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Abstract 
Real-time systems are being increasingly 

used in several applications which are time 

critical in nature. Tasks corresponding to these 

applications have deadlines to be met. Due to 

the catastrophic consequences of not tolerating 

faults, fault-tolerance is also an important 

requirement of such systems. In this paper, we 

use the common Primary/Backup (PB) scheme 

to propose three algorithms, which are used to 

schedule real-time tasks with fault-tolerant 

requirements on heterogeneous systems. Our 

algorithms are modified and extended from 

existed algorithms, and aim at enhancing their 

performances without increasing the time 

complexity. Based on our simulation, all of them 

can achieve expected results. Besides, one of 

them also can use lower scheduling cost to 

obtain reasonable performances, which make it 

become much effectively and efficiently. 

Keywords: Real-time, Fault-tolerant, Task 

scheduling, Heterogeneous system 

 

1 Introduction 
Real-time systems are defined as those 

systems in which the correctness of the system 

depends not only on the logical result of 

computation, but also on the time at which the 

results are produced [3, 6, 9]. It can be broadly 

classified into three categories [12]. Among 

them the hard real-time system is most strict, 

and in this paper we will focus on it. 

The demand for complex real-time 

applications, which require high computational 

needs with timing constrains and fault-tolerant 

requirements, has led to the choice of multi- 

processor systems. Due to the critical nature of 

tasks in a hard real-time system, every admitted 

task must complete its execution even in the 

presence of processor failures [3, 6]. In multi- 

processor systems, fault-tolerance can be 

provided by scheduling multiple versions of 

tasks on different processors [4, 8]. Four 

different schemes have evolved for fault-tolerant 

scheduling of real-time tasks [3, 5, 7, 11]. 

Among them we choose the Primary/Backup 

(PB) scheme, which is the most popular one. 

Some effective scheduling algorithms used 

for real-time multiprocessor system have been 

proposed, but most of them are designed for 

homogeneous system [1-3, 6, 13]. In this paper, 

we propose three fault-tolerant task scheduling 

algorithms to schedule real-time tasks on 

heterogeneous system. These algorithms are 

modified and extended from existed algorithms 

[6, 14], and aim at enhancing their performances 

without increasing the time complexity. Based 

on our simulation, all of them can achieve 
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expected results. Moreover, our third algorithm 

can use lower scheduling cost to achieve 

reasonable performances, which make it become 

much effectively and efficiently. 

The remainder of this paper is organized 

as follows. Section 2 surveys the fundamental 

background. Design issues and principles of our 

algorithms are introduced in Section 3. In 

Section 4, some experimental results are given. 

Finally, we give some conclusions in Section 5. 

 

2 Fundamental Background 
2.1 System, Task, and Fault Models [3, 6, 14] 

The heterogeneous system consists of m 

heterogeneous processors, P1…Pm, connected by 

a network. Every processor may fail due to 

hardware fault which results in task’s failures. 

The faults can be transient or permanent and are 

independent. Each independent fault results in 

failing of only one processor. This assumption 

can be relaxed by grouping processors [1, 6]. 

Many real-rime task scheduling algorithms 

assume that tasks are independent, because [5] 

have proven that precedence constraints can be 

actually removed. Thus, we simply assume tasks 

are aperiodic, independent, non-preemptive, and 

not parallelizable. Every task Ti has following 

attributes: ready time (ri), computation time on 

processor Pj (cij), and deadline (di). Each task Ti 

has two versions, primary copy (Pri) and backup 

copy (Bki), which have identical attributes. Since 

we assume tasks are not parallelizable, di – ri 

should be long enough so that both copies of Ti 

can be scheduled within this interval. 

 

2.2 Basic Terminologies [3, 6, 14] 

Definition 2.1 The feasible schedule S ensures 

that the timing and fault-tolerant constraints of 

all tasks are met. A partial schedule is one 

which does not contain all tasks. 

Definition 2.2 For a task Ti, st(Pri) and ft(Pri) 

are scheduled start time and scheduled finish 

time of its primary copy Pri respectively. 

Definition 2.3 For a task Ti, st(Bki) and ft(Bki) 

are scheduled start time and scheduled finish 

time of its backup copy Bki respectively. 

Definition 2.4 The primary and backup copies 

of a task Ti are said to be mutually exclusive in 

time if st(Bki) ≥ ft(Pri). 

Definition 2.5 For a task Ti, proc(Pri) and 

proc(Bki) are processors where its two copies Pri 

and Bki are scheduled. 

Definition 2.6 The primary and backup copies 

of a task Ti are said to be mutually exclusive in 

space if proc(Pri) ≠ proc(Bki). 

A task Ti is feasible in a fault-tolerant 

schedule if it satisfies the following two 

conditions. The first one is ri ≤ st(Pri) < ft(Pri) ≤ 

st(Bki) < ft(Bki) ≤ di, because both copies must 

satisfy the timing constraints and time exclusion. 

The second one is Pri and Bki should mutually 

exclude in space, which is necessary to tolerate 

permanent processor failures. 

 

2.3 Related Work 

Because PB scheme schedules two copies 

of a task on different processors, the entire 

schedulability is obviously decreased. Thus, 

BB-overloading technique, proposed in [3], 

describes that Bki and Bkj scheduled on the same 

processor can overlap if proc(Pri) ≠ proc(Prj). 

Notice that applying this technique must assume 

that only one processor may fail at a time. Under 

this assumption, the principle of BB-overloading 

technique is quite trivial because proc(Pri) and 

proc(Prj) will not fail together. 



Recently, many heuristic scheduling 

algorithms have been proposed to schedule 

real-time basks on multiprocessor system and 

support fault-tolerance [1-3, 6, 13]. Nevertheless, 

only a few of them focus on heterogeneous 

system. In the following we introduce efficient 

Fault-tolerant Reliability Cost Driven (eFRCD) 

[14], Myopic Algorithm [10], and Distance 

Myopic Algorithm (DMA) [6], which we choose 

to modify and design our methods. 

eFRCD is a static algorithm to schedule 

real-time tasks on heterogeneous system. Unlike 

most real-time task scheduling algorithms, it 

considers factors such as precedence constraints 

among tasks, fault-tolerance, and reliability cost 

simultaneously. In eFRCD, tasks are ordered in 

non-decreasing order of deadlines at first. Then, 

Pri and Bki are allocated to processors with 

minimum reliability costs at the same time. 

Although eFRCD is entirely simple and efficient, 

it usually suffers from lower schedulability. 

Myopic Algorithm (MA) is a heuristic 

search algorithm that schedules real-time tasks 

on multiprocessor system. It still orders tasks in 

non-decreasing order of deadlines, and uses two 

features doing scheduling. The first one is using 

a feasibility check window to contain the first K 

tasks in the task queue. The larger the feasibility 

check window, the higher the scheduling cost 

and the more the look-ahead nature. The second 

one is using an integrated heuristic function to 

select task. It will rearrange the sequence of 

tasks being scheduled, which can improve the 

schedulability by selecting the most appropriate 

task. Moreover, MA has the capability of 

backtracking. If the current schedule cannot be 

extended any more, it will deallocate the last 

scheduled task and try to schedule another one. 

Distance Myopic Algorithm (DMA) is 

extended from MA to support fault-tolerance. It 

treats Pri and Bki of task Ti as separate tasks and 

constructs a task queue according to deadlines 

and variable distance. Unlike eFRCD, Pri and 

Bki will be scheduled separately in DMA. 

Basically, DMA can yield higher schedulability. 

But DMA is only designed for homogeneous 

system, and one of its main drawbacks is the 

difficulty to select variables K and distance. 

 

3 Proposed Effective Algorithms 
In this section, we introduce our three 

algorithms. All of our algorithms are integrated 

with BB-overloading technique. 

 

3.1 Modified eFRCD Algorithm 

The first Modified eFRCD algorithm is 

simplified from eFRCD to match our system and 

task models. Since we ignore precedence 

constraints and reliability cost, some variables 

used in eFRCD are redefined. The pseudo code 

of Modified eFRCD is shown in Figure 1. 

Definition 3.1 For a task Ti, the Latest Finish 

Time(LFT), which is the time that the task copy 

must complete before, of its two copies are 

defined as follows. 
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Definition 3.2 For a task Ti, ESTj(Pri) is the 

Earliest Start Time on processor Pj that can 

complete its primary copy before LFT(Pri). 

ESTj(Pri) should be within time interval [max(ri, 

avail(j)), LFT(Pri) – cij], where avail(j) is the 

time that Pj is available to execute Pri. 

Definition 3.3 For a task Ti, ESTj(Bki) is the 

Earliest Start Time on processor Pj that can 

complete its backup copy before LFT(Bki). 



 

 

 

 

 

 

 

 

 

 

 

ESTj(Bki) should be within time interval [max 

(ft(Pri), avail(j)), LFT(Bki) – cij], where avail(j) 

is the time that Pj is available to execute Bki. 

 

3.2 Heterogeneous Distance Myopic 

Algorithm 

Modified eFRCD is actually very efficient, 

but it lacks for look-ahead nature. Furthermore, 

Modified eFRCD schedules task copies 

according to their earliest start time, which is not 

appropriate in heterogeneous system. 

We have introduced that DMA uses the 

feasibility check window and an integrated 

heuristic function doing scheduling. Using 

feasibility check window can achieve the 

look-ahead nature, so DMA won’t suffer from 

above drawback. Besides, authors of MA have 

proven that the integrated heuristic function 

performs better than simple heuristic function. 

Although DMA is quite effective, however, it is 

only designed for homogeneous system. Hence, 

our second Heterogeneous Distance Myopic 

Algorithm (HDMA) is extended from DMA to 

support the heterogeneous system. 

Definition 3.4 For a task Ti, EFTj(Pri) and 

EFTj(Bki) indicate the Earliest Finish Time on 

processor Pj of its two copies respectively. 
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Definition 3.5 For a task Ti, the Earliest Finish 

Time (EFT) of its two copies are defined as 

follows. Notice that if Pri is not yet scheduled, 

EFT(Bki) is set to infinite. 
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Definition 3.6 A partial schedule is strongly 

feasible if a feasible schedule can be generated 

by extending the current partial schedule with 

each task of the feasibility check window. 

We redefine the integrated heuristic func- 

tion H = LFT(Pri)/LFT(Bki) + W × EFT(Pri)/ 

EFT(Bki), where W is an input parameter. 

Except the heuristic function, other scheduling 

mechanisms of HDMA are retained from DMA. 

Figure 2 shows the pseudo code of our HDMA. 

 

3.3 Fault-Tolerant Myopic Algorithm 

Since HDMA is directly extended from 

DMA, it retains two drawbacks. The first one is 

the difficulty of selecting variables distance and 

K. Authors of DMA have pointed out that the 

right combination offers the best scheduling 

performance, but this combination will depend 

on characteristics of the input task set [6]. 

1. Order tasks in non-decreasing order of deadlines 
2. for (the unscheduled task Ti with minimal deadline) 

(a) for (each processor Pj)  Calculate ESTj(Pri) 
(b) if (there exists processors that can complete Pri in-time) 

Allocate Pri to processor Pk with minimal ESTk(Pri) 
(c) else Reject Ti and go to Step 3 
(d) for (each processor Pj except proc(Pri))  Calculate ESTj(Bki) 
(e) if (there exists processors that can complete Bki in-time) 

Allocate Bki to processor Pk with minimal ESTk(Bki) 
(f) else Reject Ti and deallocate Pri from the schedule 

3. Repeat Step 2 until all tasks are scheduled 
Figure 1. Modified eFRCD Algorithm. 



 

 

 

 

 

 

 

 

 

 

 

 

 

The second one is much implicit. In DMA, task 

copies are moved into the feasibility check 

window based on the predefined sequence. But 

actually, a backup copy becomes schedulable 

only after its primary copy has been scheduled 

yet. Therefore, the feasibility check window 

may contain unschedulable backup copies. In 

this situation, the feasibility check window 

seems to be smaller than its actual size, which 

may decrease the schedulability indirectly. 

In order to overcome above drawbacks, 

we propose Fault-Tolerant Myopic Algorithm 

(FTMA). Like DMA, FTMA also follows 

scheduling mechanisms from MA. Our design 

features focus on task queue construction and 

feasibility check window movement, which are 

described in detail below. 

In FTMA, primary and backup copies are 

separately ordered in non-decreasing order of 

deadlines. This feature can avoid the difficulty 

of selecting distance. During each scheduling 

step, we calculate heuristic values of the first 

primary and backup copies. The heuristic 

function is the same as DMA, and the task copy 

with smaller heuristic values will be moved into 

the feasibility check window. From Definition 

3.5, only if a primary copy is scheduled, the 

heuristic value of its backup copy will not equal 

to infinite. That is, only schedulable backup 

copies will be moved into the feasibility check 

window. From above two features, FTMA can 

obviously overcome both drawbacks of HDMA 

without increasing the time complexity. Hence, 

we expect that FTMA could outperform HDMA. 

Figure 3 is the pseudo code of FTMA. 

 

4 Performance Studies 
4.1 Simulation Environment 

In this section, we construct a simulation 

environment to evaluate above algorithms. 

Instead of randomly generating task sets, we 

construct a task set generator, similar to the one 

provided in MA, to guarantee schedulable task 

sets. Also, the tasks are generated to guarantee 

the (almost) total utilization of the processors. 

Notices that the schedule generated by the 

generator is used only for the purpose of 

generating a feasible task set of tasks which are 

then input to the scheduling algorithm, i.e., the 

scheduling algorithms have no knowledge of the 

1. Order tasks (primary copies) in non-decreasing order of deadlines and insert backup copies 
2. for (all tasks in the feasibility check window)  Calculate their EFT(Pri/Bki) 
3. Check for strong feasibility: 
4. if (strongly feasible or no more backtracking is possible) 

(a) Calculate heuristic values for tasks in the feasibility check window 
(b) Choose the task Pri/Bki with the smallest heuristic value to extend the schedule 
(c) if (the chosen task Pri/Bki can meet its latest finish time) 

proc(Pri/Bki) = Pk, where Pk is the processor with EFTk(Pri/Bki) = EFT(Pri/Bki) 
(d) else Reject Pri/Bki 
(e) if (the rejected task is a primary copy)  Delete its backup copy from the schedule 
(f) else Deallocate its primary copy from the schedule 

5. else backtrack and try the task with the next smallest heuristic value. Goto Step 8 
6. Move the feasibility check window by one task to the right 
7. Repeat Steps 3 ~ 7 until all tasks in the task queue are considered 

Figure 2. Heterogeneous Distance Myopic Algorithm (HDMA). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

schedule itself but are only given the tasks and 

their requirements. 

About the evaluating metric, we use 

guarantee ratio (GR) as DMA [6]. It is defined 

by the percentage of tasks arrived in the system 

whose deadlines are met. Hence, if the guarantee 

ratio is higher, the scheduling ability of that 

algorithm is higher, since the input task set is 

guaranteed schedulable. In the following we 

present three parts of simulation results, which 

highlight effects of parameters laxity, size of 

feasibility check window (K), and distance (d). 

 

4.2 Experimental Results 

At first, we discuss the effect of the weight 

value W in the integrated heuristic function. 

From simulation results, effects of different W 

values are little significance. Hence, we simply 

set W = 1 in the following evaluations. 

The effect of laxity is studied in Figure 4. 

As the laxity increases, the guarantee ratio also 

increases for all three algorithms. This result 

seems trivial. Because larger laxity indicates the 

time interval between deadline and ready time of 

a task is longer, every algorithm has much 

flexibility to be more effective. Among them, 

FTMA is obviously the most effective one. 

Figure 5 shows the effect of varying the 

size of feasibility check window for HDMA and 

FTMA. Authors of DMA recommend that if 

there are m processors, distance may be in the 

range [m/2, m] and K may be less than distance. 

In HDMA we follow this suggestion, and in 

FTMA K is unrestricted because it doesn’t use 

distance. Similar as Figure 4, FTMA achieves 

much better results than that of HDMA. 

Moreover, guarantee ratio influenced by K is not 

significant, which indicates smaller feasibility 

check window also can obtain reasonable results, 

especially in FTMA. Since smaller K means 

lower scheduling cost, this feature can lead 

FTMA to a much efficient algorithm. 

Finally, we study the effect of distance. 

This time we let K = d, which achieves better 

results theoretically. In Figure 6, whether the 

number of processor is, guarantee ratio increases 

1. Order tasks in non-decreasing order of deadlines to construct primary and backup task queues 
2. Put the first K tasks of primary task queue into the feasibility check window 
3. for (all tasks in the feasibility check window)  Calculate their EFT(Pri/Bki) 
4. Check for strong feasibility 
5. if (strong feasible or no more backtracking is possible) 

(a) Calculate heuristic values for tasks in the feasibility check window 
(b) Choose the task Pri/Bki with the smallest heuristic value to extend the schedule 
(c) if (the chosen task can meet its latest finish time) 

proc(Pri/Bki) = Pk, where Pk is the processor with EFTk(Pri/Bki) = EFT(Pri/Bki) 
(d) else Reject Pri/Bki 
(e) if (the rejected task is a primary copy)  Delete its backup copy from the task queue 
(f) else Deallocate its primary copy from the schedule 

6. else backtrack and try the task with the next smallest heuristic value. Goto Step 10 
7. Calculate heuristic values for the first primary copy Pri and the first backup copy Bki 
8. Move Pri or Bki with smaller heuristic value into the feasibility check window 
9. Repeat Steps 4 ~ 9 until all tasks in both primary and backup task queues are considered 

Figure 3. Fault-Tolerant Myopic Algorithm (FTMA). 
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with increasing distance. The reason is larger 

distance make more consecutive primaries (or 

backups) be considered simultaneously, which 

helps to fully utilize all processors. 

 

5 Conclusions 
In this paper, we propose three fault- 

tolerant task scheduling algorithms used in 

heterogeneous system and construct a simulation 

environment to evaluate them. These algorithms 

are modified and extended from existed 

algorithms and aim at enhancing the guarantee 

ratio without increasing the time complexity. 

Based on our simulation, all of them can reach 

expected results. Besides, FTMA can obtain 

reasonable performances using smaller 

Figure 4. Effect of task laxity. (a) 5 processors, (b) 8 processors. 
(a) (b) 

Figure 5. Effect of feasibility check window. (a) 5 processors, (b) 8 processors. 
(a) (b) 

Figure 6. Effect of task distance. (a) laxity = 3, (b) laxity = 5. 
(a) (b) 



feasibility check window, which means it is an 

effective and efficient algorithm.  
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