
Weighted Alternative Splicing Graphs

Hsun-Chang Chang ∗ Tze-Wei Huang † Po-Shun Yu ‡ Yaw-Ling Lin §¶

Abstract

Alternative splicing of a single pre-mRNA
can give rise to different mRNA transcripts.
Consequently, alternative splicing is an im-
portant mechanism for generating protein di-
versity from a single gene. Although alter-
native splicing is an important biological pro-
cess, standard molecular biology techniques
have only identified several hundred alterna-
tive splicing variants and create a bottleneck
in terms of experimental validation.

In this paper, we propose methods of ob-
taining models of weighted alternative splic-
ing graphs and ways of generating all alterna-
tive splicing forms from a weighted alternative
splicing graph. Basically, the method uses
the UniGene clusters of human Expressed Se-
quence Tags (ESTs) to identify alternative
splicing sites. Furthermore, we propose lin-
ear time algorithms that correctly produce
all possible alternative splicing variants with
their corresponding probabilities. Using these
methods, we infer several sets of putative al-
ternative splicing forms; these results are then
compared with methods proposed by others.

Keywords: splicing graph, alternative splic-
ing, expressed sequence tag (EST), weighted
alternative splicing graph, algorithm, EST as-
sembly.

1 Introduction

RNA splicing is an essential, precisely reg-
ulated post-transcriptional process that oc-
curs prior to mRNA translation. A gene is
first transcribed into a pre-messenger RNA

(pre-mRNA), which is a copy of the ge-
nomic DNA containing intronic regions des-
tined to be removed during pre-mRNA pro-
cessing (RNA splicing), as well as exonic se-
quences that are retained within the ma-
ture mRNA. Alternative splicing of eukary-
otic pre-mRNAs is a mechanism for generat-
ing potentially many transcript isoforms from
a single gene. It serves versatile regulatory
functions in controlling major developmen-
tal decisions and fine-tuning of gene func-
tion [13]. The majority of alternative splic-
ing events give rise to different protein prod-
ucts. At least 35% of human genes undergo
alternative splicing [11, 10]. The physiologi-
cal functions of these splice variants may be
similar, opposite, or unrelated. In addition,
they may differ in other properties, such as
stability, tissue and cellular localization, tem-
poral expression pattern, and responses to ag-
onists or antagonists. The presence or level of
specific splice variants may cause and/or in-
dicate pathological or normal conditions. A
class example is the Prostate Specific Anit-
gene, the most important maker available to-
day for diagnosing and monitoring patients
with prostate cancer [8].

Expressed sequence tags(ESTs) are single
sequencing reads from cDNA clones. Even if
ESTs resources are plagued by problems such
as poor sequence quality and intronic con-
tamination, they are still important tools for
exon finding [3] and detection of alternative
splicing [10] at the present time, biologists as-
semble them into consensus sequence in or-
der to form EST contigs and analyse alter-
native splicing variants [3, 4, 15]. The prob-
lem of using expressed sequence tags (ESTs)
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for genomic DNA annotation and prediction
of exon-intron structure is not trivial, even
when all splicing sites are correctly defined.
One of the main difficulties is that a consid-
erable number of ESTs map to intronic re-
gions, or could be products of aberrant or in-
complete splicing [2, 14, 15]. Moreover, the
computational challenges of finding all alter-
native splicing variants can be understood if
one considers a gene with 20 exons with one
alternative splicing site per exon. In this
case, the number of potential splicing vari-
ants at least 220. We can take advantage
of the notion of the splicing graph [7] built
from available EST and cDNA data. The
graph conveniently encodes all potential splic-
ing variants and shows the relationships be-
tween different transcripts implying the over-
all structure of transcripts. Here the idea is
to abandon the linear sequence representation
of each transcript and replace it with a di-
rected graph called splicing graph representa-
tion where each transcript corresponds to a
path in the graph. Splicing graphs may be
rather complicated. As an example, the gene
model of the Drosophila Dscam gene implies
roughly 38, 000 potential transcripts [6]. The
benefit of the splicing graph approach is that
it takes into account all ESTs derived from
different transcripts which cover a given po-
sition(vertex) rather than only ESTs derived
from a single transcript as in the conventional
approach.

In this paper, we use the idea of splic-
ing graphs and present methods of perform-
ing quantitative analysis for all possible alter-
native splicing forms. Our graph-theoretical
approach basically exploit all possible di-
rected paths starting from the source of the
(weighted) splicing graph, and correctly re-
port all variants of splicing forms as well
as their corresponding probabilities. The
method we proposed is also closely related to
the notation of Eulerian superpaths problem
[16, 17, 19, 18].

2 Method

Given a directed acyclic graph G = (V, E)
with a source vertex s ∈ V , the vertex set
V represents the state and E represents the
transition probability from one state to an-
other. For a (connected) path of G, starting
from s, we use N(p) to denote the set of all
immediate vertices following the last vertex
of the path p; when p is just a single ver-
tex v ∈ V , it follows that N(v) is the neigh-

boring set of v. Let p1, . . . , pn be the set of
all RNA transcripts for a given gene of in-
terest. Each transcript pi corresponds to a
set of genomic positions (also called exons)
Vi ⊂ V ; note that Vi 6= Vj for i 6= j. It fol-
lows that the set of all transcribed position
V = V1 ∪ V2 ∪ . . . ∪ Vn is the union of all sets
Vi. The splicing graph G is the directed graph
on the set of transcribed sites V that contains
a directed edge (u, v) if and only if u and v
are consecutive positions in one of the tran-
scripts. Every transcript can be viewed as a
path in the splicing graph G, and the whole
graph G is the union of all paths. Each tran-
scribed site has at least one emission proba-
bility from one transcribed site to next.

Here in our model, we assume the tran-
scribing process is a probabilistically indepen-
dent random process. It follows that all pos-
sible paths variants and their corresponding
probabilities can be deduced from the ran-
dom model. A higher probability in one of
these paths implies a more probable putative
alternative splicing forms can be produced
by them, resulting a quantitative analysis of
different ASF’s. These possible alternative
splicing forms by following steps. First, a
depth first search can be performed on G to
obtain the topological sorted ordering of these
transcribed sites. Following the topological
sorted ordering, we check whether the end-
point of a vector is sink. Here a sink vertex
is one without descendants. Associated each
vector with an predescendant-list to store its
visited predescendants, if the vector is sink,
output its corresponding visited list; other-
wise, the predecessors of this vector’s output-
list should be appended to its children’s vis-
ited list. The detailed description of our al-
gorithm is shown in Figure 3.

Definition 1 weighted alternative splic-
ing graph
An edge-weighted directed acyclic splicing
graph G = (V, E) is a weighted alterna-
tive splicing graph if G has a single start-
ing (source) vertex s ∈ V , and each edge
e of G is associated with a probability 0 ≤
Prob(e) ≤ 1, such that ∀u ∈ V , we must have∑

v∈N(u) Prob(uv) = 1

Definition 2 weighted alternative splic-
ing forms problem
Given a weighted alternative splicing graph
G = (V,E), the alternative splicing forms
problem is to find all possible alternative
splicing graph forms withe their associated
probabilities.
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Let π = 〈s, v1, · · · , vk〉 be a path of a weighted
alternative splicing graph G starting from
source s. Denote the probability associated
with the path π by Prob(π) = Prob(sv1) ·
Prob(v1v2) · · ·Prob(vk−1vk). It follows that

Lemma 1 Given a weighted alternative
splicing graph G with the source s, let
P = {π1, π2, . . . , πp} be all distinct paths
from the source s of equal length n. It follows
that

∑p
i=1 Prob(πi) = 1 for every n ≥ 1.

Proof. The lemma can be easily proved by in-
duction on the paths of length k starting from
s. The condition obviously holds if n = 1
by definition. Assuming the property holds
for length k. Now consider the case of all
paths of length k + 1. Let the set of all
paths of length k are {a1, . . . , ax}, and we
have Prob(a1) + . . . + Prob(ax) = 1 by in-
ductive hypothesis. Note that the set of all
paths of length k + 1 will be {a1 ◦ N(a1)} ∪
· · · ∪ {ak ◦N(ax)}; the situation is illustrated
at Figure 1. Let q(π) denote the last ver-
tex of a path π. By independent property,
we have the sum of probabilities for paths of
length k + 1 being

∑
v∈N(a1)

Prob(a1 ◦ v) +
· · · +

∑
v∈N(ax) Prob(ax ◦ v) = Prob(a1) ·∑

v∈N(a1)
Prob(q(a1)v) + · · · + Prob(ax) ·∑

v∈N(ax) Prob(q(ax)v) = Prob(a1) + · · · +
Prob(ax) = 1 since

∑
v∈N(u) Prob(uv) = 1

for any vertex u ∈ V by the definition of
weighted alternative splicing graphs. ¤

Theorem 1 Let U ⊂ V , U =
{u1, u2, . . . , um}, be the set of all sinks
within a weighted alternative splicing graph
G. Let P = {π1, π2, . . . , πn} be all dis-
tinct paths from the source s to sinks, then∑n

i=1 Prob(πi) = 1.

Proof. Given a weighted alternative splicing
graph G, without loss of generality, we can
add self-loops to all its sink vertices as shown
in Figure 2, and obtain an augmented graph
G′. Let ` denote the length of the longest
path of P . Note that the set of all paths of
length `, P ′, is just the set of paths P such
that some shorter paths of P are lengthen
by appending repeated sinks. However, by
lemma 1, we have

∑
π∈P ′ Prob(π) = 1, it fol-

lows that
∑

π∈P Prob(π) = 1. ¤

Theorem 2 Give a alternative splicing
graph. We can correctly compute all possi-
ble alternative splicing forms in time linearly
propositional to the size of its alternative
splicing forms.

Proof. We prove the correctness of this theo-
rem using the theorem 1 and lemma 1, Con-
sider the algorithm shown in Figure 3. The
graph G = (V,E) is represented using adja-
cency lists. The color of each vertex u ∈ V
is stored in the variable color[u],and the pre-
decessor of u is stored in the variable π[u]. If
u has no predecessor ,the π[u] = nil. Each
vertex v has two timestamps, the first times-
tamp d[v] records when v is first discovered
(and grayed), and the second timestamp f [v]
records when the search finishes examining
v’s adjacency list (and blackens v) . During
an execution of DFS, the loops on lines 1-2
and lines 5-7 of DFS take time Θ(V ) ,exclu-
sive of the calls to Dfs-Visit(v). The proce-
dure Dfs-Visit(v) is called exactly once for
each vertex v ∈ V ,since Dfs-Visit(v) is in-
voked on white vertices and the first thing it
dons is paint the vertex gray. During an exe-
cution of Dfs-Visit(v),the loop on lines 3-6
is executed Θ(E) times.

Finally, the procedure Asf-Find takes
Θ(V +E) for the topological sort, and it takes
time linearly proportional to the output size
of the alternative splicing forms since it can
be seen that each element of the output uses
constant time in appending the out-lists of
predecessor vectors onto the out-lists of its
children vector, performed on line 11. ¤

3 Preliminary Experiments and
Result

To validate our approach we applied it
to get the human adenylosuccinate lyase
(ADSL) gene [9, 21, 12]. Adenylosuccinate
lyase (ADSL) is a bi-functional enzyme act-
ing in de novo purine nucleotide recycling. To
date, about 50 patients have been diagnosed
world-wide and reports on about half of them
have been published. The disease usually ap-
pears within the first months of life with neu-
rological involcement. Our input data come
from UniGene clusters of ESTs [1, 20, 5, 24].
It contains 13 exons of overall length about
2kb. In order to compare the accuracy of our
approach with splicing graphs approach that
were studied by Kmoch et al.(2002). We store
our input data into our database and find all
possible alternative splicing sites. There are
two examples as following. Then we compute
all possible alternative splicing forms at our
bioinformatic’s workstation [23].
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Figure 1: All possible paths of a DAG.
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Figure 2: Adding self-loops to sinks of a DAG.
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Input: Alternative splicing sites V = 〈v1, v2, . . . , vn〉.
Output: All putative alternative splicing forms ASFs.
DFS(G)
1 for each vertex u ∈ V [G]
2 do color[u] ← white; π[u] ← nil;
3 time ← 0;
4 for each u ∈ V [G]
5 do if color[u] = white
6 then DFS-Visit(u)
DFS-Visit(u)
1 color[u] ← gray; B While vertex u has just been discovered (u, v)
2 d[u] ← time ← time + 1;
3 for each vertex v ∈ Adj[u] B Explore edge (u, v).
4 do if color[v] ← white
5 then π[v] ← u
6 DFS-Visit(u)
7 color[u] ← black;
8 f [u] ← time ← time + 1;

Asf-Find(G)
1 call DFS(G) to compute finishing times f [v] for each vertex v.
2 as each vertex is finished, insert it onto the front of a linked list.
3 for each v ∈ V do out-list(v) ← nil;
4 return the linked list of vertices. B Topological sort order (u, v).
5 out-list(s) ← 〈s〉
6 for each vertex u in the topological sorted ordering do
7 if u is sink
8 then Output out-list(u)
9 else
10 for each vertex v ∈ Adj[u] do B u is predecessor of v.
11 Append(out-list(u) ◦ v, out-list(v)) B Append u’s out-list to v’s out-list.

Figure 3: Finding all putative alternative splicing forms.

Table 1: All possible alternative splicing sites (ASS) within Adenylosuccinate lyase (ADSL)
gene.

starting position of ASS ending position of ASS Length of ASS(bp) Number of count
19960620 19960827 208 72
19963801 19963905 45 66
19965036 19965119 84 63
19969660 19969834 175 50
19970052 19970094 43 47
19971190 19971280 91 33
19972061 19972134 74 28
19972275 19972423 149 23
19973769 19973866 98 50
19975074 19975158 85 63
19975673 19975848 176 54
19977230 19977669 440 76
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Figure 4: The flow chart for finding all possible alternative splicing forms.

Figure 5: A splicing graph.

Table 2: Another possible alternative splicing sites (ASS).
Segment Start Segment End Segment length Count of EST

58155044 58155338 294 131
58156132 58156308 176 73
58157585 58157839 254 216
58159221 58159411 190 221
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4 Discussion

In contrast to other traditional methods,
our approach does not need large sets of train-
ing data to construct species-specific mod-
els of genes or assemble ESTs into linear se-
quences, we take advantage of our algorithm
and alternative splicing sites acquiring from
UniGene [22] clusters of ESTs to calculate all
possible paths and their probabilities. Table 1
represent all possible alternative splicing site
of the Adenylosuccinate lyase (ADSL) gene.
Theoretically two types of alternative splic-
ing events might exists, one generated ran-
domly and one generated through regulated
process. Spurious events are expected to oc-
cur at lower frequencies than regulated events
because biological processes have inherent er-
ror rates that are difficult to quantify and
could be highly variable. In order to avoid the
danger of eliminating biologically meaningful
information, we will conserve all possible al-
ternative splicing variant and its probability.
In the future, we plan to implement our algo-
rithm and calculate all probabilities of alter-
native splicing variant. Our final destination
is providing the program for biologists on our
web site [23].
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