
 1

XML 在階層式資料庫資料交換之應用

An Application of XML on Hierarchical Database

for Data Exchange

Jeang-Kuo Chen

Department of Information Management
Chaoyang University of Technology,
Wufeng, Taichung Country, Taiwan,

R.O.C.

Email: jkchen@mail.cyut.edu.tw

Min-Jane Liu

Department of Information Management
Chaoyang University of Technology,
Wufeng, Taichung Country, Taiwan,

R.O.C.

Email: s9054618@mail.cyut.edu.tw

摘要

XML 已被廣泛應用在許多領域，尤其是在

資料庫的應用上，諸如企業或組織之間的資

料交換。許多資料交換的應用是集中在關聯

式資料庫，但是至今仍然有一些階層式資料

庫被使用在商業上。在本篇文章中，我們提

出一個改進的階層式資料庫的資料交換模型

[3]。在這一個新的模型中，被交換資料的資

料型態在傳遞的過程中並不會遺失。一個資

料交換的情節用來展示如何使用此一資料交

換模型，在兩個公司之間處理資料交換的過

程。

ABSTRACT

XML has been widely applied to many areas

especially for database applications, such as

data exchange between enterprises or

organizations. Many applications for data

exchange focus on relational databases.

However, hierarchical databases are still being

used in some businesses. In this paper, we

propose an improved version of the data

exchange model [3] for hierarchical databases.

With this new model, original data type would

not lose in the process of data transmission. A

scenario is illustrated to demonstrate the

process of data exchange between two

companies.

關鍵詞：XML, XML 綱要, 階層式資料庫,

DBD, 資料交換

Keyword: XML, XML Schema, Hierarchical

Database, DBD, Data Exchange

1. Introduction

Data exchange is gradually important in

business. Typical media are HTML, SGML,

XML, and PDF, while XML is the most

popular one [2], [5], [9]. XML is applied

widely in many applications, such as content

publishing, data integration, etc [1], [5], [8], [9].

Many researches focused on data exchange

using XML among relational databases [2], [4],

 2

[7]. Today, relational databases are dominant in

database field. However, there are still some

alternatives can be chosen such as network

database, object-oriented database, and

hierarchical database (HDB). Among these

alternatives, HDBs are still being used in some

organizations or enterprises. Therefore, it is

necessary to develop technologies for data

exchange using XML among HDBs.

Proposed by W3C in 1998, the eXtensible

Markup Language (XML) [11] has become a

popular media for data exchange [3], [5], [9]. A

data exchange model [3] was proposed to

support data exchange between two

corporations and the advantages of data

exchanging between XML and HDBs have

been discussed in [3]. Although data can be

delivered by XML documents in this model,

original data type of attributes in an XML

document cannot be interpreted directly

because all data are presented in character

strings in an XML document. This situation

may make unpredictable errors when

interpreting the contents of an XML document.

An improvement must be required to solve this

problem.

The Document Type Definition (DTD) or

XML Schema [12], [13], [14], proposed by

W3C, can be used to structure XML documents,

but the XML Schema provides more data types

than DTD does. The corresponding DTD and

XML Schema of the XML document in Figure

1 are shown in Figure 2a and 2b, respectively.

In Figure 2a, the keyword “CDATA” means

character data. If this DTD is used to validate

the XML document in Figure 1, the values of

attribute “stdID” are interpreted as character

strings “101” and “102.” An error may occur if

the original data are integer 101 and 102. On

the contrary, the XML Schema in Figure 2b can

correctly identify the two integers in Figure 1

because it uses the keyword “integer” to

interpret the values of the attribute “stdID.”

Therefore, the XML Schema is the best choice

to associate with an XML document if XML

contains non-character data. Detailed

discussions about XML Schemas will be

introduced in section 2.4.

An HDB is composed of several segments.

Each segment contains one or more fields. Like

an XML, an HDB can have an associated file

called Database Description Block (DBD) [6]

to describe the structure of the HDB, the

schemas of segments, and the data type of

fields. In this paper, two modules are proposed

to improve the data exchange model in [3]. One

module, called DBDToXSchema, can convert a

DBD file into an XML Schema file. The other

module, called XSchemaToDBD, can recover a

DBD file from an XML Schema file. By this

improved data exchange model, HDB data of

one enterprise can be well transmitted to the

other enterprise without worrying the missing

of original data type.

The paper is organized as follows. In

Section 2, XML, XML Schemas, hierarchical

database, and DBD of HDB are introduced

briefly. In Section 3, an improved data

exchange model is proposed for data

transmission between XML document and

HDB. Section 4 illustrates a scenario to

demonstrate how the model works. Finally,

Section 5 makes a conclusion

2. Previous work

 3

2.1. Hierarchical Databases and the
Schema Data Description
Language

Based on the hierarchical data model, an HDB

is a tree-like data structure. Some commercial

HDBs have been used for many years. The

most famous one is IBM’s IMS [6]. Interested

readers are referred to [3] for a more detailed

discussion on this subject. One of the most

difficult areas of database management is the

design of information structure [10]. To

describe and manipulate data, the Database

Task Group (DBTG) of CODASYL specified

the Schema Data Description Language (DDL)

for describing the data structure of database.

The DDL of IMS is named as Database

Description Block (DBD) [6]. The structure of

a DBD is described as followed. DBD name is

first defined; then, segment followed by field

are defined sequentially. The DBD name is the

same as the HDB name. Defined by the

keyword “SEGM,” each segment contains the

segment name (the “NAME”), the total byte

number of the fields that constitute the segment

(the “BYTES”), and the parent segment name

of the segment (the “PARENT”). Defined by

the keyword “FIELD,” each field has three

items: the field name (the “NAME”), the data

type (the “TYPE”), and the data length (the

“BYTES”).

A DBD example is illustrated in Figure 3.

The DBD is declared as “coursedb” containing

the root segment “department.” The segment

“student,” defined below the keyword

“SEGM,” has three fields that occupy 30 bytes

and its parent is segment “department.” The

three fields of the segment “student” are

“stdID,” “firstname,” and “lastname” where the

length of field “stdID” is 10 bytes and the data

type of field “stdID” is zoned-decimal.

2.2. XML documents and XML
Schemas

The XML [11], proposed by W3C, is an

abbreviation of eXtensible Markup Language

derived from SGML. As a descriptive language,

XML can represent both data and structure. We

refer interested readers to [3] which address the

issue in more depth than possible in this paper.

The XML Schema [12], [13], [14] is published

by W3C and become a recommendation in May

2001. An XML Schema is used to describe and

constrain the contents of XML documents. An

XML document is valid if it conforms to the

constraint rules of a particular XML Schema.

The XML Schema is an auxiliary file of

robust-typed schema definition. A range of

primitive data types such as string, decimal,

and integer are supported in an XML Schema

[14]. With an XML Schema, any ambiguity can

be excluded when an XML document is

interpreted. The syntax of XML Schema is

similar to that of XML.

The XML Schema in Figure 2b is the

associated file of the XML document in Figure

1. An XML Schema starts with the keyword

“schema.” The attribute name is declared by the

keyword “attribute” in an XML Schema. The

data type of attribute value is specified by the

keyword “restriction” and, if necessary, plus

another keyword “length.” The Document Type

Definition (DTD) can also be used to describe

the structure of an XML document, but DTD

does not supply rich data types for various data

as XML Schema does. That is why XML

Schema, rather than DTD, is selected to be

 4

associated with an XML document in our

approach.

3. The Data Exchange Model

Data exchange between two enterprises or

organizations is a process described as follows.

First, the specified data is transformed into a

medium in the source unit (enterprise or

organization). Then the medium is transmitted

via network from the source unit to the

destination unit. Finally, the medium is

transformed into the original data in the

destination unit. The architecture of the data

exchange model is shown in Figure 4. In this

model, the specified data is extracted from the

HDB and its related DBD of Source Unit. The

module HtoX is a transformer used to convert

the exchanged data into the medium, an XML

document. The related DBD is transformed into

an XML Schema by DBDToXSchema module.

When an XML document and XML Schema

are created in Source Unit, they will be

transmitted to Destination Unit via network.

When Destination Unit receives the XML

document and the associated XML Schema,

they are converted into the original data by the

modules XSchemaToDBD and XtoH,

respectively, and then saved to the HDB of

Destination Unit. The modules HtoX and XtoH

were proposed in [3]. The DBDToXSchema and

XSchemaToDBD are described in sequence.

3.1. DBDToXSchema

The algorithm of DBDToXSchema, used to

transform a DBD to an XML Schema, is listed

in the following steps:

S1: insert schema tag information to the XML

Schema file

S2: read the DBD name in the DBD file and

write it as the root element to the XML

Schema file

S3: read each segment’s information in the

DBD file and write it to the XML Schema

file, and declare it as complexType

S4: read all fields of the segment in Step S3 and

write them to the XML Schema file as

attributes

S5: declare a new simpleType in the XML

Schema file for each data type in the field

of step S4 in DBD file

S6: repeat S3 to S5 until all segments in the

DBD file are processed

The DBD name is used as the root

element name in an XML Schema. Every

segment in a DBD is mapped as an element

into an XML Schema; the enclosed fields of the

segment are mapped as attributes. For each

field, a simpleType declaration is used to define

its data type and length in step S5. The

hierarchical structure of elements in the XML

Schema is the same as that of the ordered

sequence of segments in the DBD.

3.2. XSchemaToDBD

After receiving an XML Schema file from the

source unit, the destination unit uses the

XSchemaToDBD module to transform the XML

Schema file into a DBD. The algorithm of

XSchemaToDBD is listed in the following

steps:

S1: read the root element in the XML Schema

file and write it as the DBD name to the

DBD file

S2: read each sub-element in the XML Schema

file and write it as a segment to the DBD

 5

file

S3: if a sub-element has a parent element then

set the value of parent item to the name of

its parent segment in the DBD file,

otherwise set the value of parent item to 0

S4: read all attributes of sub-elements in the

XML Schema file and write them as fields

to the DBD file

S5: compute the total byte numbers of fields

and fill the value into the “BYTES” item in

the segment of the DBD file

S6: repeat S2 to S5 until the end of the XML

Schema file

The root element in an XML Schema is

mapped as DBD name into the transformed

DBD file. Every element in the XML Schema

is converted as a segment into the DBD file.

The information of the parent-child

relationships between elements is unavailable

directly. The XSchemaToDBD model needs to

scan all elements in an XML Schema to

identify the hierarchical structure. Step S5 is

used to calculate the total length of a segment

after reading the information of all attributes of

an element.

4. A Data Exchange Scenario

An illustration is given to introduce the

application of the data exchange model

between two banks. In this scenario, assume

that a bank branch A wants to transfer

customers’ account information to branch B.

Both A and B use HDB to store their data and

agree to exchange data by XML. Initially, there

may have a customer’s accounting information,

as shown in Figure 5, in the HDB of A.

Inputting the HBD and DBD,a simple segment

definition is shown in Figure 6 to

DBDToXSchema and HtoX modules,

respectively, can produce the XML document,

as shown in figure 7 and the corresponding

XML Schema of the figure 6 is shown in figure

8. Then the XML Schema and XML document

are transmitted to B. Applying the modules

XSchemaToDBD and XToH, B can transform

the received the XML Schema and XML

document into the original DBD and HDB.

Likewise, B can transmit HDB data such as the

credit data to A via XML. Both data and

structure in HDB can be delivered between

each other; hence, the two enterprises can use

those algorithms to exchange data

automatically without human engagement.

5. Conclusion

In this paper, we propose an improved version

of the data exchange model [3] by adding two

modules to perform transmission between a

DBD and an XML Schema. Utilizing the two

algorithms, DBDToXSchema and

XSchemaToDBD, the computer can transform a

DBD into an XML Schema and vice versa.

Finally, a scenario is illustrated to demonstrate

how this model works. The motivation of this

paper is to improve the interpretative function

of the old model for identifying various data

types of original HDB data. The improved

model not only can exchange data between

HDBs and XML documents, but also DBD and

XML Schema. Therefore, two enterprises now

can exchange non-character data such as

product price, employee salary, order quantity,

etc. This promotes the utility of the data

exchange model [3].

REFERENCE

 6

[1] L. Aversano, G. Canfora, A. De Lucia, and P.

Gallucci, “Integrating document and

workflow management tools using XML

and web technologies: a case study,”

Proceedings of Sixth European Conference

on Software Maintenance and

Reengineering, pp. 24-33, 2002.

[2] E. Bertino and B. Catania, “Integrating

XML and databases,” IEEE Internet

Computing, Vol. 5, Issue: 4, 2001.

[3] J. K. Chen and M. J. Liu, "A Model for

Data Exchange between XML document

and Hierarchical Databases," proceedings

of the 2002 International Computer

Symposium, Dec. 18-21, Hualien, Taiwan,

ROC, Vol. 5, Session 8, E8-1, 2002

[4] J. Fong, F. Pang, and C. Bloor, “Converting

relational database into XML document,”

Proceedings of 12th International

workshop on Database and Expert Systems

Applications, 2001.

[5] B. Hofreiter, C. Huemerm, and W. Klas,

“ebXML: status, research issues, and

obstacles,” Proceedings of the 12th

International Workshop, Research Issues in

Data Engineering: Engineering

E-Commerce/E-Business Systems, pp. 7-16,

2002.

[6] IBM, IMS Primer,

http://www.redbooks.ibm.com

[7] J. S. Kim, W. Y. Lee, and K. H. Lee, “The

cost model for XML documents in

relational database systems,” ACS/IEEE

International Conference, Computer

Systems and Applications, pp. 185-187,

2001.

[8] A. Renner, ”XML data and object databases:

the perfect couple?,” Proceedings of the

17th International Conference on Data

Engineering, pp. 143-148, 2001.

[9] M. Sundaram and S. S. Y. Shim,

“Infrastructure for B2B exchanges with

RosettaNet,” The third International

Workshop on Advanced Issues of

E-Commerce and Web-Based Information

Systems, pp. 110-119, 2001.

[10] R. W. Taylor and R. L. Frank,“CODASYL

Data-Base Management System,” ACM

Computing Surveys, Vol. 8, Issue: 1, pp.

67-103, 1976

[11] W3C, Extensible Markup Language (XML)

1.0 (second Edition) W3C

Recommendation, 6 October 2000,

http://www.w3.org/TR/2000/REC-xml-20

001006, 2000.

[12] W3C, XML Schema Part 0: Primer W3C

Recommendation, 2 May 2001,

http://www.w3.org/TR/2001/REC-xmlsch

ema-0-20010502, 2001.

[13] W3C, XML Schema Part 1: Structures

W3C Recommendation, 2 May 2001,

http://www.w3.org/TR/2001/REC-xmlsch

ema-1-20010502, 2001.

[14] W3C, XML Schema Part 2: Datatypes

W3C Recommendation, 2 May 2001,

http://www.w3.org/TR/2001/REC-xmlsch

ema-2-20010502, 2001.

 7

Figure 1. An XML document example Figure 2a. A DTD Example

Figure 2b. An XML Schema example Figure 3. A DBD example

Figure 4. The data exchange model

input

input

output

output

Transmission

Hierarchical
database

Hierarchical
database

HToX

XToH

Source unit Destination unit

DBDToXSchema

XSchematoDBD

XML
Schema

XML
document

XML
Schema

XML
document

<department>
 <student stdID=”101” firstname=”John”
lastname=”Smith”></student>
 <student stdID=”102” firstname=”Mary”
lastname=”Lin”></student>
</department>

<!ELEMENT department(student)>
<!ELEMENT student EMPTY>
<!ATTLIST student stdID CDATA
 firstname CDATA

lastname CDATA>

DBD
 NAME=coursedb
SEGM
NAME=department,BYTES=20,PARENT=0
FIELD
 NAME=departID,BYTES=10,TYPE=Z
FIELD
 NAME=departname,BYTES=10,TYPE=C
SEGM
NAME=course,BYTES=30,PARENT=department
FIELD
 NAME=courseID,BYTES=10,TYPE=Z
FIELD
 NAME=coursename,BYTES=20,TYPE=C
SEGM
NAME=student,BYTES=30,PARENT=department
FIELD
 NAME=stdID,BYTES=10,TYPE=Z
FIELD
 NAME=firstname,BYTES=10,TYPE=C
FIELD
 NAME=lastname,BYTES=10,TYPE=C
SEGM
NAME=teacher,BYTE=40,PARENT=department
FIELD
 NAME=teacherID,BYTES=10,TYPE=Z
FIELD
 NAME=teachername,BYTES=30,TYPE=C

<schema>
<element name="department">

<complexType>
<element name="student">

<complexType>
<attribute name="stdID">

<simpleType>
<restriction base="integer"/>

</simpleType>
</attribute>
<attribute name="firstname">

<simpleType>
<restriction base="string">

<length value="10"/>
</restriction>

</simpleType>
</attribute>
<attribute name="lastname">

<simpleType>
<restriction base="string">

<length value="10"/>
</restriction>

</simpleType>
</attribute>

</complexType>
</element>

</complexType>
</element>

</schema>

 8

Figure 5. An HDB of the scenario

Figure 6. A segment definition in the DBD
 of the senario

Figure 7. An XML document of the scenario

Figure 8. A corresponding XML Schema of
the Figure 6

customer

courseID firstname lastname
7401 /mary Lin

branch

branchID city manager
101 Taipei D.Wang

chckdebt

chckdate amount
2002/03/09 1200

chckcret

chckdate amount
G103 G01

saveacct

accountID issueDate
90132 2001/10/18

savedebt

savedate amount
2 2003/03/01

savecret

savedate amount
2003/06/10 G01

loan

loanID issueDate
CL01 2002/07/20

credit

date amount
2002/10/23 3000

mortgage

savedate amount
G103 G01

chckdebt

chckdate amount
2002/01/09 1200

chckcret

chckdate amount
G103 G01

chckcret

chckdate amount
2003/02/04 200

customer

customerID firstname lastname
7401 John Smith

savedebt

savedate amount
2 2003/03/01

savedebt

savedate amount
2003/04/10 450

savecret

savedate amount
2003/05/10 200

mortgage

mortname amount
building 4000 chkacct

accountID issueDate
88891 2002/01/01

SEGM
 NAME=savedebt, BYTES=20, PARENT=saveacct
FIELD
 NAME=savedate, BYTES=10, TYPE=C
FIELD
 NAME=amount, BYTES=10, TYPE=F

<customerAccountInformation>
<branch branchID=”101” city=”Taipei” manager=”D. Wang”>
<customer customerID=”7401” firstname=”John”
lastname=”Smith”>
<chkacct accounted=”88891” issueDate=”2002/01/01”>
<chckdebt chckdate=”2002/01/09” amount=”1200”></chckdebt>
<chckdebt chckdate=”2002/02/20” amount=”3400”></chckdebt>
<chckcret chckdate=”2003/02/04” amount=”200”></chckcret>
<chckcret chckdate=”2003/04/01” amount=”130”></chckcret>
<chckcret chckdate=”2003/05/15” amount=”390”></chckcret>
<chkacct>
<saveacct accounted=”90132” issuedate=”2001/10/18”>
<savedebt savedate=”2003/04/01” amount=”450”></savedebt>
<savedebt savedate=”2003/05/07” amount=”630”></savedebt>
<savedebt savedate=”2003/06/01” amount=”400”></savedebt>
<savecret savedate=”2003/05/01” amount=”200”></savecret>
<savecret savedate=”2003/05/11” amount=”110”></savecret>
</saveacct>
</customer>
<customer customerID=”28891” firstname=”Mary”
lastname=”Lin”>
<loan loanID=”CL01” issuedate=”2002/07/20”>
<credit date=”2002/10/23” amount=”3000”></credit>
<mortgage mortname=”building” amount=”4000”></mortgage>
<mortgage mortname=”car” amount=”2200”></mortgage>
</loan>
</customer>
</branch>
</customerAccountInformation>

<element name="savedebt">
<complexType>
<attribute name="savedate" use="required">
<simpleType name="domain_savedate">
<restriction base="string">
<length value="10"/>
</restriction>
</simpleType>
</attribute>
<attribute name="amount" use="required">
<simpleType name="domain_amount">
<restriction base="float">
</restriction>
</simpleType>
</attribute>
</complexType>
</element>

