of network connection in 
the system. Since there will be at most one 
update sent out every ∆ time units and the update 
happens once every 1/µ time units on the 
average, for an object of size S the required 
bandwidth at the server is roughly equal 

to 







∆
∗ µ,1minS . The request will be 

rejected by the server if its available bandwidth 

is less than 







∆
∗ µ,1minS . 

 
3.3.2 Object Manager 

The function of the Object Manager is to 
compute the time of next push. In principle, 
there will be at most one push every ∆ time units. 
However, if the object did not change its value 
within the last ∆ time units, the push will be 
deferred to the instant when the object changes. 
Note that the push will be executed only if the 
lease for the object has not expired. 
 
3.4  Proxy System Modules 

The proxy includes four modules: Resource 
Manager, Object Manager, Leader Selection and 
Tree Manager. The Resource Manager and 
Object Manager are identical to those on the 
server. Figure 4 displays the structure of a proxy. 

 

 
 
Figure 4. Proxy system architecture diagram. 

 
3.4.1 Leader Selection 

In order to reduce the load at the server, a 
leader selection algorithm is executed to select a 
leader proxy for each object. Upon receiving a 
request for an object, the proxy will forward the 
request to the selected leader. This leader is 
responsible for propagating update notifications 
to the other proxy servers. The leader gathers the 
requests from the proxy server group and 
presents only the smallest ε value to the server. 
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Figure 5. Singular object system architecture 
diagram. 
 

Figure 5 illustrates the tree structure created to 
maintain the data consistency for a single object. 
The leader is responsible for communicating 
with the server and maintaining of the tree. A 
hierarchical tree is created for each object 
requested, thus there can be thousands of trees in 
the system. The proxy leader of an object can be 
determined by employing a hashing function 
such as the MD5 hash [8] of the object URL. An 
advantage of the hash-based approach is better 
load balancing among the proxies. Figure 6 
depicts the sequence of leader selection. 
 

 
Figure 6. Leader selection procedure. 

 
3.4.2 Tree Manager 

Figure 5 show that clients may specify 
different tolerance values to a proxy for the same 
object. We use the minimum value to represent 
the error tolerance value at the proxy. When a 
client requests an object from the proxy, the 
proxy will send a request message to the leader. 
However, instead of pushing updates directly to 
all the proxies that it serves, it organizes the 
proxies as a tree structure where proxies with 
smaller ∆ are placed closer to the root of the tree. 
Each node in the tree receives updates from its 
parent and propagates down to its children. For 
example, let ∆P and ∆Q (where ∆P ≤ ∆Q) denote 
the ∆ values of a proxy P and its child node Q in 
the tree, respectively. To meet node Q’s 
requirement, proxy P only needs to forward one 
update to Q for every [∆Q/∆P] updates it receives, 
where [x] denotes the largest integer less than or 
equal to x. There will be some bandwidth waste 
if the ratio ∆Q/∆P is not exactly an integer, so we 
always try to insert a new proxy Q as a child of 
P where ∆Q is as close to an integer multiple of 

∆P as possible. 
 
The algorithm is as follows: When a proxy Q 

needs to be inserted, we first identify the nodes 
whose ∆ value are less than ∆Q. We then divide 
∆Q by each of these ∆ values and record their 
remainder. The node with the minimal remainder 
will be designated as the parent. The shape of the 
tree will certainly affect the system performance. 
A wider tree means that each node has many 
children. Consequently, the parent node needs to 
send updates to many proxies (child nodes), 
which will increase the computing delay. On the 
other hand, a slender and deeper tree will 
increase the transmission delay for update 
notification to propagate to nodes at lower 
levels. 

The maintenance of the tree includes Insert, 
Relocate and Delete operations, which are 
explained in the following:  

 
 Insert: When a proxy receives a first 

request for an object from a client, it will 
send a registration message to the leader, 
who then inserts the proxy to a proper 
position in the tree. Figure 7 illustrates the 
sequence of proxy insertions into a tree. In 
step 1 there is an empty tree initially. In 
step 2 a node A with ∆ = 20 is inserted 
under the leader directly since the tree is 
empty. Step 3 shows that another node B 
with ∆ = 10 needs to be inserted. Because 
∆B is smaller than ∆A, we place node B 
under the leader directly also, and change 
the leader’s ∆ to 10. Finally, a node C with 
∆ = 30 needs to be inserted. It is positioned 
as a child of B since ∆C is an integer 
multiple of ∆B. Step 4 displays the final 
tree. 

 

 
Figure 7. Example of node insertion. 
 

 Relocate: When a proxy receives a request 
from a different client asking for an object 
that has been previously requested, it will 
first compare the new error tolerance value 
to the current one. If the new value is 
smaller (i.e., more stringent) than the 
current one, the proxy will send a request 
to the leader to have its update interval ∆ 
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shortened in order to meet the more 
stringent consistency requirement. Since 
the new ∆ for the proxy becomes smaller, 
the proxy may no longer be in a proper 
position and the leader needs to rearrange 
the proxy and all its subtrees in the tree. 
Figure 8 illustrates this rearrangement. 
Step 1 shows the initial tree. Now assume 
that node D receives a move stringent 
request and its ∆ is reduced from 30 to 25. 
Step 2 shows that D is rearranged as a 
child of A because ∆D is now closest to a 
multiple of ∆A. Step 3 and 4 display that 
the left and right subtrees of node D are 
rearranged to their proper places following 
the rule, respectively. 

 

 
 
Figure 8. Example of node relocation. 

 
 Delete: When the lease of an object is 

expired, the leader will notify all the 
proxies in the tree, and then delete the tree. 

 
 

4. Simulation Results 
 

Based on the proposed architecture, we have 
developed a simulator in Visual C++ to evaluate 
the performance of our design. The workload for 
our simulator is generated using the UC 
Berkeley Home IP Web Traces [9] which 
contains information that was gathered from 
November 1st to November 7th, 1996. The 
information includes client IP address, server IP 
address, request URL, the time of the request, 
the length of the response data, etc. The 
simulator runs on Pentium 4 1.6 GHz PCs with 
Microsoft Windows XP installed. The 
characteristics of the trace are shown in Table I 
and Table II. 

 
 
 
 

Table I.  Trace Characteristics. 
Subject Server Client Object Request
Quantity 7094 6024 43381 1324870

 
 
      Table II.  Object Types. 
Type Object file 

extension 
Total number 
of request 

Average 
lifetime 

0 gif , jpg 37827 16.8 
hours 

1 html , shtml 4637 5.6 hours
2 cgi , class , asp 1417 2.4 hours
 

We first verified the correctness of our 
analytic model for calculating ∆. Based on 
observations in [4] [6], we divide the objects into 
three types: Type 0 objects are primarily static 
images that change very infrequently, Type 1 
objects consist of static texts that change slowly, 
and Type 2 objects are the components generated 
dynamically using techniques such as CGI, ASP 
or JSP that change their values frequently. The 
average lifetimes for Type 0, 1 and 2 objects are 
assumed to be 16.8, 5.6 and 2.4 hours, 
respectively. 

 
  Figure 9 shows the relationship between the 
tolerance ε and update interval ∆ obtained from 
both analytic modeling and simulation. It shows 
that as the tolerance value increases (i.e., less 
stringent), the update interval becomes longer. 
Note that our analytical results agree with the 
simulation very well. 
 

 
Figure 9. Relationship between ε and update 
interval ∆ (A:anaytical, S:simulation). 
 

The server will reject a request if it does not 
have sufficient resource available. We can see in 
Figure 10 that given fixed communication 
bandwidth at the server, the percentage of 
rejected request is very high when the client 
requirement is stringent (i.e. with small ε). The 
rejection rate drops as ε becomes large. We can 
also see that the rejection rate for the case of a 
longer lease is higher because each lease holds 
up the resource at the server much longer. The 
rejection of requests can be alleviated and even 
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completely eliminated if we equip the server 
with enough amount of bandwidth (=1.5Mbps in 
the simulation), which can be seen in Figure 11. 
 

 
Figure 10. Rejection Rate (Bandwidth = 
56Kbps). 
 

 
Figure 11. Rejection Rate (Lease = 100000s). 
 

Control messages are exchanged between the 
server, the leader and the proxies when initial 
request for an object or requests to modify ε 
values are issued. Figure 12 and 13 plot the 
number of control messages exchanged in the 
system. When ε is small and many request are 
rejected, a lot of control message are exchanged 
because each rejected request would first contact 
the leader, which in turn contacts the server 
before being rejected. As ε becomes larger, more 
requests will be accepted. Once a request has 
been accepted, all the subsequent requests for 
the same object do not need to be forwarded to 
the server unless the associated ε is smaller. 
Therefore, the number of control message 
decreases. 
 

 
Figure 12. Number of Control Messages 
(Bandwidth = 56Kbps). 
 

 
Figure 13. Number of Control Messages (Lease 
= 100000s). 
 

To understand the benefit of using a 
hierarchical tree for disseminating updates, we 
measure the total number of push updates for 
both the case of hierarchical tree and the case of 
flat structure where all the proxies requesting the 
same object are positioned as direct children of 
the leader. In the latter case, the leader is 
assumed to broadcast the update to all its 
children as soon as it receives one from the 
server. As shown in Figure 14, there is little 
number of updates when ε is small since many 
requests have been rejected. As ε becomes large 
and more requests have been accepted, the 
number of updates increases. As ε increases 
further, however, the corresponding ∆ becomes a 
large value and the server sends updates less 
often than before, which causes the number of 
updates to drop a little bit as can be seen from 
the figure. The saving in number of updates is 
about twenty-eight percent for using hierarchical 
tree over the flat structure. If the server is 
equipped with sufficiently large bandwidth 
(=1.5Mbps in the simulation), then the number 
of updates is at its peak when ε is small because 
all the requests are accepted, as shown in Figure 
15. Again, the number of updates drops as ε 
increases. 

 
  Figure 16 and 17 display the total number of 
bytes pushed versus ε. Because most of the 
object size in the trace falls in the range of one to 
ten kilobytes, the results are similar to those in 
Figure 14 and 15. 
 

 
Figure 14. Number of Push Updates (Bandwidth 
= 56Kbps). 
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Figure 15. Number of Push Updates (Lease = 
100000s). 
 

 
Figure 16. Number of Bytes Pushed ε

(Bandwidth = 56Kbps). 
 

 
Figure 17. Number of Bytes Pushed (Lease = 
100000s). 
 

5. Conclusions 
 

In this work we proposed a mechanism of 
∆-consistency for the server and proxy that 
provide services for time varying web pages 
(such as stock quotes). We developed an analytic 
formula for calculation of the update interval ∆ 
given the tolerance value defined by the users 
depending on the type of object requested. We 
then designed a hierarchical structure where for 
each object requested a dissemination tree is 
created rooted at a leader proxy selected via a 
hash function. Object updates are pushed from 
the server to the leader, and further disseminated 

along the tree only when necessary. We 
evaluated our design by conducting a 
trace-based simulation. Numerical results 
showed that our analytic formula agreed with the 
simulation very well. The result also displayed a 
twenty-eight percent saving in communication 
bandwidth for the hierarchical tree structure over 
the flat one. 
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