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Abstract 

Multiplication is the most important 
operation in many high-speed digital systems. 
Redundant binary number system has been used 
to design fast multipliers, but whose area is 
probably larger than other kind of multipliers. In 
this paper, area-efficient two’s complement 
multipliers using binary signed-digit number 
system are designed for digital systems with 
constant data size by truncating the 2n-bit 
product into n-bit. Based on the variable 
correction value scheme, a novel carry 
compensation formulation and corresponding 
circuit are developed to largely degrade the 
product error. Simulation results show that the 
proposed truncated multipliers are more accurate 
than other truncated architectures while 
maintaining high speed and small area. When 
applying to discrete cosine transform (DCT), the 
proposed multiplier can significantly reduce the 
area and power of DCT circuit and still obtain 
good image quality. 

Keywords: binary signed-digit number system, 
two’s complement multiplier, discrete cosine 
transform 

1. Introduction 

Numerous multiplication schemes have 
been introduced to enhance the performance of 
multipliers. An efficient method to design a fast 
multiplier is to represent the partial products as 
redundant binary (RB) numbers and accumulate 
them by a RB adder tree. The RB multiplier not 
only improves speed because it requires no 
continuous carry propagation, but also simplifies 
the interconnection. The literature [1] has 
reported that the RB multiplier is more suitable 
for VLSI design due to its regular layout and 
results in high-speed circuit implementations. 

Although the RB multiplier is very fast, its 
area is probably large due to the redundant 
binary number representation and number 
system conversion. Fortunately, the property of 
constant data size appeared in many real 
applications, which requires that the 2n-bit 
product of multiplication operation is truncated 
into n bits, can be applied to significantly reduce 
the area and power of RB multiplier. The 
simplest method to obtain a truncated multiplier 
is directly eliminating about half the adder cells 
of the standard multiplier, but a large product 
error would be introduced. Many papers [3]-[8] 
have proposed efficient methods and circuits to 
reduce the product error. However, most of them 
design the low-error truncated multiplier from 
the Baugh-Wooley multiplier, and none pays 
attention to the redundant binary signed-digit 
(RBSD) multiplier [1, 2]. This paper focuses on 
the design of low-cost and low-error truncated 
RBSD multiplier to reduce the area and power of 
multiplier. 

In the past, fixed constant [3]-[5] or 
variable correction value [6]-[8] is used to 
reduce the product error of truncated multiplier. 
The former adds a fixed constant obtained based 
on statistic average to the remaining adder cells 
of the truncated multiplier. The latter adds an 
input-data dependent correction value to the 
remaining adder cells so that it usually works 
better than the former. Therefore, we develop 
low-cost truncated RBSD multipliers based on 
the scheme of variable correction value. 
Simulation results show that the proposed 
truncated RBSD multipliers have lower product 
error than other architectures while maintaining 
high speed and small area. 

The remainder of this paper is organized as 
follows. Section 2 briefly introduces the RBSD 
number representation and multiplier. The 
product error correction for truncated RBSD 
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multipliers is described in Section 3. Section 4 
provides error comparisons with previous 
designs and some applications. Finally, the 
conclusion is given. 

2. RBSD Number and Multiplier 

The redundant binary signed-digit number 
system uses the digit set {1 , 0, 1} to represent 
numbers, where 1  denotes the digits value –1. 
Each digit in the RBSD representation can be 
encoded by using two bits if the 
positive-and-negative encoding is employed. 
The value of each digit is calculated by ix  = 
( −+

ii xx  , ) = ( +
ix ) − ( −

ix ), where ( −+
ii xx  , ) is one 

of the four forms (0, 0), (0, 1), (1, 0), and (1, 1), 
whose value is 0, 1 , 1, and 0, respectively. 

Fig. 1 shows the block diagram of an 
n×n-bit RBSD multiplier for n=8. The multiplier 
essentially consists of RBSD Booth's encoders, 
an RB adder tree, and an RBSD-to-NB converter. 
Given two n-bit binary numbers X and Y in two’s 
complement form, the RBSD Booth-2 (radix-4) 
encoders [2] generate multiples and  2/n  
rows of RBSD partial products PPi, where  x  
denotes the smallest integer that is larger than or 
equal to the real number x. The RBSD Booth's 
encoder uses the same encoding table as the 
modified Booth's encoding to generate RBSD 
partial products without any additional time 
delay and with almost no extra hardware. Then 
the RBSD partial products are added up by using 
the redundant binary adders (RBA) tree. The 
array of an RBA tree can increase operating 
speed by use of high speed RBA. For example, 
the RBA presented in [1] (shown in Fig. 2) is 
optimized for speed and area efficiency by 
employing transmission gates. In [1], both the 
inputs ( −+

ii aa  , ) and ( −+
ii bb  , ) of a RBA cell are 

assumed to take one of the three states (0, 1), (0, 
0), (1, 0), and no (1, 1) to simplify the 
consideration. The ( iβ , hi) denotes the carry and 
hi is defined to prevent the continuous carry 
propagation by eliminating the collision of the 
sum and the carry from the lower digit. The final 
RBSD product R must be converted to a normal 
binary (NB) product N by an RBSD-to-NB 
converter [1]. 

3. Design of Truncated RBSD 
Multiplier 

In a nn ×  standard RBSD multiplier, 
 2/n  rows of RBSD partial products are added 
up to generate the final RB product R[2n−1] to 
R[0]. Fig. 3 shows the case of n=8. The 2n-bit 

RB product can be truncated to n-bit by 
eliminating the n least significant columns 
(column 0 to column n−1) to form a truncated 
RBSD multiplier TRMH. In TRMH, the 
complexity of RBSD Booth's encoders, RBA 
tree, and RBSD-to-NB converter is reduced by 
almost half, but large error is introduced into the 
product. 

Let 1−nσ  denote the sum of carries from 
the column n−1, a good estimation of 1−nσ  
can be used as a correction value to degrade the 
product error of TRMH. By Fig. 3, we have 

1−nσ  =   
)...(2 1,13,11,0

1
2/ −−−

− +++ nppp nn  

 
)...(2 0,12,0

2
2/ −−

− +++ npp n  

0,01,0
)1( 22... pp nn −−− +++  

=  )(2 2
1

−
− + nσθ . (1) 

where θ  is the sum of partial products in 
column n−1, and  x  denotes the integer part 
of the real number x. When round-off is 
considered, the sum of carries from the column 
n−1, denoted as 1−nδ , becomes 

1−nδ = 1−nσ + ( ) 2  2 modn−+σθ  

=  )(2 2
1

−
− + nσθ + ( ) 2  2 modn−+σθ . (2) 

The following goal is to find a good estimation 
of 1−nδ  to obtain a compensation value for 
reducing the product error of TRMH.  

Using the fixed constant correction scheme 
to reduce the product error of TRMH doesn’t 
work well since the partial products of RBSD 
multiplier may be 0, 1, or 1  so that the average 
value of 1−nδ  always approximates to zero. It 
means that this scheme will use constant 0 as the 
compensation value and no improvement of the 
product error can be achieved. Therefore, we 
adopt the variable correction value scheme and 
find two possible adaptive compensation 
formulations, and then the better one is selected 
by simulation results. The first candidate is .θ  
θ  has been used in other kind of truncated 
multipliers as the compensation value. For 
example, the truncated array multiplier in [6] 
and the truncated Booth's multiplier in [8] use 
θ  to degrade the product error. Therefore, θ  
is a possible approximation of .1−nδ  The 
second candidate, denoted as λ , is derived 
from Eq. (2). As mentioned above, the partial 
products of RBSD multiplier may be 0, 1, or 1  
so that the average value of 2−nσ  also 
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approximates to zero. Replacing 2−nσ  by 0, Eq. 
(2) is rewritten as 

1−nδ ≅ λ =  θ⋅−12  + ( )  2  modθ . (3) 

We apply all possible input combinations to 
standard RBSD multiplier to inspect that θ  or 
λ  is more approximate to .1−nδ  Let 

θδα −= −11 n  and 2α = ,1 λδ −−n  the 
probability distribution of 1α  and 2α  for the 
cases of n from 8 to 14 are shown in Table 1 and 
Table 2, respectively. It is obvious that 1−nδ  is 
equals to λ  (i.e. 2α =0) for most input 
combinations. Thus, λ  is the better choice. 

The subsequent challenge is to design a fast 
and simple circuit to perform Eq. (3). Since the 
partial products are represented as RBSD 
numbers, it is very difficult to design a general 
circuit that completely match the behavior of Eq. 
(3). In our design, the compensation circuit 
consists of three kinds of cells RHA1, RHA2, and 
RHA3 as shown in Fig. 4. Taking the partial 
products of column n−1 as inputs, these cells 
generate the compensation value of Eq. (3) in the 
similar form of adder tree. In the compensation 
tree, RHA1 and RHA3 are used in the first (top) 
level and last (bottom) level, respectively. RHA2 
is used in other levels between the first and last 
levels. The carries generated by these cells then 
are applied to the RB full adders of TRMH to 
from a low-error truncated multiplier TRMC as 
shown in Fig. 5(a) and Fig. 5(b) for n=8 and 12. 

Table 3 shows the transistor ratio of 
truncated RBSD multiplier TRMH and TRMC 
versus the standard RBSD multiplier MS. 
Comparing with MS, the proposed truncated 
multiplier TRMC saves about 32% area. 
Moreover, TRMC needs about 8% area overhead 
but has very low product error than TRMH. 

4. Experimental Results 

To appreciate the accuracy of the proposed 
truncated multiplier TRMC, we take the K-G-As’ 
structure (MK-G-A) [5], the J-K-Cs’ structure 
(MJ-K-C) [7], the multiplier MBooth proposed in [8], 
TRMH, and TRMS (truncate the n LSBs of 2n-bit 
product of MS to obtain its n-bit product) for 
comparison. Let ε , Mε , ε , and υ  denote 
the absolute error, the maximal absolute error, 
the average error, and the variance of error, 
respectively. That is, 

PS FM −≡ε , (4) 

}{εε E≡ , (5) 

}){( 2E εευ −≡ , (6) 

where FP represents the output value for 
different truncated multiplier, respectively, and 
E{•} is the expectation operator. The comparison 
results of ε , Mε  and υ  for different 
truncated multipliers are shown in Table 4 to 
Table 6. The results show that TRMC is more 
accurate than other truncated multipliers. 

The proposed multiplier is applied to the 
design of a discrete cosine transform (DCT) 
circuit for image processing. We use the 
different 11×11-to-15 truncated RBSD 
multipliers to test the quality of reconstructed 
images. Four 256×256 images are picked for this 
experiment, and quality comparison among 
different multipliers is based on PSNR and 
RMSE. The larger PSNR and smaller RMSE 
represent the better quality of the reconstructed 
images. The quality comparison reported in 
Table 7 shows that the proposed truncated 
multipliers can obtain very good image quality. 

5. Conclusion 

This paper has proposed low-cost and 
low-error RBSD multipliers to save hardware 
area and power dissipation. The correction value 
for product error was dependent upon input data 
and has been verified by simulation. 
Experimental results shown that the product 
error of the proposed RBSD truncated 
multipliers was lower than that of other 
truncated multipliers. 
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Fig. 1. The block diagram of an 8×8-bit RBSD multiplier 

 

 

 

Fig. 2. Redundant Binary Adder schematic diagram 
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Fig. 3. Partial products of an 8×8-bit RBSD multiplier 

 
 
 
 

 
Fig. 4. The cells for generating compensation value 

 
 
 
 

 
Fig. 5. Apply compensation value to TRMH 
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Table 1. Probability distribution of α1 with different n 
 -3 -2 -1 0 1 2 3 

8 - 0.12% 12% 75% 12% 0.12% - 
10 - 0.31% 14% 69% 15% 0.31% - 
12 - 0.61% 17% 64% 17% 0.61% - 
14 0.04% 0.98% 19% 60% 19% 0.99% 0.04% 

 
 

Table 2. Probability distribution of α2 with different n 
 -3 -2 -1 0 1 2 3 

8 - 0.04% 8.2% 86% 5.3% 0.04% - 
10 - 0.13% 10.6% 82% 7.2% 0.10% - 
12 - 0.26% 12.6% 78% 8.8% 0.19% - 
14 - 0.45% 14.1% 75% 10.2% 0.32% - 

 
 

Table 3. Transistor ratio for different multipliers 

Transistor ratio 
Multiplier 

n=8 n=10 n=12 n=14 
MS 1 1 1 1 

TRMH 0.62 0.61 0.60 0.59 
TRMC 0.71 0.69 0.68 0.67 

 
 

Table 4. Comparison results of average error 

Multipliers Error n=8 n=10 n=12 n=14 
MK-G-A 188.3 906.4 3842.1 17752.0 
MJ-K-C 170.5 736.6 3094.2 12805.5 
MBooth 106.2 455.7 1912.1 11488.3 
TRMH 149.1 675.4 2982.9 12961.2 
TRMS 124.6 507.7 2043.1 8185.6 
TRMC 

      
ε  

101.1 425.5 1786.0 7476.0 

 
 

Table 5. Comparison results of the maximal absolute error 

Multipliers Error n=8 n=10 n=12 n=14 
MK-G-A 1281 6145 32769 163841 
MJ-K-C 515 2403 10979 49379 
MBooth 441 2105 9785 44601 
TRMH 938 4778 23210 109226 
TRMS 255 1023 4095 16383 
TRMC 

     

Mε  

459 2219 10923 51883 

 
 

n α1 

n α2 
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Table 6. Comparison results of variance of error 

Multipliers Error n=8 n=10 n=12 n=14 
MK-G-A 22959 416043 9204493 377915712 
MJ-K-C 10159 190805 3417020 63473866 
MBooth 6247 125055 2341510 41516237 
TRMH 14400 289841 5576828 104164651 
TRMS 5470 87463 1398529 22371591 
TRMC 

     
υ  

5470 97922 1747885.28 30981360 

 
 

Table 7. Quality comparison of reconstructed images for different multipliers 

Multiplier 
Image Error 

TRMH TRMS TRMC 

PSNR 37.35 40.98 42.47 
Lena 

RMSE 11.96 5.18 3.68 
PSNR 37.10 40.20 43.51 

Baboon 
RMSE 12.68 6.21 2.90 
PSNR 36.14 41.12 43.55 

Bear 
RMSE 15.83 5.04 2.87 
PSNR 35.26 39.93 42.42 

F16 
RMSE 19.35 6.61 3.72 

 
 
 

 


