
Effective Fault-tolerant Scheduling Algorithms for

Real-time Tasks on Heterogeneous Systems
Yi-Hsuan Lee, Ming-Dien Chang, and Cheng Chen

Department of Computer Science and Information Engineering
National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

E-mail: {yslee, mdchang, cchen}@csie.nctu.edu.tw

Abstract
Real-time systems are being increasingly

used in several applications which are time

critical in nature. Tasks corresponding to these

applications have deadlines to be met. Due to

the catastrophic consequences of not tolerating

faults, fault-tolerance is also an important

requirement of such systems. In this paper, we

use the common Primary/Backup (PB) scheme

to propose three algorithms, which are used to

schedule real-time tasks with fault-tolerant

requirements on heterogeneous systems. Our

algorithms are modified and extended from

existed algorithms, and aim at enhancing their

performances without increasing the time

complexity. Based on our simulation, all of them

can achieve expected results. Besides, one of

them also can use lower scheduling cost to

obtain reasonable performances, which make it

become much effectively and efficiently.

Keywords: Real-time, Fault-tolerant, Task

scheduling, Heterogeneous system

1 Introduction
Real-time systems are defined as those

systems in which the correctness of the system

depends not only on the logical result of

computation, but also on the time at which the

results are produced [3, 6, 9]. It can be broadly

classified into three categories [12]. Among

them the hard real-time system is most strict,

and in this paper we will focus on it.

The demand for complex real-time

applications, which require high computational

needs with timing constrains and fault-tolerant

requirements, has led to the choice of multi-

processor systems. Due to the critical nature of

tasks in a hard real-time system, every admitted

task must complete its execution even in the

presence of processor failures [3, 6]. In multi-

processor systems, fault-tolerance can be

provided by scheduling multiple versions of

tasks on different processors [4, 8]. Four

different schemes have evolved for fault-tolerant

scheduling of real-time tasks [3, 5, 7, 11].

Among them we choose the Primary/Backup

(PB) scheme, which is the most popular one.

Some effective scheduling algorithms used

for real-time multiprocessor system have been

proposed, but most of them are designed for

homogeneous system [1-3, 6, 13]. In this paper,

we propose three fault-tolerant task scheduling

algorithms to schedule real-time tasks on

heterogeneous system. These algorithms are

modified and extended from existed algorithms

[6, 14], and aim at enhancing their performances

without increasing the time complexity. Based

on our simulation, all of them can achieve

mailto:@csie.nctu.edu.tw

expected results. Moreover, our third algorithm

can use lower scheduling cost to achieve

reasonable performances, which make it become

much effectively and efficiently.

The remainder of this paper is organized

as follows. Section 2 surveys the fundamental

background. Design issues and principles of our

algorithms are introduced in Section 3. In

Section 4, some experimental results are given.

Finally, we give some conclusions in Section 5.

2 Fundamental Background
2.1 System, Task, and Fault Models [3, 6, 14]

The heterogeneous system consists of m

heterogeneous processors, P1…Pm, connected by

a network. Every processor may fail due to

hardware fault which results in task’s failures.

The faults can be transient or permanent and are

independent. Each independent fault results in

failing of only one processor. This assumption

can be relaxed by grouping processors [1, 6].

Many real-rime task scheduling algorithms

assume that tasks are independent, because [5]

have proven that precedence constraints can be

actually removed. Thus, we simply assume tasks

are aperiodic, independent, non-preemptive, and

not parallelizable. Every task Ti has following

attributes: ready time (ri), computation time on

processor Pj (cij), and deadline (di). Each task Ti

has two versions, primary copy (Pri) and backup

copy (Bki), which have identical attributes. Since

we assume tasks are not parallelizable, di – ri

should be long enough so that both copies of Ti

can be scheduled within this interval.

2.2 Basic Terminologies [3, 6, 14]

Definition 2.1 The feasible schedule S ensures

that the timing and fault-tolerant constraints of

all tasks are met. A partial schedule is one

which does not contain all tasks.

Definition 2.2 For a task Ti, st(Pri) and ft(Pri)

are scheduled start time and scheduled finish

time of its primary copy Pri respectively.

Definition 2.3 For a task Ti, st(Bki) and ft(Bki)

are scheduled start time and scheduled finish

time of its backup copy Bki respectively.

Definition 2.4 The primary and backup copies

of a task Ti are said to be mutually exclusive in

time if st(Bki) ≥ ft(Pri).

Definition 2.5 For a task Ti, proc(Pri) and

proc(Bki) are processors where its two copies Pri

and Bki are scheduled.

Definition 2.6 The primary and backup copies

of a task Ti are said to be mutually exclusive in

space if proc(Pri) ≠ proc(Bki).

A task Ti is feasible in a fault-tolerant

schedule if it satisfies the following two

conditions. The first one is ri ≤ st(Pri) < ft(Pri) ≤

st(Bki) < ft(Bki) ≤ di, because both copies must

satisfy the timing constraints and time exclusion.

The second one is Pri and Bki should mutually

exclude in space, which is necessary to tolerate

permanent processor failures.

2.3 Related Work

Because PB scheme schedules two copies

of a task on different processors, the entire

schedulability is obviously decreased. Thus,

BB-overloading technique, proposed in [3],

describes that Bki and Bkj scheduled on the same

processor can overlap if proc(Pri) ≠ proc(Prj).

Notice that applying this technique must assume

that only one processor may fail at a time. Under

this assumption, the principle of BB-overloading

technique is quite trivial because proc(Pri) and

proc(Prj) will not fail together.

Recently, many heuristic scheduling

algorithms have been proposed to schedule

real-time basks on multiprocessor system and

support fault-tolerance [1-3, 6, 13]. Nevertheless,

only a few of them focus on heterogeneous

system. In the following we introduce efficient

Fault-tolerant Reliability Cost Driven (eFRCD)

[14], Myopic Algorithm [10], and Distance

Myopic Algorithm (DMA) [6], which we choose

to modify and design our methods.

eFRCD is a static algorithm to schedule

real-time tasks on heterogeneous system. Unlike

most real-time task scheduling algorithms, it

considers factors such as precedence constraints

among tasks, fault-tolerance, and reliability cost

simultaneously. In eFRCD, tasks are ordered in

non-decreasing order of deadlines at first. Then,

Pri and Bki are allocated to processors with

minimum reliability costs at the same time.

Although eFRCD is entirely simple and efficient,

it usually suffers from lower schedulability.

Myopic Algorithm (MA) is a heuristic

search algorithm that schedules real-time tasks

on multiprocessor system. It still orders tasks in

non-decreasing order of deadlines, and uses two

features doing scheduling. The first one is using

a feasibility check window to contain the first K

tasks in the task queue. The larger the feasibility

check window, the higher the scheduling cost

and the more the look-ahead nature. The second

one is using an integrated heuristic function to

select task. It will rearrange the sequence of

tasks being scheduled, which can improve the

schedulability by selecting the most appropriate

task. Moreover, MA has the capability of

backtracking. If the current schedule cannot be

extended any more, it will deallocate the last

scheduled task and try to schedule another one.

Distance Myopic Algorithm (DMA) is

extended from MA to support fault-tolerance. It

treats Pri and Bki of task Ti as separate tasks and

constructs a task queue according to deadlines

and variable distance. Unlike eFRCD, Pri and

Bki will be scheduled separately in DMA.

Basically, DMA can yield higher schedulability.

But DMA is only designed for homogeneous

system, and one of its main drawbacks is the

difficulty to select variables K and distance.

3 Proposed Effective Algorithms
In this section, we introduce our three

algorithms. All of our algorithms are integrated

with BB-overloading technique.

3.1 Modified eFRCD Algorithm

The first Modified eFRCD algorithm is

simplified from eFRCD to match our system and

task models. Since we ignore precedence

constraints and reliability cost, some variables

used in eFRCD are redefined. The pseudo code

of Modified eFRCD is shown in Figure 1.

Definition 3.1 For a task Ti, the Latest Finish

Time(LFT), which is the time that the task copy

must complete before, of its two copies are

defined as follows.







=

−=

ii

ij
j

ii

dBkLFT

cdPrLFT

)(

)(max

Definition 3.2 For a task Ti, ESTj(Pri) is the

Earliest Start Time on processor Pj that can

complete its primary copy before LFT(Pri).

ESTj(Pri) should be within time interval [max(ri,

avail(j)), LFT(Pri) – cij], where avail(j) is the

time that Pj is available to execute Pri.

Definition 3.3 For a task Ti, ESTj(Bki) is the

Earliest Start Time on processor Pj that can

complete its backup copy before LFT(Bki).

ESTj(Bki) should be within time interval [max

(ft(Pri), avail(j)), LFT(Bki) – cij], where avail(j)

is the time that Pj is available to execute Bki.

3.2 Heterogeneous Distance Myopic

Algorithm

Modified eFRCD is actually very efficient,

but it lacks for look-ahead nature. Furthermore,

Modified eFRCD schedules task copies

according to their earliest start time, which is not

appropriate in heterogeneous system.

We have introduced that DMA uses the

feasibility check window and an integrated

heuristic function doing scheduling. Using

feasibility check window can achieve the

look-ahead nature, so DMA won’t suffer from

above drawback. Besides, authors of MA have

proven that the integrated heuristic function

performs better than simple heuristic function.

Although DMA is quite effective, however, it is

only designed for homogeneous system. Hence,

our second Heterogeneous Distance Myopic

Algorithm (HDMA) is extended from DMA to

support the heterogeneous system.

Definition 3.4 For a task Ti, EFTj(Pri) and

EFTj(Bki) indicate the Earliest Finish Time on

processor Pj of its two copies respectively.





+=
+=

ijijij

ijijij

cBkESTBkEFT
cPrESTPrEFT

)()(
)()(

Definition 3.5 For a task Ti, the Earliest Finish

Time (EFT) of its two copies are defined as

follows. Notice that if Pri is not yet scheduled,

EFT(Bki) is set to infinite.







+=

+=

ijj
j

i

ijj
j

i

cBkiEFTBkEFT

cPriEFTPrEFT

)()(

)()(

min

min

Definition 3.6 A partial schedule is strongly

feasible if a feasible schedule can be generated

by extending the current partial schedule with

each task of the feasibility check window.

We redefine the integrated heuristic func-

tion H = LFT(Pri)/LFT(Bki) + W × EFT(Pri)/

EFT(Bki), where W is an input parameter.

Except the heuristic function, other scheduling

mechanisms of HDMA are retained from DMA.

Figure 2 shows the pseudo code of our HDMA.

3.3 Fault-Tolerant Myopic Algorithm

Since HDMA is directly extended from

DMA, it retains two drawbacks. The first one is

the difficulty of selecting variables distance and

K. Authors of DMA have pointed out that the

right combination offers the best scheduling

performance, but this combination will depend

on characteristics of the input task set [6].

1. Order tasks in non-decreasing order of deadlines
2. for (the unscheduled task Ti with minimal deadline)

(a) for (each processor Pj) Calculate ESTj(Pri)
(b) if (there exists processors that can complete Pri in-time)

Allocate Pri to processor Pk with minimal ESTk(Pri)
(c) else Reject Ti and go to Step 3
(d) for (each processor Pj except proc(Pri)) Calculate ESTj(Bki)
(e) if (there exists processors that can complete Bki in-time)

Allocate Bki to processor Pk with minimal ESTk(Bki)
(f) else Reject Ti and deallocate Pri from the schedule

3. Repeat Step 2 until all tasks are scheduled
Figure 1. Modified eFRCD Algorithm.

The second one is much implicit. In DMA, task

copies are moved into the feasibility check

window based on the predefined sequence. But

actually, a backup copy becomes schedulable

only after its primary copy has been scheduled

yet. Therefore, the feasibility check window

may contain unschedulable backup copies. In

this situation, the feasibility check window

seems to be smaller than its actual size, which

may decrease the schedulability indirectly.

In order to overcome above drawbacks,

we propose Fault-Tolerant Myopic Algorithm

(FTMA). Like DMA, FTMA also follows

scheduling mechanisms from MA. Our design

features focus on task queue construction and

feasibility check window movement, which are

described in detail below.

In FTMA, primary and backup copies are

separately ordered in non-decreasing order of

deadlines. This feature can avoid the difficulty

of selecting distance. During each scheduling

step, we calculate heuristic values of the first

primary and backup copies. The heuristic

function is the same as DMA, and the task copy

with smaller heuristic values will be moved into

the feasibility check window. From Definition

3.5, only if a primary copy is scheduled, the

heuristic value of its backup copy will not equal

to infinite. That is, only schedulable backup

copies will be moved into the feasibility check

window. From above two features, FTMA can

obviously overcome both drawbacks of HDMA

without increasing the time complexity. Hence,

we expect that FTMA could outperform HDMA.

Figure 3 is the pseudo code of FTMA.

4 Performance Studies
4.1 Simulation Environment

In this section, we construct a simulation

environment to evaluate above algorithms.

Instead of randomly generating task sets, we

construct a task set generator, similar to the one

provided in MA, to guarantee schedulable task

sets. Also, the tasks are generated to guarantee

the (almost) total utilization of the processors.

Notices that the schedule generated by the

generator is used only for the purpose of

generating a feasible task set of tasks which are

then input to the scheduling algorithm, i.e., the

scheduling algorithms have no knowledge of the

1. Order tasks (primary copies) in non-decreasing order of deadlines and insert backup copies
2. for (all tasks in the feasibility check window) Calculate their EFT(Pri/Bki)
3. Check for strong feasibility:
4. if (strongly feasible or no more backtracking is possible)

(a) Calculate heuristic values for tasks in the feasibility check window
(b) Choose the task Pri/Bki with the smallest heuristic value to extend the schedule
(c) if (the chosen task Pri/Bki can meet its latest finish time)

proc(Pri/Bki) = Pk, where Pk is the processor with EFTk(Pri/Bki) = EFT(Pri/Bki)
(d) else Reject Pri/Bki
(e) if (the rejected task is a primary copy) Delete its backup copy from the schedule
(f) else Deallocate its primary copy from the schedule

5. else backtrack and try the task with the next smallest heuristic value. Goto Step 8
6. Move the feasibility check window by one task to the right
7. Repeat Steps 3 ~ 7 until all tasks in the task queue are considered

Figure 2. Heterogeneous Distance Myopic Algorithm (HDMA).

schedule itself but are only given the tasks and

their requirements.

About the evaluating metric, we use

guarantee ratio (GR) as DMA [6]. It is defined

by the percentage of tasks arrived in the system

whose deadlines are met. Hence, if the guarantee

ratio is higher, the scheduling ability of that

algorithm is higher, since the input task set is

guaranteed schedulable. In the following we

present three parts of simulation results, which

highlight effects of parameters laxity, size of

feasibility check window (K), and distance (d).

4.2 Experimental Results

At first, we discuss the effect of the weight

value W in the integrated heuristic function.

From simulation results, effects of different W

values are little significance. Hence, we simply

set W = 1 in the following evaluations.

The effect of laxity is studied in Figure 4.

As the laxity increases, the guarantee ratio also

increases for all three algorithms. This result

seems trivial. Because larger laxity indicates the

time interval between deadline and ready time of

a task is longer, every algorithm has much

flexibility to be more effective. Among them,

FTMA is obviously the most effective one.

Figure 5 shows the effect of varying the

size of feasibility check window for HDMA and

FTMA. Authors of DMA recommend that if

there are m processors, distance may be in the

range [m/2, m] and K may be less than distance.

In HDMA we follow this suggestion, and in

FTMA K is unrestricted because it doesn’t use

distance. Similar as Figure 4, FTMA achieves

much better results than that of HDMA.

Moreover, guarantee ratio influenced by K is not

significant, which indicates smaller feasibility

check window also can obtain reasonable results,

especially in FTMA. Since smaller K means

lower scheduling cost, this feature can lead

FTMA to a much efficient algorithm.

Finally, we study the effect of distance.

This time we let K = d, which achieves better

results theoretically. In Figure 6, whether the

number of processor is, guarantee ratio increases

1. Order tasks in non-decreasing order of deadlines to construct primary and backup task queues
2. Put the first K tasks of primary task queue into the feasibility check window
3. for (all tasks in the feasibility check window) Calculate their EFT(Pri/Bki)
4. Check for strong feasibility
5. if (strong feasible or no more backtracking is possible)

(a) Calculate heuristic values for tasks in the feasibility check window
(b) Choose the task Pri/Bki with the smallest heuristic value to extend the schedule
(c) if (the chosen task can meet its latest finish time)

proc(Pri/Bki) = Pk, where Pk is the processor with EFTk(Pri/Bki) = EFT(Pri/Bki)
(d) else Reject Pri/Bki
(e) if (the rejected task is a primary copy) Delete its backup copy from the task queue
(f) else Deallocate its primary copy from the schedule

6. else backtrack and try the task with the next smallest heuristic value. Goto Step 10
7. Calculate heuristic values for the first primary copy Pri and the first backup copy Bki
8. Move Pri or Bki with smaller heuristic value into the feasibility check window
9. Repeat Steps 4 ~ 9 until all tasks in both primary and backup task queues are considered

Figure 3. Fault-Tolerant Myopic Algorithm (FTMA).

0.6

0.7

0.8

0.9

1

3 4 5 6
laxity

G
ua

ra
nt

ee
 R

at
io

eFRCD
HDMA (d=3)
HDMA (d=5)
FTMA

0.6

0.7

0.8

0.9

1

3 4 5 6
laxity

G
ua

ra
nt

ee
 R

at
io

eFRCD
HDMA (d=4)
HDMA (d=8)
FTMA

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

1 2 3 4 5 6 7 8 9 10 11
window size

G
ua

ra
nt

ee
 R

at
io

HDMA (d=3) HDMA (d=5)
FTMA

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

1 2 3 4 5 6 7 8 9 10 11
window size

G
ua

ra
nt

ee
 R

at
io

HDMA (d=4) HDMA (d=8)
FTMA

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

3 4 5 6 7 8 9
distance

G
ua

ra
nt

ee
 R

at
io

HDMA (m=5)
HDMA (m=6)
HDMA (m=7)
HDMA (m=8)
HDMA (m=9)

0.97

0.975

0.98

0.985

0.99

0.995

1

3 4 5 6 7 8 9
distance

G
ua

ra
nt

ee
 R

at
io

HDMA (m=5)
HDMA (m=6)
HDMA (m=7)
HDMA (m=8)
HDMA (m=9)

with increasing distance. The reason is larger

distance make more consecutive primaries (or

backups) be considered simultaneously, which

helps to fully utilize all processors.

5 Conclusions
In this paper, we propose three fault-

tolerant task scheduling algorithms used in

heterogeneous system and construct a simulation

environment to evaluate them. These algorithms

are modified and extended from existed

algorithms and aim at enhancing the guarantee

ratio without increasing the time complexity.

Based on our simulation, all of them can reach

expected results. Besides, FTMA can obtain

reasonable performances using smaller

Figure 4. Effect of task laxity. (a) 5 processors, (b) 8 processors.
(a) (b)

Figure 5. Effect of feasibility check window. (a) 5 processors, (b) 8 processors.
(a) (b)

Figure 6. Effect of task distance. (a) laxity = 3, (b) laxity = 5.
(a) (b)

feasibility check window, which means it is an

effective and efficient algorithm.

References
[1] R. Al-Omari, G. Manimaran, and Arun K.

Somani, “An Efficient Backup-overloading

for Fault-tolerant Scheduling of Real-time

Tasks”, Proc. of International Parallel and

Distributed Processing Symposium, pp.

1291-1295, 2000.

[2] R. Al-Omari, Arun K. Somani, and G.

Manimaran, “A New Fault-tolerant Techni-

que for Improving Schedulability in Multi-

processor Real-time Systems”, Proc. of

International Parallel and Distributed Pro-

cessing Symposium, pp. 32-39, April 2001.

[3] S. Ghosh, R. Melhem, and D. Mosse,

“Fault-tolerance Through Scheduling of

Aperiodic Tasks in Hard Real-time Multi-

processor Systems”, IEEE Trans. on

Parallel and Distributed Systems, Vol. 8,

No. 3, pp. 272-284, March 1997.

[4] A. L. Liestman and R. H. Campbell, “A

Fault-tolerant Scheduling Problem”, IEEE

Trans. on Software Engineering, Vol. 12,

No. 11, pp. 1089-1095, Nov. 1988.

[5] J. W. S. Liu, W. K. Shih, K. J. Lin, R.

Bettati, and J. Y. Chung”, “Imprecise

Computations”, Proc. of IEEE, Vol. 82, No.

1, pp. 83-94, Jan. 1994.

[6] G. Manimaran and C. Siva Ram Murthy, “A

Fault-tolerant Dynamic Scheduling Algori-

thm for Multiprocessor Real-time Systems

and Its Analysis”, IEEE Trans. on Parallel

and Distributed Systems, Vol. 9, No. 11, pp.

1137-1152, Nov. 1998.

[7] L. V. Mancini, “Modular Redundancy in a

Message Passing System”, IEEE Trans. on

Software Engineering, Vol. 12, No. 1, pp.

79-86, Jan. 1986.

[8] Y. Oh and S. Son, “Multiprocessor Support

for Real-time Fault-tolerant Scheduling”,

Proc. of IEEE Workshop Architectural

Aspects of Real-time Systems, pp. 76-80,

Dec. 1991.

[9] K. Ramamritham and J. A. Stankovic,

“Scheduling Algorithms and Operating

Systems Support for Real-time Systems”,

Proc. of IEEE, Vol. 82, No. 1, pp. 55-67,

Jan. 1994.

[10] K. Ramamritham, J. A. Stankovic, and P.-F.

Shiah, “Efficient Scheduling Algorithms for

Real-time Multiprocessor Systems”, IEEE

Trans. on Parallel and Distributed Systems,

Vol. 1, No. 2, pp. 184-194, April 1990.

[11] P. Ramanathan, “Graceful Degradation in

Real-time Control Applications Using (m,

k)-firm Guarantee”, Proc. of IEEE

Fault-tolerant Computing Symposium, pp.

132-141, 1997.

[12] K. G. Shan and P. Ramanathan, “Real-time

Computing: A New Discipline of Computer

Science and Engineering”, Proc. of IEEE,

Vol. 82, No. 1, pp. 6-24, Jan. 1994.

[13] T. Tsuchiya, Y. Kakuda, and T. Kikuno, “A

New Fault-tolerant Scheduling Technique

for Real-time Multiprocessor Systems”,

Proc. of 2nd International Workshop on

Real-time Computing Systems and

Applications, pp. 197-202, Oct. 1995.

[14] X. Qin, H. Jiang, and D. R. Swanson, “An

Efficient Fault-tolerant Scheduling

Algorithm for Real-time Tasks with

Precedence Constraints in Heterogeneous

Systems”, Proc. of International Conference

on Parallel Processing, pp. 360-368, 2002.

