Independent Spanning Trees on Recursive Circulant Graphs
iRk SAGNR BR Y-S RS T

B
6 e B AL

stang1@pchome.com.tw

Abstract

Two spanning trees of a given graph G
are said to be independent if they are rooted at
the same vertex » and for each vertex v, v£r, the
two paths from r to v, one path in each tree, are
internally disjoint. A set of spanning trees of G
is said to be independent if they are pairwise
independent. A recursive circulant graph R(N,d)
has N=cd" vertices, where (<c<d, and every
vertex v in R(N,d) is adjacent to vertices
vtd(mod N), where k=0, 1, 2, ..., m—1. Since
R(cd",d)y can be recursively partitioned into d
induced subgraphs R(cd"”'.d), this family of
circulant graphs is named as “recursive”.
R(ed",d) is regular with degree O, where 0 is
2m=1, 2m, 2m+1 or 2m+2, depending on the
value of parameters ¢ and d. In this paper, we
shall propose efficient algorithms to construct &
independent spanning trees rooted at any vertex
in a recursive circulant graph.

Keywords: recursive circulant graphs,
independent spanning trees,
internally disjoint paths, fault-
tolerant broadcasting.

1. Introduction

In this paper, we deal with the
independent spanning trees on a special family
of interconnection network, called recursive
circulant graphs. A recursive circulant graph
R(N,d) has N=cd" vertices labeled from 0 to
N-1, and every vertex v in R(N,d) is adjacent to
vertices [vtd'], , where (0<c<d, n>0, and k = 0,
1, 2, ..., m—1. Notice that [«]. denotes # modulo
c. Recursive circulant graphs are vertex
symmetric, and thus regular [13]. We denote by
0 the degree of vertices in R(cd”,d). Then, & in

Wik, ERM, HhE
BB RETNEEAR

ccdir@mail.ntust.edu.tw

closed-form is shown below:

@m-1 ife=1,d=2,m=2;
5:5 2m ife=ld>2,m=1;
m+1l ife=2,m=1;
Bm+2 ife>2,m=1.

For example, Figure 1 shows the graphs R(8,2),
R(9,3), R(18,3) and R(12,4), which stand for
distinct cases of parameters ¢ and d.

Recursive circulant graph R(cd”,d) has a
recursive structure since the graph can be
partitioned into d induced subgraphs
isomorphic to R(cd"’,d). For example, R(18,3)
shown in Figure 1(c) contains three disjoint
copies of R(6,3). Notice that each induced
subgraph R(6,3) of R(18,3) contains exactly
those vertices having the same remainder of
division by 3. In Figure 1(c), vertices 0, 3, 6, 9,
12 and 15 induce an R(6,3) subgraph of R(18,3).
Besides, the basic cycle of a recursive circulant
graph is the cycle that consists of all the edges
not in the induced subgraphs [4]. In R(18,3), the
basic cycle contains edges (0,1), (1,2), ..,
(16,17), (17,0) which form a Hamiltonian cycle.

In 1994, Park and Chwa first proposed
recursive circulant graphs [13]. This family of
graphs is important due to its flexibility and
extensibility. In addition, they are suitable for
developing algorithms [4, 10, 11, 14, 16, 18].

Next, we introduce the definition of
independent spanning trees. Considering a
graph G=(V,E), a tree T is called a spanning
tree of G if T is a subgraph of G and T contains
all vertices in V. Two spanning trees of G are
said to be independent if they are rooted at the
same vertex, say », and for each vertex v [
N{r}, the two paths from r to v, one path in

YThis work was supported by the National Science Council, Republic of China, under Contract 92-

2416-H-135-001.

(a) R(8.2)
c=1,d=2.m=3

(b) R(9.3)
c=1,d=3,m=2

(c) R(18.3)
c=2,d=3,m=2

(d) R(12,4)
c=3,d=4.m=1

Figure 1. Examples of recursive circulant graphs.

©
(4)

7(8.4) 7(8.2)

S 5§30 o4

7(8.6)

7(8,1) 7(8.7)

Figure 2. Five independent spanning trees of R(8,2).

each tree, are internally disjoint. A set of
spanning trees of a graph is said to be
independent if they are pairwise independent.

Finding independent spanning trees of a
given graph has applications in the fault-
tolerant broadcasting protocols of distributed
computing networks [2,7,12,15]. The fault-
tolerance is achieved by sending & copies of the
message from the root (source node) of £
independent spanning trees. If the source node
is faultless, this broadcasting protocol can
tolerate up to -1 faulty nodes.

In [7], Itai and Rodeh gave a linear time
algorithm for finding two independent spanning
trees in a biconnected graph. In [5], Cheriyan
and Maheshwari showed that, for any 3-
connected graph G and for any vertex r of G,
three independent spanning trees rooted at » can
be found in O(|V)|E|) time. In [19] and [9], the
authors conjectured that any k-connected graph
has & independent spanning trees rooted at an
arbitrary vertex r. This conjecture is still open
for arbitrary k-connected graphs with £ > 3. In
[6], Huck has proved that the conjecture is true
for planar graphs.

In [17], Tang et al. studied the
independent spanning trees of k-connected and
k-regular graphs. They found several common

properties, which are helpful for finding
independent spanning trees in these graphs. Let
G be a k-connected and k-regular graph and let
IST denote a set of k independent spanning trees,
if exists, rooted at vertex r in G. Then, the
following properties must hold.

Property 1. The root vertex r has only one child
in every tree of the IST.

Property 2. The roof vertex r has k-1
grandchildren in every tree of the IST.

For example, an IST of R(8,2) is shown in
Figure 2. Since R(8,2) is a 5-connected and 5-
regular graph, the IST contains five
independent spanning trees rooted at one vertex.
The root vertex of every tree has one child and
four grandchildren. Throughout this paper, we
denote a tree in an IST of R(N,d) by T(N.,)),
where is the only child of the root.

The neighborhood of vertex v, denoted
by N(v), is the set of vertices adjacent to v in a
graph. Let parent(v,f) denote the parent of
vertex v in tree T(NV,f) and let ancestor(v,f)
denote the ancestor set of a vertex v in T(N,?).
The following properties also hold in an IST of
R(N,d).

Property 3. For every non-root vertex v, the
union of all parent(v,t) in an IST is the

neighbor of vertex v.

Property 4. For every non-root vertex v, the
intersection of ancestor(vii) and
ancestor(v,j) is the root vertex, where
T(N,i) and T(N,j) are two distinct trees
in the IST.

Using vertex 4 in the IST shown in Figure 2 as
an example, parent(4,4) [parent(4,2) O
parent(4,6) [parent(4,1) 0O parent(4,7) =
{0,2,6,3,5} = N(4). For any two trees 7(8,i) and
7(8,)), ancestor(4,i) n ancestor(4,/) = {0}. By
the way, Property 4 can be used to verify the
independency of a set of spanning trees rooted
at one vertex.

A chordal ring, denoted by C(N,d), is a
4-connected and 4-regular graph with vertex set
V= {0,1,2,...N-1} and edge set E = {(u,v)|
[v—uly = 1 or d}, where 2 < d < N/2 [1,3].
Chordal rings have close relation to recursive
circulant graphs. For example, R(9,3) and
R(12,4) shown in Figure 1 are both chordal
rings, while R(8,2) and R(18,3) are not. On the
other hand, C(12,4) is a recursive circulant
graph, while C(12,3) is not. In [8], Iwasaki et al.
proposed an algorithm to find an IST of C(V,d).
Their algorithm also works for recursive
circulant graphs with degree 4. Furthermore,
like chordal rings, some IST’s of a recursive
circulant graph have the following property.

7(4,2)

7(4,1)

Property 5. For all t < N/2, T(NN-t) is
constructed symmetrically from
T(N,t) by changing each non-
root vertex v to [N—v/],.

For example, see Figure 2 again. 7(8,6) is
obtained from 7{(8,2), while 7(8,7) is obtained
from 7(8,1) using the symmetrical property of
R(8,2). Particularly, 7(8,4) is symmetrical to
itself.

As we mentioned at the beginning of this
section, recursive circulant graphs are ©o-
connected and O-regular, but O is varied
according to the value of parameters ¢, d and m.
In this paper, we shall prove that Zehavi's
conjecture is true for all recursive circulant
graphs. That is, we shall propose efficient
algorithms to construct & independent spanning
trees rooted at any vertex in a recursive
circulant graph. Since recursive circulant graphs
are vertex-symmetric. Without loss of
generality, we simply consider independent
spanning trees rooted at vertex 0 of a recursive
circulant graph.

The remainder of this paper is organized
as follows. In Section 2, we shall propose an
algorithm for constructing an IST of R(2",2). In
Section 3, we shall propose an algorithm for
constructing an IST of R(d",d), for all d > 2.
Section 4 contains our concluding remarks.

7(4.,3)

7(16,12)

7(16,14) 7(16,15)

Figure 3. (a) The IST of R(4,2); (b) an IST of R(16,2).

2. Constructing independent
spanning trees on R(2",2)

In this section, recursive circulant graph
R(2".2) is taken into consideration. R(2",2) is
(2m-1)-connected and (2m—1)-regular, where
m22. In case of m=2, R(4,2) is a 4-clique. The
IST of R(4,2) is shown in Figure 3(a).

Note that the degree of each vertex in
R(2"2) is two greater than the degree of each
vertex in R(2"72). Thus, an IST of R(2"2)
contains two more spanning trees than an IST
of R(2"72). The construction algorithm
consists of three steps. First, we use a recursive
procedure to construct 7(2",2"), T(2",2"7), ...,
7(2"2%) and T(2"2). Next, we construct
TQm2m=2mhy, T2m 22"y, L., T(2"2"-2%)
and 7(2",2"-2) symmetrically. Finally, we use a
bit-comparing scheme to determine the parent
of each vertex in 7(2",1) and 7(2", 2"-1). For
some conflicting edges among these spanning
trees, necessary transformation is performed in
order to hold the independent property. We give
the construction algorithm of an IST of R(2”,2)
as follows.

Algorithm IST R2(m)

Input: m.

Qutput: An IST of R(2",2).

Method:

Step 1. If m = 2, then return the IST of R(4,2);
else call IST R2(m-1)
endif

Step 2. (construct 7(2",2"), where i= 1,2, ..., m=1)
For i=1tom-1 do

Substep 2.1 (Create the only child of the

root)

parent(2,2') =0

Substep 2.2 (Create 2m—2 grandchildren)
For each vertex v is a neighbor of vertex 2/
and v Z 0 do
parent(v, 2"y =2’
enddo
Substep 2.3 (determine the parents)
For each vertex v is not a neighbor of vertex 2
do
If v is even, then
let p = parent(v/2,2"™) in IST of R(2"™2),
parent(v,2") = 2p
else (v is odd)
if v<2', then
let p = parent((v+1)/2,2" ") in IST
of R(2"™2),
parent(v,2') = 2p-1;
else (v > 2
let p = parent((v—1)/2,2'") in IST

of R(2",2),
parent(v,2') = 2p+1
endif
endif
enddo
enddo
Step 3. (symmetrically construct 7(2", 2"=2"),
where i=1,2, ..., m=2)
Fori=1tom-2do
For every vertex v in 7(2".2"y and v # 0 do
replace the label of v with 2" —v
enddo
enddo
Step 4. (construct 7(2",1) and 7(2",2"-1))
Substep 4.1 (Create the only child of the root)
parent(1,1) = 0;
parent(2"-1, 2"-1) = 0.
Substep 4.2 (create 2m—2 grandchildren of the root)
For each vertex v is a neighbor of vertex 1
and v # 0 do
parent(v,1) = 1;
parent(2"-v,2"-1) =2"-1
enddo
Substep 4.3 (determine parent and do transformation)
For each vertex v is not a neighbor of vertex 1 do
Let v, V... ViV, be the m-bit binary
string of vertex v, and let v, be the right-
most different bit between vertices v
and 1. We set
parent(v,1) = v=27;
parent(2"-v, 2"—1) = 2"—y+2?
If p # 0 then we can find the transformed tree
7(2"” x) where parent(v,x) = v—27. We set
parent(v,x) = v—1;
parent(2"-v, 2"-x) = 2"-y+1
endif
enddo
End of Algorithm IST R2

We use the ST shown in Figure 3(b) to
illustrate Algorithm IST R2. In Step 2, 7(16,8),
7(16,4) and 7(16,2) are directly obtained from
7(8,4), 7(8,2) and 7(8,1) (as shown in Figure 2).
In Step 3, 7(16,12) and 7(16,14) are obtained
symmetrically from 7(16,4) and 7(16,2),
respectively. In Step 4, 7(16,1) and 7(16,15) are
constructed simultaneously. By comparing the
binary string of vertex v with the binary string
of vertex 1, the parent of every vertex v in
7(16,1) is determined. For example, the binary
string of vertex 11 is 1011, the second bit (p=1)
is the right-most different bit between 1011 and
0001. Thus, parent(11,1) = 112" = 09,
Furthermore, if parent(v,1) # 1 (v is not a
grandchild of the root) and v—parent(v,1) > 1 (v
is not a leaf or edge (parent(v),v) is not in the

basic cycle of R(16,2)), there must be a
conflicting edge in tree 7(16,x) in which
parent(v,x) = parent(v,1). This is a violation to
both Properties 3 and 4. Therefore, parent(v,x)
should be changed to v-1. For example,
parent(11,1) = 9 in Substep 4.3 causes a conflict
with parent(11,8) = 9 in Substep 2.3 and, thus,
parent(11,8) is changed to 10.

In Algorithm IST R2(m), an IST of
R(2"2) is constructed by recursively calling
IST R2(m—1) twice, computing the
symmetrical trees, computing 7(2”,1) and

7(2",2"-1), and then doing some transformation.

73.1)

s, n 7 A,

7(9.3)

7(9,6)

(b)

Let AN) denote the running time of Algorithm
IST_R2, where N=2" is the number of vertices
in R(2",2). Then, we have a recurrence equation
that bounds f{N):

AN)=2AIN/2) + cN,

where ¢ is a constant. By means of
repeated substitution, we can prove that A{N) is
O(N log,N), or O(mN). Thus, Algorithm IST
takes O(mN) time to construct 2m—I
independent spanning trees of R(2",2).

7(3,2)

7(9,1) 7(9.8)

@ T27.18)

Figure 4. (a) The IST of R(3,3); (b) an IST of R(9,3); (¢) an IST of R(27,3).

Lemma 1. The 2m—1 trees constructed using
IST R2 are spanning trees of
R(111,2)‘

Proof: We will prove this lemma by induction
on m. For m=2, it is obviously true, see the
three trees shown in Figure 3(a). Suppose that
T(2™'2") (0 < i £ m-2) are spanning trees of
R(2™"'2). Then, T(2™,2") (1 < i < m—1) are also
spanning trees of R(2",2) since they are
obtained directly from 7(2™,2") and, mostly
important, the transformation step (Substep 4.3)
does not change the tree property of any
transformed tree. 7(2™1) is created in such a
regular manner that for every vertex v (v is not a
neighbor of vertex 1), parent(v,1) is less than v.
Since 2"-1 edges are created in Step 4 and no
cycle is formed, 7(2™,1) is also a spanning tree
of R(2™,2). As for T2",2"-2") (0 < i £ m-2),
they are spanning trees of R(2™2) due to the
fact that they are obtained directly form
er,2h. Q.E.D.

Next, we will prove the spanning trees
constructed using Algorithm IST R2 are
mutually independent. We only give a concise
proof.

Theorem 2. Algorithm IST R2 correctly
constructs an IST of R(2".2) in O(mN) time,
where N = 2" is the number of vertices in
R(2",2).

Proof: Let T(2"f) be a spanning tree
constructed using Algorithm [ST R2. Let
tyat,s ... tit, denote the m-bit binary string of
vertex £, and let ¢, is the right-most non-zero bit
in £. We can prove that every vertex in the path
from v to ¢in T(2",f) changes according to an
ordered sequence like {+27, +27'' . #2"7
#2420 42/ #2772 Note that some
integers in the sequence are replaced with 0 for
a specific vertex. Let v,_v, ... v,v, be the
binary string of vertex v. In case of v, = ¢, , the
integer +2'is replaced with 0 in the sequence.
We can prove this by induction on m. If this
property holds in every tree, then, for any two
trees 7(2",s) and T(2"f), ancestor(v,s) N
ancestor(v,?) = {0}. Q.E.D.

3. Constructing independent
spanning trees on R(d", d), d>2

Suppose d > 2, R(d",d) is 2m-connected

and 2m-regular. Thus, 2m independent spanning
trees should be constructed on R(d",d). In the
case of d=3 and m=1, R(3,3) is a 3-clique. The
IST of R(3,3) is shown in Figure 4(a).

The basic idea of creating an IST of
R(d",d) is similar to that of R(2",2). The most
important step is to construct 7(d",1), which is
achieved by a bit-comparing scheme. In
addition, the construction algorithm for R(d",d)
with odd d is a little different from that with
even d. In this paper, we only propose the
algorithm deals with odd J for conciseness’
sake.

Letv,, v, ... v,v, be the m-bit string of v
in base d representation. Then, we assume that
v, is the right-most different bit between
vertices v and 1 (in base d representation). In
addition, assume v, is the left bit of v, , i.e., ¢ =
ptl (p < m=1) or ¢g=0 (p=m—1). We give the
construction algorithms for R(d”,d) as follows.

Algorithm IST Rd(m)

Input: m.
Output: An IST of R(d",d), where d>2 and d is
odd)
Method:
Step 1. (recursive procedure)
If m=1, then
return the IST of R(d,d);
else
call IST Rd(m-1)
endif

Step 2. (construct 7(d",d), where i = 1,2, ..., m—1)
Fori=1tom-1do

Substep 2.1. Construct d trees by copying
T(d"",d™") and then changing the label
of vertex v in d trees from
[dv—(d-1)/2]y to [dv+(d—1)/2]y,
respectively.

Substep 2.2. Construct 7(d",d') by
connecting d vertices which are
labeled from d'—«(d-1)/2 to d+(d-1)/2.

Substep 2.3. Symmetrically construct 7(d”, &"-d').

enddo
Step 3. (construct 7(d",1))
For each vertex v # 0 do (determine parent
for every vertex)
Substep 3.1. do case
case 3.1.1. v, = 0 : parent(v,1) = v+1
case 3.1.2. v, = 0 : parent(v,1) = v-1

case 3.1.3. 0 <v, < (d-1)2 and 0 <v, < (d-1)/2:

parent(v,l) = v—d
case 3.1.4. 0 <v, < (d-1)/2 and (d-1)12 <v,
parent(v,1) = [v+d]y
case 3.1.5. (d-1)/2 <v, : parent(v,1) = v—1
endcase

Substep 3.2. Find the corresponding
transformed tree for cases 3.1.3 and
3.1.4 and do the transformation.
enddo
Step 4. Symmetrically construct 7(d”, d"—1).
End of Algorithm IST Rd

We use the IST shown in Figure 4(c) to
illustrate Algorithm IST _Rd. In Step 2, 7(27,9)
and 7(27,3) are obtained from 7(9,3) and 7(9,1)
(shown in Figure 4(b)), respectively.
Meanwhile, 7(27,18) and 7(27,24) are obtained
from 7(27,9) and 7(27,3), respectively. In Step
3, the parent of every non-root vertex v in
7(27,1) is determined by comparing the bit
strings of v and 1. For example, By comparing
the 3-bit string of vertex 12 (110 in base 3) with
the 3-bit string of vertex 1 (001 in base 3),
parent(12,1) = 12+1 = 13 since the right-most
different bit is v, and case 3.1.1 hold. For vertex
13 (111 in base 3), the right-most different bit is
v, and case 3.1.3 hold, thus parent(13,1) =
13-3' = 10. Since vertex 13 is neither a
grandchild of the root nor a leaf in 7(27,1),
there must be a transformed tree. 7(27,9) is the
transformed tree in which parent(13,9) is also
10. As a result, parent(13,9) is changed to 12 in
order to hold the independent property. In Step
4, T(27,26) is obtained symmetrically from
7(27,1). Another example of Algorithm IST Rd
is shown in Figure 5.

In Algorithm IST Rd, an IST of R(d",d)
is also recursively constructed. Let A{N) denote
the running time of Algorithm IST Rd, where
N=d" is the number of vertices in R(d",d). Then,
we can prove that {N) is also O(mN).

7(25.20)

(b)

Lemma 3. The 2m trees constructed using
IST Rd are spanning trees of
R(d",d).

The proof of Lemma 3 and Theorem 4 is
similar to Lemma 1.

Theorem 4. Algorithm IST Rd correctly
constructs an IST of R(d",d) in O(mN) time,
where N = d" is the number of vertices in

R(d"d).

The proof of Theorem 4 is similar to
Theorem 2, but more complex. We omit it for
conciseness’ sake.

4. Concluding remarks

In this paper, we present different
algorithms for constructing independent
spanning trees on recursive circulant graphs
R(2"2) and R(d",d). We can generalize these
results to all recursive circulant graphs.
Intuitively, by pruning some vertices, an IST of
R(d",d) can be transformed to an IST of
R(cd™™,d) with 1<c<d.

7(25,24) 7(25.1)

Figure 5. An IST of R(25,5).

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

B. W. Arden and H. Lee, Analysis of
Chordal Ring Network, IEEE Transactions
on Computers, Vol. C-30, No. 4, April 1981,
pp- 291-295.

F. Bao, Y. Igarashi and S.R. Ohring,
Reliable Broadcasting in Product Networks,
[EICE Technical Report COMP 95(18),
1995, pp.57-66. (also in Discrete Applied
Mathematics 83, 1998, pp.3-20.)

J. C. Bermond, F. Comellas, and D. F. Hsu,
Distributed Loop Computer Networks: A
Survey, Journal of Parallel and Distributed
Computing, Vol. 24, 1995, pp. 2-10.

Daniel K. Biss, Hamiltonian
Decomposition of Recursive Circulant
Graphs, Discrete Mathematics 214, 2000,
pp-89-99.

J. Cheriyan and S. N. Maheshwari, Finding
Nonseparating Induced Cycles and
Independent Spanning Trees in 3-
Connected Graphs, Journal of Algorithms 9,
1988, pp.507-537.

Andreas Huck, Independent Trees in Planar
Graphs, Graphs and Combinatorics 15,
1999, pp.29-77.

Alon Itai and Michael Rodeh, The Multi-
Tree Approach to Reliability in Distributed
Networks, Proceedings of the 25" Annual
IEEE Symposium on Fundamental
Computer Science, 1984, pp.137-147. (also
in Information and Computation 79, 1988,
pp.43-59.)

Y. Iwasaki, Y. Kajiwara, K. Obokata and Y.
Igarashi, Independent Spanning Trees of
Chordal Rings, Information Processing
Letters 69, 1999, pp.155-160.

Samir Khuller and Baruch Schieber, On
Independent Spanning Trees, [nformation
Processing Letters 42, 1992, pp.321-323.

H. S. Lim, J. H. Park and K. Y. Chwa,
Embedding Trees in Recursive Circulants,
Discrete Applied Mathematics 69, 1996,
pp-83-99.

[11] C. Micheneau, Disjoint Hamiltonian Cycles
in Recursive Circulant Graphs, Information
Processing Letters 61, 1997, pp.259-264.

[12] K. Obokata, Y. Iwasaki, F. Bao and Y.
[garashi, Independent Spanning Trees of
Product Graphs, Lecture Notes in Computer
Science 1197, 1996, pp.338-351. (also in
[EICE Transaction on Fundamentals of
Electronics, Communications and
Computer Sciences, Vol. E79-A, No. 11,
1996, pp.1894-1903.)

[13]J. H. Park and K. Y. Chwa, Recursive
Circulant: A New Topology for
Multicomputer Networks, Proceedings of
International Symposium on Parallel
Architectures, Algorithms and Networks
(ISPAN), 1994, pp.73-80.

[14] J. H. Park and K. Y. Chwa, Recursive
Circulants and Their Embeddings among
Hypercubes, Theoretical Computer Science
244, 2000, pp.35-62.

[15] P. Ramanathan and K. G. Shin, Reliable
Broadcast in Hypercube Multicomputers,
[EEE Transactions on computers 37(12),
1988, pp.1654-1657.

[16] I. Stojmenovic, Multiplicative Circulant
Networks Topological Properties and
Communication Algorithms, Discrete
Applied Mathematics 77, 1997, pp.281-305.

[17] S.-M. Tang, Y.-L. Wang and J.-X. Lee, On
the Height of Independent Spanning Trees
of A k-connected k-regular Graph,
Proceedings of National — Computer
Symposium, Taipei, 2001, pp.A159-A164.

[18] C.-H. Tsai, Fault-tolerant Hamiltonian
Properties on Butterflies, Recursive
Circulant graphs and Hypercubes,
Dissertation of National Chiao Tung

University, 2002.

[19] Avram Zehavi and Alon Itai, Three Tree-
paths, Journal of Graph Theory 13, 1989,
pp-175-188.

