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Abstract— Image resizing is an important
operation in digital image processing. In this
paper, we introduce an image resizing scheme
that produces significantly improved quality over
the pixel replication method. This algorithm is
suitable for real-time image resizing applications
including: Virtual Reality, Optical Character
Recognition, Symbol Recognition, and Car License
Plate Recognition. Although this method produced
“jaggies” at the edges in the resized image, the
execution time is about 22 to 40 times fast than
the Windows and the Weiman scheme, respectively.

Index Terms—Image Resize, Pixel Replication,
Rothstein code.

I. Introduction

Due to the advantage in digital signal process-
ing, more and more photography data is available
today in a digital format. Image resizing is an
important geometrical process in digital image
processing [1]. Applications of image resizing
include: Virtual Reality(VR), Optical Charac-
ter Recognition(OCR), Symbol Recognition(SR),
and Car License Plate Recognition(CLPR), med-
ical imaging processing [2], and other resolution
conversion which requires image realization on
monitors or printers.

The most common techniques to resize image
include (a) interpolation and spline method [3];
(b) frequency domain method [4], [5], [6]; (c)
area re-sampling [7]; and (d) pixel replication.
Usually, to achieve a high quality result, image
resizing normally use interpolations. For a prac-
tical usage, interpolation is time consuming and
unsuitable for a lots of real-time applications,
such as VR, OCR, SR and CLPR. Although
pixel replication is fast and simple, its cause
some aliasing. As a result, critical lines may
disappear and others may be duplicated unneces-
sarily. In this paper, we introduce an image resiz-
ing scheme that produces significantly improved
quality over pixel replication method. Its execu-
tion time is about 22 to 40 times fast than the
Windows and the Weiman scheme, respectively.

The organization of this paper is as follows.
Section II introduces the basic definitions of
digital image representation and discusses the
most popular digital image resizing methods.
In Section III, we propose a fast and efficient
method base on replication to resize digital im-
ages. Experimental results and conclusions are
included in Section IV and V, respectively.

II. Methods to resize Digital Image

A. Basic Definitions

An digital imagef(x, y) is a two-dimensional
array of pixel values that specifies the intensity
(brightness) of a signal at a particular spatial
position(x, y), as shown in Figure 1. The origin
is located at the top left corner. Note that, the row
indices are from 0 tow − 1 and the columns
range from 0 toh − 1. For a point (x, y) of
a digital image,x and y are assumed to be
integers with index intervals0 ≤ x ≤ w− 1 and
0 ≤ y ≤ h−1. The values ofw andh specify the
image resolution. An image pixel valuef(x, y)
has a range ofG gray levels, whereG ≥ 2. In
image processing, it is practical to use the values
G > 2 (gray value image) andG = 2 (bilevel
image). The Functionf(x, y) represents a gray-
scale pixmap of an image.

A image might be degraded during processing.
Measurement of image quality can be used to
assess the degree of degradation. Methods for
assessing image quality can be divided into two
categories: subjective and objective.

Enlargement and reduction are lossy opera-
tions. The peak signal to noise ratio (PSNR)
is a well-known and objective measure of the
performance of an image resizing scheme [8].
The PSNR values between an original imagef
and the zoom imagêf is defined as (1).
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Fig. 1: Matrix representation of a digital image.

MSE =
1

w × h

w−1∑
x=0

h−1∑
y=0

[f(x, y)− f̂(x, y)]2

(1)

PSNR = 10 log10[
255× 255

MSE
]dB

B. Digital Image Resizing

There are four major approaches for digital
image resizing:

1) Interpolation and Spline-based Method.
2) Frequency Domain Transformation

(FFT/DCT).
3) Pixel Replication, and
4) Area Re-sampling.

1) Interpolation and Spline-based Method.:
The most elementary type of interpolation con-
sists of fitting a polynomial through the pixels
of the image to be resized line by line. For any
image linef(•, l), 0 ≤ l ≤ h − 1, we can find
the (w−1)th Lagrange interpolating polynomial
(2) to pass through thew pixels.

Pw−1(x) = f(0, l)Lw−1,0(x) + · · ·+
f(w − 1, l)Lw−1,w−1(x)

=
w−1∑

i=0

f(i, l)Lw−1,i(x) (2)

where

Lw−1,i(x) =
w−1∏
k=0
k 6=i

x− k

i− k

for eachi = 0, 1, . . . , w − 1.

One might expect that the quality of interpo-
lation increases with an increased degree ofn of

the polynomials used. Unfortunately, this is not
generally true. Indeed, for various functionsf ,
the corresponding interpolation polynomials may
tend to oscillate more and more between pivotal
points asn increases.

An alternative approach is to divide the in-
terval into a collection of subintervals and to
construct one approximating polynomial on each
subinterval. This approach is called the Piecewise
Polynomial Approximation. This means that, we
partition x, 0 5 x 5 w − 1, into k subintervals
with common endpoints, then we fit a polynomial
through each subinterval. Hence, instead of ap-
proximatingf(•, l) by a single polynomial on the
entire interval0 5 x 5 w − 1, we approximate
f(•, l) by k polynomials.

The most common piecewise polynomial ap-
proximation uses third-degree polynomial whose
curve passes through four points(called cubic
spline interpolation). Note that these methods,
although very accurate, suffer from two draw-
backs:

1) Not suitable for real time applications.(i.e.,
due to the complexity)

2) Not suitable for bilevel image.

2) Fourier Transform and Cosine Trans-
form(FT/CT): The Fourier transform and Co-
sine transform play a critical role in a broad
range of image processing applications, includ-
ing enhancement analysis, restoration, and com-
pression. These methods can also be used to re-
sizing digital images [4], [5], [6]. Sid-Ahmed [4]
have designed an algorithm based on 2D Fourier
Transform that enlarges an image by 2. The
algorithm is briefly discussed here:

1) Compute the two-dimensional Fourier
Transform of a given image of sizeN×N ,
i.e.,F = FFT2D(f).

2) Append zeros to theF to increase its size
to 2N × 2N .

3) Compute the two-dimensional Inverse
Fourier Transform ofF . The result is the
original image with size2N × 2N .

The main disadvantage of these methods is
computationally expensive. It must perform for-
ward two-dimensional transform and inverse
two-dimensional transform.

3) Pixel Replication: The simplest way to
magnify pixels is to duplicate pixel by an integer
number in the X or the Y direction(or both).
Expansion of images in integral multiples is
fairly easy – just duplicate every pixel column
or row N times. Shrinking of an image by a
factor of1/N is achieved by removing everyN th
column or row. However, when we want to scale
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an image by a non-integer scalar, the procedure
becomes more complex. We have to replicate or
remove pixel rows or columns according to a
special pattern.

The basis for determining this pattern is the
Rothstein code [7], a binary sequence repre-
senting a line with slopep/q. In the case of
expanding an image horizontally, it tells us how
to distribute q columns of the source image
amongp columns of the target by duplicating
each appropriate column to fill in the gaps. For
example, if we are expanding an image withq
columns to a width ofp columns, the Rothstein
code will be a set ofp bits with q of them
set, each set bit evenly distributed among thep
bits. Each set bit indicates that this column is
to be copied, and each unset bit indicates that
the column is to be a duplicate of the copied
columns.

For reduction an image, we can use the inverse
of the expansion slope, the factorq/p. The
Rothstein code tells us which columns to remove.
Again, each column with a marked bit in the
Rothstein code is copied and each column with
an unmarked bit is removed.

The generation of the Rothstein code can be
described graphically by Fig 2. First, we plot
a line with the desired slope on a grid. Every
column in which the line crosses a horizontal
grid line receives a one, all others receive a zero.
Algorithm 1 shows the routine to calculate the
Rothstein code. In every column we increase
xsum by n, which is the minimum ofp and
q. Whenxsum overtakesm, which is the max-
imum of p and q, the line crosses a horizontal
grid mark. The Rothstein code for the current
column is set to one andm is subtracted from
xsum. This process continues until the number
of columns has been reached.

For reducing of an image line from 7 pixels
to 5 pixels horizontally, the Rothstein code is
0110111 as shown in Fig 2. Thus, pixel 0 and
3 are removed, which generates an image of 5
pixels. To expand an image line from 5 pixels to
7 pixels, because the first digit of the Rothstein
code is 0, we can rotate the code to the left by
one digit to get 1101110, and use this code to
generate the new image with pixel 1 and pixel
4 copied. Although this method is simple and
fast, but this method will create “jaggies” at the
destination image if the source image have an
edge.

4) Area re-sampling: This method resizes
images using the average of its nearest neighbors.
Weiman [7] supposed an algorithm based on
cyclic permutation of the Rothstein code to get

Algorithm 1 Generate of Rothstein code forp/q.
Require: roth : array [0..MAX(p, q)-1] of char;

{array to store Rothstein code.}
p, q : integer;{Scale factor ofp/q.}
m : integer;{max of p and q.}
n : integer;{min of p and q.}
xi : integer;{array index.}
xsum : integer;{accumulator.}

Ensure: Rothstein code in arrayroth.
1: m = max(p, q);
2: n = min(p, q);
3: xsum = 0;
4: for xi = 0 to m− 1 do
5: xsum = xsum + n;
6: if xsum >= m then
7: roth[xi] = 1; {set to 1.}
8: xsum = xsum−m;
9: else

10: roth[xi] = 0; {clear to 0.}
11: end if
12: end for

Fig. 2: Rothstein’s code for a line of slope57 .

different mappings from sources to destinations,
and to add the mapped image to a temporary
image. Then, the algorithm takes average of
the temporary image to get a resized image.
Foley [9] gives an pseudo code based on Weiman
Algorithm to expand an image. Although this
method overcomes the “jaggies” problem and
gets a high PSNR value, but it requires ad-
ditional memory buffer and summation/average
operation. This drawback makes the algorithm
not suitable for real time applications.

III. Image Resizing by Random Sampling

By using Rothstein code, Pixel Replication can
resize an image by a non-integer scale factor.
We have developed an algorithm that directly
resizes an image line from widthw to W , for
any w, W > 0, as shown in Algorithm 2.
This algorithm combines the enlargement and
the reduction schemes in a single algorithm,
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making it suitable of implementation in many
programming languages.

Algorithm 2 Resize of an image line from width
w pixels toW pixels.

Require: source : grayscalePixmap;{Source
image, sizew.}
target : grayscalePixmap;{Target image, size
W .}
w : integer;{width of source image,w > 0.}
W : integer;{width of target image,W >
0.}
x : integer;{Indices for source line.}
tx : integer;{Indices for target line.}
AccX : integer;{weight accumulator.}

Ensure: Resized image in target with widthW .
1: AccX = 0;
2: tx = 0;
3: for x = 0 to w − 1 do
4: AccX = AccX + W ;
5: while AccX >= w do
6: {copy source pixel to target.}
7: target[tx] = source[x];
8: tx = tx + 1; {next pixel}
9: AccX = AccX − w;

10: end while
11: end for

To resize an image line from widthw to W ,
this algorithm sequentially addsW to AccX, if
AccX > w, the algorithm copies the correspond-
ing source pixel to a target pixel, and subtracts
w from AccX. Otherwise, the algorithm removes
the corresponding source pixel.

Fig 3 schematically represents the proposed
technique. Cell contents represent pixel indices.
According to this algorithm, to reduce an image
line from width 7 to 5, pixels 0 and 3 are
removed from the source line. To expand this
image line from 5 to 7, pixels 2 and 4 are
duplicated.
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Fig. 3: Zoom by Pixel Replication.

Although this scheme is fast and simple, it
may cause some aliasing. As a result, some
horizontal/vertical may disappear and others may
be duplicated too many times. This algorithm
may causes the lose of symbol-based information
in the source image.

This problem can be eliminated by generating

a random number, which forces the duplicated or
removed pixels randomly distributed among the
pixels or lines. Algorithm 3 shows the algorithm
to resize an image fromw × h to W ×H.

This algorithm generates uniform random
numbersrz andcz. Whererz is between0 and
h − 1, which is used to randomly select a line
of image for duplication or skipping. And,cz is
between0 andw−1, which is used to randomly
select a column of image for duplication or skip-
ping. By introducing the duplication or skipping
scheme, we can prevent a horizontal/vertical line
“all disappear” of the Pixel replication scheme,
and improve the visual effect of the resized
image.

Algorithm 3 Resize of an image fromw× h to
W ×H.
Require: source : grayscalePixmap;{Source

image, sizew × h.}
target : grayscalePixmap;{Target image, size
W ×H.}
w, h : integer;{Size of source image,w >
0, h > 0.}
W, H : integer;{Size of target image,W >
0,H > 0.}
x, y : integer;{Indices for source image.}
tx, ty : integer;{Indices for target image.}
rz, cz : integer;{zoom of column and row}

Ensure: Resized image in target with sizeW ×
H.

1: {Generate an uniform random number be-
tween0 andh− 1.}

2: rz = uniform(0, h− 1);
3: ty = 0;
4: for y = 0 to h− 1 do
5: rz = rz + H;
6: while rz >= h do
7: {Generate an uniform random number

between0 andw − 1.}
8: cz = uniform(0, w − 1);
9: tx = 0;

10: for x = 0 to w − 1 do
11: cz = cz + W ;
12: while cz >= w do
13: {copy source pixel to target.}
14: target[ty][tx] = source[y][x];
15: tx = tx + 1; {next pixel}
16: cz = cz − w;
17: end while
18: end for
19: ty = ty + 1;{next line of target}
20: rz = rz − h;
21: end while
22: end for
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IV. Experimental Results

In order to illustrate the performance of Ran-
dom Duplication scheme, we conduct a series
of complementary image magnification and re-
duction test, based on four256 × 256 images:
Baboon, Barbara, Cameraman, and Lena. We test
the three algorithms and add an off-the-shelf
Microsoft Windows API function – StretchBlt,
for comparison. Four approaches are used in the
comparison:

1) Microsoft Windows API function - Stretch-
Blt.

2) Weiman algorithm.
3) Pixel replication.
4) Random replication.

The experiments are implemented on a
PC(Pentium II 300, running Windows 2000 with
512MB SDRAM). The execution time of the
resizing schemes is too small to measure by
using the general built-in library functions, such
as “time”, this function gets the resolution up
to “second”. The execution time of the various
resizing schemes was measured by using the
“Read Time-Stamp Counter” instruction of the
Intel Architecture(which is implemented in an
assembly language). The “Time-Stamp Counter”
is a 64-bit counter register, which is increased by
1 of each clock cycle when the processor starts.
This instruction load the processor’s current 64-
bit time-stamp counter into a register. For each
image, we perform the resizing operation by each
scheme, and measure the PSNR value, compute
the CPU clock cycles of enlargement and reduc-
tion operations. This task is repeats 100 times for
the sake of Random Replication. The speedup
ratio is evaluated by the following equation:

CPU clock cycles of the other schemes
CPU clock cycles of the Random replication

In a series of two experiments, we first enlarge
the image to320 × 320 and then reduced to
its original size of256 × 256. Table I shows
the PSNR values of these four schemes. The
experimental results show that the proposed al-
gorithm improves PSNR values over Pixel Repli-
cation(PR) by 4.26 dB average. Although the
PSNR values are lower than the ones of Stretch-
Blt(WIN) and Weiman(WEI) Algorithm, the ex-
ecution time is about 13 to 22 and 30 to 41 times
faster, respectively, as show in Table II.

In the second experiment, we first reduce the
test images to192 × 192, then enlarge them to
their original size256×256. Table III shows the
PSNR values of the four schemes. Fig 4 illustrate
the PSNRs and the execution time of the Barbara
image. The resulting images of Barbara from the

TABLE I: PSNR values(Enlarge to320 × 320
then reduce to256× 256).

Random

image WIN WEI PR Min. Avg. Max.

Baboon 35.71 25.94 16.54 17.02 20.80 23.79
Barbara 35.67 34.92 23.54 25.49 28.31 30.97
Cman 35.77 31.94 20.18 21.85 25.03 27.85
Lena 35.71 34.84 23.10 25.51 27.91 30.41

TABLE II: Speedup times, relative to Ran-
dom replication(enlarge to320 × 320 then
reduce to256× 256).

Windows API – StretchBlt Weiman

image Enlarge Reduce Enlarge Reduce

Baboon 13.03 21.10 29.87 40.42
Barbara 13.08 21.15 29.83 40.48
Cman 13.13 21.81 29.53 40.55
Lena 13.61 21.98 29.96 40.72

four methods are shown in Fig 5. The speed up
times is shows in Table IV. The experimental
results show that the proposed algorithm has an
improved PSNR value over Pixel Replication by
2.56 dB in average. Again, the PSNR value is
lower than StretchBlt and Weiman Algorithm.
But its execution time is speed up about 17 to
23 and 22 to 40 times, respectively.

TABLE III: PSNR values(Reduce to192 × 192
then enlarge to256× 256).

Random

image WIN WEI PR Min. Avg. Max.

Baboon 19.96 22.35 16.54 16.84 18.19 19.31
Barbara 27.14 31.17 23.54 24.81 26.00 26.81
Cman 24.73 27.91 20.18 21.31 22.74 23.96
Lena 27.01 31.06 23.10 24.56 25.66 26.39

TABLE IV: Speedup times,relative to Ran-
dom(reduce to192× 192 then enlarge to256×
256).

Windows API – StretchBlt Weiman

image Reduce Enlarge Reduce Enlarge

Baboon 21.73 17.10 40.42 21.69
Barbara 22.08 17.11 33.33 21.71
Cman 22.52 17.26 33.77 21.88
Lena 22.74 17.12 33.35 21.71

V. Conclusion

We have presented a new image resizing
scheme suitable for real-time applications such
as Virtual Reality animation, Optical Character
Recognition, Symbol Recognition, and Car Li-
cense Plate Recognition. This algorithm is based
on the Pixel replication method, which combines
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Fig. 4: PSNR and Speedup times of Barbara.

the enlargement and the reduction schemes in a
single algorithm. Although this method produces
“jaggies” at the edges in the resized image, how-
ever, its execution time is about 13 to 23 and 30
to 41 times faster than a Windows API function
and the Weiman Algorithm, respectively.
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Fig. 5: Zoom of Barbara.
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