
A Hybrid Scheme for Massive Multiplayer Online Games
using Mobile Agent on Dynamic Quadtree Architecture

Wai-Tak Wong

Department of Information Management
Chung Hua University, WuFu Road,

Hsinchu, Taiwan, 30067
wtwong@mi.chu.edu.tw

Zih-Ruei Ciou
Department of Information Management

Chung Hua University, WuFu Road,
Hsinchu, Taiwan, 30067

M9110023@mi.chu.edu.tw

Yu-Cheng Chang
Department of Information Management

Chung Hua University, WuFu Road,
Hsinchu, Taiwan, 30067

M9210011@mi.chu.edu.tw

Abstract

Unlike the traditional online game
infrastructure—the central server approach, we
propose a hybrid scheme for multiplayer online
games in this paper. This scheme effectively
combines the peer-to-peer model and
client-server model to solve the problems of
scalability, performance and cost limitation. This
scheme is suitable for online games playing in a
geographical area in which the online player
community is organized into quadtree
architecture. A central master server is kept for
login, dispatching the players and solving the
trouble if there is some problems happened in
the virtual world. The cost of the game servers
are passed to the honored members in the
community. Due to new players moving into or
old players moving out of a region, a local game
server loading may reach a limit, or only a few
players still stay in its controlled area. Thus, a
local game server may need to have a child local
server to share its loading, or to be retired. In the
other words, the quadtree is managed
dynamically. The branches of quadtree will be
extended or retracted depends on the distribution
of the online players. A local game server can
spawn a new local server or can be replaced by a
new local server. When a new local game server
is created, the game server source codes will be
loaded into it. Like a mobile agent, the local
game server is mobilized.

Keywords: Multiplayer Online Game; Mobile
Agent; Dynamic Quadtree Architecture; Hybrid
Scheme;

1. Introduction
In recent years massive multiplayer online

games (MMOGS) are rapidly gaining popularity
[1]. With hundreds of thousands concurrent
players participate in the same online game, the

software architecture faces the problem of
scalability [2]. Currently, two common main
game architectures in use are peer-to-peer and
client/server. Peer-to-peer is a distributed,
serverless architecture which increases
scalability. However, quality of network
connections in the internet is hardly predictable
since it is not feasible to create point-to-point
connections for many peers. Lack of multicast
mechanism in the network will lead to a splitting
of bandwidth as each message has to be sent to
every player respectively. Today, most online
multi-player games are implemented based on a
client-server model instead of a peer-to-peer
model [3]. Client/server game architectures offer
a single point of game coordination. An
authorized game server is set up and all players
login to this game server to play a game against
one another. Player actions are forwarded from
each player station to the game server. Then, the
game server processes the actions in sequence,
and notifies player stations of the effects for their
actions. In this model, the loading is on the
server only. With a limited number of players,
the server will handle quite well. However, it
creates a bottleneck of processing and signaling
when the number of players in online world
increases.

A new commercial game architecture named
Butterfly.net [4] is developed for hosting
massive multiplayer online games. Its goal is to
serve the online game players through a flexible,
scalable and resilient infrastructure will grow as
needed. In the Butterfly Grid architecture all
servers are fully meshed that means each server
is connected to all others over high-speed
fiber-optic lines. In the course of a game, each
server will communicate- or multicast-to all
other servers in the grid in real time. Under this
“peer-to-peer” networking approach, players are
transparently routed to the optimal server in the

Grid such that server resources are allocated to
the most popular games. Though this game
infrastructure can eliminate the bottlenecks,
provide reliability, and gain many advantages,
the cost of the architecture is extraordinarily
high and tightly coupled to business model.

To solve the increasing complexity of the
interactions between massive game players,
many researchers proposed an approach to
disperse players based on geography and
population for high performance systems.
Benford and Fahlén [5] proposed a spatial model
of interaction which had influenced the DIVE [6]
and Virtual Society [7] systems. Based on this
spatial model and awareness-based
communication among users, Greenhalgh [8]
developed the MASSIVE-1 and MASSIVE-2
distributed virtual environment system.
Macedonia [9] proposed to restrict the number of
interactions by coarse-grain partitioning the
world into a grid of disjointed hexagonal cells
For each a multicast address is associated
statically. To reduce the number of simultaneous
allocated multicast addresses and to optimize
cell sizes, Léty [10] introduced dynamic cells.
However, they didn’t have a well dynamic
structure to manage those cells. In this paper, a
flexible and extensible infrastructure for
MMOGS is proposed. The framework is a
hybrid scheme of peer-to-peer model and
client-server model. The master server will
assign players to different local servers based on
their geographic entrance to the game. The
virtual world is managed by using dynamic
quadtree structure depending on the population
distribution of the players in each region.
Regions can be merged or split according to the
quadtree property. Thus, the whole player
community is managed under a dynamic
quadtree structure, which is to be extended or
retracted from time to time depending on the
population distribution. The rest of the paper
starts with a description of game infrastructure in
quadtree architecture. The modeling for the
population distribution in dynamic quadtree
architecture is illustrated in Section 3. Some
critical issues of the proposed hybrid scheme are

discussed in Section 4 following by some
conclusions are made in Section 5.

2. The Proposed Game Infrastructure

in Quadtree Architecture
Quadtree is a well-known representation of

the hierarchical data structures in the fields of
computer vision, computer graphics, image
processing, cartography, and geographic
information system [11]. The corresponding
quadtree of an image is constructed by
successively sub-dividing the image into four
equal-size sub-images in the NW (northwest),
NE (northeast), SW (southwest), and SE
(southeast) quadrants. A heterogeneously
colored quadrant of the image is represented by
an internal node and is further divided until each
sub quadrant is in the same color. The leaf node
with a black (or white) color is called the black
(or white) node and the internal node is called
the gray node. A quadtree representation of an
image is shown in Fig. 1. To use quadtree for
population distribution, a black node can
represent that there are players in the quadrant. If
no player is in a quadrant, we use a white node
to represent it. If a quadrant has a high
population of players that a single machine
cannot handle it, then we will subdivide the
quadrant into four equal-size sub quadrants. If all
four sub quadrants are in black color (has players
in its quadrant), then such sub quadrants are
called “virtual” leaf nodes, which have been
widely used in image processing [12]. In short,
the quadtree representation possesses several
desirable features that make it particularly
suitable for applications. For example, its
hierarchical structure makes it scalable and
flexible.

As aforementioned, if one wants to implement
a massive multiplayer game, a huge map with a
huge number of players has to be implemented.
To handle this, our strategy is to split the overall
communication bandwidth into smaller pieces
and to distribute the computational loading over
many machines instead of one single server.

Fig. 1. An image and its quadtree representation

Axis 0 1 2 3 4 5 …

0
1
2
3
4
.
.
. Black node White node Gray node

Fiedler [13] proposed a topological division of
the map into smaller pieces. They tessellated the
map into pieces of the magnitude of normal
multiplayer maps. They implemented two map
types, rectangular tile and hexagonal tile.
However, both map types did not have the
hierarchy to divide and conquer the population
distribution. The fundamental concept of the
tessellation for the players is that a single player
needs not to know every thing on the map if it
does not affect him. If any player is beyond the
scope of his visibility (his active area), he needs
not to have any notion of them. In this paper,
quadtree structure is used to tessellate the online
players’ distribution in the virtual world. The
whole quadtree structure of the virtual world is
managed in the central master server. The
proposed game architecture in quadtree structure
is shown in Fig. 2 where the host game server is
the first game server. In this scheme the number
of players is restricted in each local game server.
However, the controlled geographic area under a
local game server may be big. Therefore, a
quadtree structure is maintained in the local
game server to speed up the interaction among
its players. Here, we name the controlled area as
scene region. Based on the player distribution
the scene region may be further subdivided
according to the quadtree property. The basic
unit of a quadtree, a leaf node at the bottom level,
can be defined as some reasonable size of area
(or a room). If a room is located at the boundary,
we name it boundary room. If a room is used as
an entrance for the new players, we name it
entrance room. A scene region can have more
than one entrance. For all type of rooms, their
sizes are equal. The room size must be larger
than the player’s sphere of influence (SOI),
which was proposed by Baughman [3]. The
influence is defined as any in-game information
that affects a player’s decisions, where in-game
refers to parts of the game world, as opposed to
external knowledge that the player may have,
e.g., that a certain opponent typically follows
some strategy. To avoid a large amount of
ineffective information exchanging between a
player and other players who locate far beyond
its SOI, the publisher/subscriber model of
communication is adopted in this system. Each
room is managed as a channel in the local game
server. The quadtree structure maintained in a
local game server is depicted in Fig. 3. If a
player registers to one room, it will subscribe the
corresponding room channel and its eight
neighbors’ channels. As shown in Fig. 4, the
eight neighbors of Ra4 are Ra5 (east), Rc1 (south),
Ra3 (west), Ra1 (north), Ra0 (northwest corner),
Ra2 (northeast corner), Rc0 (southwest corner)
and Rc2 (southeast corner), respectively. When a
player migrates from one room to another, the

non-neighbors’ room channels are unsubscribed
and the new neighbors’ room channels are
subscribed. The variation of neighborhood
during the migration of a player from one room
to another room is also described in Fig. 4. If a
player enters a boundary room of a scene region,
e.g. Ra4 of A, it will subscribe another boundary
rooms which belongs to its neighbor scene
regions, e.g. Rc0, Rc1, Rc2 of C.

3. Modeling in Dynamic Quadtree

Architecture
During the online game is running we have to

consider the following scenarios for the
proposed dynamic quadtree architecture.

3.1 When a player enters a scene

region
If a player, named X, wants to play the online

game based on our proposed architecture, player
X have to go to the master server to login to his
account. After authentication the master server
will transfer the account information to player X.
Play X will need to choose an entrance, says Y,
in the game map to start the game. Then, the
master server will notify player X where the
local server is. Let’s assume that local game
server Z will serve the game for player X. At the
same time, the master will notify local game
server Z that player X (with the account
information) is coming from entrance Y soon.
When player X joins local game server Z, the
validness of the account information will be
checked. If there is no problem, player X need to
subscribe the channel of entrance room Y and the
channel of the eight neighbors of room Y. The
whole process is depicted in Fig. 5.

3.2 When a player migrates from one

scene region to other region
As shown in Fig. 4, when the player approaches
the border of a scene region A, he also needs to
know what happens in the adjacent scene regions
B, C and D. If a player crosses a boundary to
other scene region, let say from A to C, the local
server of A must notify and pass the information
of the player to the local server of C. The local
server of A also notifies the player that he must
join the local server of C and pass his account
information to it. When the local server of C
receives the account information, it will verify
the correctness. If there is conflict, the
confliction will be sent to the master server for
further judgment. If it is correct, then the
player will unsubscribe channel Ra0, Ra1, Ra2, Ra3,
and Rc0, and subscribe channel Rc3, Rc4, Rb0, Rd0,
and Rd1. Finally, the player will continue to play
the online game in scene region C. The whole
process is depicted in Fig. 6. The subscription

and un-subscription of a room channel are
automatically detected and performed. The
action of un-subscription will be delayed for a

short period of time to avoid the player returning
back immediately.

Fig. 2. The proposed game architecture corresponding to the quadtree in Fig. 1.

Fig. 3. The quadtree structure maintained in a local game server.

Fig. 4. The variations of neighbors during the migration of a player from Ra4 to Rc2.

Host Game
Server

Local Game
Server

 Virtual
Community
in a grid

 Virtual
Community
in a grid

Local Game
Server

Local Game
Server

Virtual
Community
in a grid

Virtual
Community
in a grid

Zero
population

Virtual
Community
in a grid

Rooms

Black node (with players) White node (without player) Gray node

Subscribed room Unsubscribed room

Ra0

Ra3

Ra1 Ra2

Ra5

Rc0 Rc1 Rc2

A B

C D

Ra4 Ra5 Rb0

Rc1

Rc3 Rc4

Rd0

Rd1

A B

C D

 New Player 5. Subscribe to the assigned local server
according to the client’s entrance in the map

Fig. 5. The steps need to perform when a player enters a scene region.

Fig. 6. The steps need to perform when a player migrates from a scene region.

3.3 When a player wants to quit the
game

When a player wants to quit the game, he
must not kill the application or shutdown the
computer. Otherwise, the master server will
think that the client has left abruptly. The client’s
credit may be reduced for this reason. The
normal procedure is to quit the application. The
application will notify the local server and the
local server will pass the player’s account
information to the master server. The master
server will temporary save the information and
wait for the player to make sure the correctness
of the account information. The application will
also send the player’s account information to the
master server. If there is no difference between
both records, the database will be updated.
Otherwise, the master server must find out who
produces the trouble. Currently the
troubleshooting procedure is being investigated.
The whole process is depicted in Fig. 7.

3.4 When a local server wants
When a player wants to quit the gam
role is also a local game server, he
perform a number of steps. The first s
the local server must find out a cand
all online players under his control to
role. Then, the local server must
master server that he wants to quit an
candidate is. If it is ok, the master s
validate the candidate, make it to a
server and also update the quadtree
The old local server will pass th
information of all its players to the
server and then notify them to switch
local server. Then, the players will con
new local server and pass thei
information for validation. If there is n
the players will continue the game.
something wrong, the local server wi
problem to the master server. The who
is depicted in Fig. 8.

…………

2. Retrieve the
account information

Master Server Cluster

1. Login

3. Inform the player where to subscribe
and its account information

Firewall

Database Server

4. Inform the local game server the
information of the new player

Local Game
Server

Virtual
Community
in a grid

4. Inform the
local game
server the
information of
the new player

…………
Join to the virtual community
Virtual
Community
in a grid
When a player of a
virtual community
wants to cross a
boundary
Local Game
Server
Virtual Community in a grid
 1. Notify the target server and pass
the account information
 2. Notify the player that
it is ready to migrate
 3. Join the target server
r

r

 to quit
e and his
 needs to
tep is that
idate from
eplace his

notify the
d who the
erver will
new local
 structure.
e account
new local
to the new
nect to the
 account
o problem,
If there is
ll pass the
le process

Master Server ClusterVerify and save the
account information

Fig. 7. The steps need to perform when a player want to quit the game.

Fig. 8. The steps need to perform when a local game server wants to quit the game.

3.5 When a local server quits abruptly
If a player finds that the communication of

its local server is broken, it will try to reconnect
to the local server and to restart from its last
status. It will also report the error to the master
server for statistical evaluation. If the
reconnection to the local server gets failure, it
will report the death of the local server to the
master server. The master server will confirm the
death by communicating to the local server. If it
gets failure to connect, then it thinks that the
local server is dead. Thus, the local server will
find out a suitable online player (with highest
credit) and crowned it to be a local server. All
the players who participates the game in such
region will be rolled back to the states according
to their local account information. Then
everyone start playing the game again. In this
scheme, there is no need for heart breaking

detection to the local servers. It can reduce the
loading of the master server. The whole process
is depicted in Fig. 9.

3.6 When a player quits abruptly

If a local server detected that the communication
of a player is broken, then it will notify the death
of the player with its account information to the
master server. The master server will wait for
the player for a short period of time. Based on
our mechanism, if the connection between a
player and a local server is broken, the player
will report to the master server. If the player
does not report to the master server, then he will
be counted as dead. The master server will use
the account information from the local server to
update database. If the master server receives the
connection from the player, the master server
will try to find out what the problem is. If it

Database Server

Firewall

When a player wants
to quit the game

Local Game
Server

 2. Notify the master server and
pass the client’s information back

 1. Notify the local server that it wants to quit

 5. Notify the player that it is
ready to quit

 4. Pass the account
information back

 3. Tell the player to update account
information with the master server

Master Server Cluster

 4. Transfer the
account
information of its
players to the new

Retrieve the related players’
account information Database Server

 3. Validate the candidate. If
it is ok, make the candidate to
be a new local server

Firewall

Local Game
Server

 2. Notify the master server
that it wants to quit and who
the new local server is 5. Notify the players that they

need to join the new local server

Virtual
Community
in a grid

…………….

1. Assign one of
the higher credited
players in the
same scene region
to be a new local

6. Subscribe to the new local server and
validate their account information

From the virtual community
in the same scene region

knows who causes the trouble, somebody’s
credit may be reduced. The whole process is
depicted in Fig.10.

3.7 Other issues
When the local server fully loads, it will

find a helper to share its loading. Thus, the
quadtree maintained in the master server will be
extended. When the local server’s loading
becomes low, it will ask for its parent local
server to take over its work. Thus, the quadtree
maintained in the master server will be retracted.

4. Discussion

4.1 About Authentication Problem

As aforementioned, when a player wants to quit
from the game, both the player and local server
must send the last game state to the master server.
Then the master server will compare these two

copies to make sure those data are identical. To
reduce the effort of sending game state, the local
server may send the full game state information
to the master server while the client sends the
digital digest. The master server can generate a
digital digest from the data sent by the local
server and compares it to the digest coming from
the player. Since digital digest of game state is
much smaller to the original data, the bandwidth
usages of the master server and the player are
reduced.

4.2 Credit
In our approach, game players are allowed to

host the game voluntarily. Therefore, we need an
effective way to find who are suitable to be the
local game servers. The hardware, the network
bandwidth and the total participation time of the
players will be the criteria to build the credit
system.

 Database Server Verify and save the
account information

Master Server Cluster

Fig. 9. The steps need to perform when a local server quits the game abruptly.

Fig. 10. The steps need to perform when a player quits the game abruptly.

Firewall

 4. If connecting to the local
server gets failure, assign one
of the higher credited online
players the same grid to replace
the current local server

Local Game
Server

3. Try to connect to th
local g

e
ame server

roken The co tion is bnnec

 1. The client tries to reconnect to
the local server

 5. Notify the
players where to
join the new local ×

 2. If the reconnecting fails,
notify the master server

Virtual
Community
in a grid

…………….

6. Subscribe to the new assigned local server

Replace t
broken one

he

Firewal
l

3.Verify and save the
account information

Master Server Cluster

Database Server

Firewall

Local Game
Server

1. Notify the master server the death
of the player and pass his account
information back

 The connec is btion

×
roken

4.3 Cheat-Proof
Fairness is one of the important issues in the
game design. Under our distributed architecture,
we must prevent cheating from the player and
also the local server. By comparing the two game
states, we can validate the correctness of the
game state. However, if both sides cheat in
co-operation, we still have no effective way to
prevent it right now. Further research will focus
on the improvement for the fairness of the game.

5. Conclusion
A hybrid scheme using mobile agent on

dynamic quadtree architecture for massive
multiplayer online games is presented in this
paper. Our proposed architecture is effective in
distributing game players to multiple servers. It is
easy to split the game map to smaller regions to
increase the participated local servers when there
are too many players. In contrast, regions with
only a few players in it will be merged together
based on quadtree structure. With this ability for
load balancing plus an effective authentication
mechanism, we could allow game players to share
the loading voluntarily by hosting the game. This
type of cooperation will significantly reduce the
operation cost of an online game. The proposed
distributed architecture provides important
features including fault tolerance and scalability.
Unlike the traditional client-server architecture,
everyone is influenced when the server crashes. In
addition, our scheme is simply a client-server
architecture under a local server. Therefore any
online game which is currently running on
traditional client-server architecture can be easily
ported to ours without any risk of rebuilding
program infrastructure.

References

[1] S-J. Kim, F. Kuester and K.H. Kim, “A

global timestamp-based scalable framework
for multi-player online games,” Proceedings
of the IEEE Fourth International
Symposium on Multimedia Software
Engineering, Newport Beach, California,
USA, pp. 2-10, 2002.

[2] A.R. Bharambe, S. Rao and S. Seshan,
“Mecury: a scalable publish-subscribe
system for internet games”, Proceedings of
the first workshop on Network and system
support for games, Braunschweig,
Germany, pp. 3–9, 2002.

[3] N.E. Baughman and B.N. Levine,
“Cheat-Proof playout for centralized and
distributed online games,” Proceedings of
the Twentieth IEEE Computer and
Communication Society INFOCOM

Conference, Alaska, USA, pp.104-113,
2001.

[4] Butterfly.net: Powering Next-Generation
Gaming with Computing on Demand
http://www.butterfly.net/platform/technolog
y/idc.pdf

[5] S.D. Benford and L.E. Fahlén, “A spatial
model of interaction in large virtual
environments,” Proceedings of the Third
European Conference on
Computer-Supported Cooperative Work -
ECSCW '93, Milano, Italy, pp.107-132, 1993.

[6] C. Carlsson and O. Hagsand, “DIVE – A
multi-user virtual reality system,” IEEE
Virtual Reality Annual International
Symposium, Washington, USA, pp. 394-400,
1993.

[7] R. Lea, Y. Honda, and K. Matsuda, “Virtual
Society: Collaboration in 3D Spaces on the
Internet,” Computer Supported Cooperative
Work : The Journal of Collaborative
Computing, vol. 6. pp. 227-250, 1997.

[8] C. Greenhalgh, “Awareness-based
communication management in the
MASSIVE systems,” Distributed System
Engineering, pp. 129-137, 1998.

[9] M.R. Macedonia, M.J. Zyda D.R. Pratt, D.P.
Brutzman and P.T. Barham, “Exploiting
reality with multicast groups,” IEEE
Computer Graphics Application, vol. 15,
pp.38-45, 1995.

[10] E. Léty, Une Architecture de
Communication pour Environments Virtuels
Distribués á Grande-Échelle sur l’Internet,
PhD thesis, Université de Nice-Sophia
Antipolis, Decemeber 2000.

[11] H. Samet, Applications of Spatial Data
Structures – Computer Graphics, Image
Processing, and GIS, Addison-Wesley, New
York, 1990.

[12] F. Y. Shih and W. T. Wong, ‘‘An adaptive
algorithm for conversion from quadtree to
chain codes’’, Pattern Recognition, vol. 34,
pp. 631-639, 2001.

[13] S. Fiedler, M. Wallner and M. Weber,
communication architecture for massive
multiplayer games,” Netgames 2002 first
workshop on network and system support
for games, Braunschweig, Germany, pp.
14–22, 2002.

http://www.butterfly.net/platform/technology/idc.pdf
http://www.butterfly.net/platform/technology/idc.pdf

