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Abstract 

In order to enhance the computer 
performance, nowadays microprocessors use 
superscalar architecture. But the superscalar 
architecture is unable to enhance the 
performance effectively due to two reasons. 
One reason is the complexity design will 
reduce the clock frequency seriously and 
another reason is data dependency makes the 
instructions parallelism unable to break the 
dataflow limitation. 

In this paper, a speculative wakeup logic 
is used to exploit the instructions parallelism. 
In order to issue more instructions every cycle, 
an issue table is added to help the select logic 
select the suitable instructions to issue. 
Simulation results show the average IPC is 
increased by 22.5% in SPECInt and 45% in 
SPECfp over a conventional architecture. If 
the issue table is removed from our model, the 
IPC will reduce 6.4% in baseline  and 14% in 
perfect configurations 
 
Keywords: issue logic, issue table, superscalar, 
speculation 

1 Introduction 

In order to achieve higher processor 
performance, researches have been focused on 
increasing the instruction-level parallelism 
(ILP). ILP is measured as the average number 
of instructions committed per cycle (IPC). In 
the past twenty or more years, pipeline depths 
have grown from 1 (Intel 286), now up to 
more than 20 (Intel Pentium 4) [1]. In the 
future the pipeline depth will continue 
increasing to exploit more parallelism. 

A high IPC rate implied hardware has to 
fetch and issue multiple instructions in parallel. 
The conventional RUU (Register Update Unit) 
architecture [2] was set up to solve the 
problem of data and control dependence, and 
enhances the effective of issue logic.  

In this paper we will introduce a new 
issue logic to select instructions for execution. 
It adopts the speculative aspect [3] to wakeup 
more instructions and then use the issue table 
to select the suitable instructions to issue. 
Construction of the dynamic table depends on 
the instructions of different priority level. The 
issue table is so small that compare, search, 
and update table can be done in a small time 
that will not affect the clock cycle time. That is, 
we can improve the issue logic and it doesn't 
cost us much.  

The rest of the paper is organized as 
follows: Section 2 introduces related works 
necessary for understanding this study. Section 
3 describes the design of the proposed issue 
logic. Section 4 presents the evaluation 
methodology, and section 5 analysis the 
performance. Finally, we summarize this study 
in section 6. 

2 Related work 

This section we will introduce the related 
works necessary to help for understanding our 
study. Section 2.1 introduces the pipeline 
model. Section 2.2 presents the conventional 
scheduling. Section 2.3 presents the related 
paper to guide our research. 
 
2.1 Pipeline Model 
 

Figure 2.1 shows the pipeline of a typical 
conventional superscalar out-of-order 
processor. The pipeline has 7 stages: fetch, 
decode, rename, schedule, register read, 
execute/bypass, and commit. Some stages of 
the pipeline require more than one cycle. 

 

 
Figure 2.1: Processor Pipeline 

 
First, fetch unit fetches instructions from 

the instruction cache. The instructions are 
decoded, registers are renamed and then all 
these information are placed in the RUU. 

When the resources are available, the 
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instructions will be issued to functional unit 
for execution. After finishing the execution, 
the RUU checks whether other instructions in 
RUU depend on the completed instructions. If 
some instructions are ready, they will be 
scheduled (that is, this instruction wakeup and 
wait for select) to issue. 
 
2.2 Conventional Scheduler 
 

Figure 2.2 shows the conventional 
execution core [4]. The dynamic scheduler 
includes three pieces of logic: rename logic, 
wakeup logic, and select logic. 

 
 

 
Figure 2.2: Conventional Execution Core 

 
Wakeup Logic: Figure 2.3 [3] shows the 
conventional scheduling which focus on 
wakeup logic. It detects dependencies between 
instructions in the same cycle. The sources of 
each instruction are compared to the 
destinations of all previous instructions in the 
same cycle. 

In decode stage, each RUUE (Register 
Update Unit Entry) contains information about 
instruction's sources, such as whether the 
source is ready, source tag which was used to 
compare the result tag, the readyL bit and 
readyR bit of instruction are initialized, and 
physical register identifier(tag) for the source 
is recorede. 

If the Ins(R) has the result written but 
Ins(L) doesn't, the ready(R/L) of instruction 
are initialized to 1/0. That is, instruction sleeps 
in the RUU waiting for the readyL to be set. 
The readyL bit and readyR bit for each source 
are set when both the data for that source are 
available in the register file or is available for 
bypass from a function unit. This time, the 
wakeup logic sends the request signal 
indicating which instructions are ready for 
execution. 
Select Logic: In Figure 2.3, we can see the 
select logic choices instructions from those 
marked Request signals for execution onto a 
given functional unit. In conventional 
architecture design, the select logic contains a 
prioritizer which typically takes the oldest 

instructions from the request signals. 
It is possible to select more than one 

instruction per cycle to execute on multiple 
functional units. After execution, instruction's 
destination tag will be broadcasted to the 
common data bus (CDB). Instructions have 
different execution latencies, the wakeup logic 
just need wait the tag broadcasted to CDB. 
 
2.3 Advanced Scheduler 
 

Select-Free scheduling logic [14] 
describes a technique that break the scheduling 
(wakeup and select) logic into two smaller 
loop: a critical loop for wakeup and a 
non-critical for select. With select-free 
scheduling logic, this will solve the collisions 
(where more instructions wakeup than can be 
select, resulting in a mis_speculation) and 
pileups (dependents of the collision victims 
may wake up before they are really ready to be 
scheduled, that is entering the scheduling 
pipeline too early) problems. The authors 
introduce the select-N schedulers and predict 
another wakeup (PAW) to avoid the collision. 

 

 
Figure 2.3: Detail Circuit of Conventional 

Wakeup Logic 
 
Low-Complexity Issue Logic [5] reduces 

the hardware load of associative look-up, the 
consumption of power, and clock-rate. More 
effective issue logic used the dynamic 
manners to control the instruction issue logics 
were proposed. These mechanisms [3, 6] can 
save power and issue multiple instructions. In 
the framework of Wang and Wu [6], by 
avoiding the delay of pre-decode stage the 
issue rate will be improved. Recently, issue 
logic with cluster of instructions promotes 
more effective performance but takes too 
much time [7] [8]. 

Pipelined scheduling with speculative 
wakeup was proposed in [9], which pipelines 
this logic over 2 cycles while still allowing 
back-to-back execution of dependent 
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instructions. This technique pipelines the 
scheduling logic without eliminating its ability 
to execute dependent instructions in 
consecutive cycles. This will exploit more 
parallelism in processors, and then allow 
processors to achieve higher performance. 

A new scheduling scheme was introduced 
that uses matrices, to represent the dependent 
between instructions [10]. The distances 
between two dependent instructions are 
generally short. This will reduce the effective 
size of the matrices for small IPC penalties. 

3 The Design of Issue Logic 

In this section, we will explain how to 
design the issue logic and how to operate in 
superscalar in detail.  
 
3.1 Speculative Wakeup 
 

In superscalar architecture, wakeup logic 
can wake up several instructions in one cycle 
and then select logic will select the higher 
priority instructions that waked up. If we can 
wake up more instructions efficiently in one 
cycle, how to select the suitable instructions 
for execution is very important. 

If the sources of an instruction are ready 
as shown in figure 2.3, the Grant signal will be 
triggered in wakeup circuit. There are three 
kinds of situations in Speculative wakeup 
logic: one, the left source is ready, the parents 
of right source are ready, but right source is 
not ready; another, the right source is ready, 
the parents of left source are ready, but left 
source is not ready; the third, the right source 
and left source are not ready, but the parents of 
left source and the parents of right source are 
ready. 
 
3.2 Issue Logic 
 

After fetching the instructions, the 
instructions will be dispatched to RUU. The 
RUU will be allocated some basic information 
such as instruction bits, instruction op, 
spec_mode of the instruction, status of the 
instruction, and so on. In decode stage, we 
proposed the Priority table as shown in Figure 
3.1. The Priority table is established to help 
issue logic select the suitable instructions from 
many waked up instructions for execution. 

 

Instruction’ Category level 
Loads or Stores Instructions 4 
Control Instructions 4 
Long Latency Instructions 4 
Other Instructions 1 

Figure 3.1: Priority Table 
 

Slot tag Spec_mode level 
Figure 3.2: Entry of Issue Table 

 
The Priority table was divided into levels, 

according to Loads or Stores Instructions、
Control Instructions 、 Long Latency 
Instructions and general instructions. In 
process of allocation in decode stage, the 
decoder will refer the Priority table to judge 
what kind of level the instruction belongs to.  

We add the issue table which was divided 
into 4 level to help the issue logic select the 
suitable and highest priority instruction for 
execution. Figure 3.2 shows the entry of issue 
table. The level value and slot tag of RUU are 
recorded in the issue table. A 2-bit level is 
added to each entry in the RUU, this will easy 
the finding of the right issue level table. 

Spec_mode bit of the issue table entry 
shows whether the instruction is speculative or 
not. If mis_speculatve happen, the instructions 
will be flushed which have spec_mode value 1 
in the RUU and in issue table. 

Figure 3.3 shows an execution core with 
issue table. Before allocating information to 
the RUU, the processing instruction compares 
the instructions which are in RUU to see 
whether the instruction depends on another 
instruction which is not issued. If the 
instruction depends on another instruction, the 
instruction’s entry of Dslot tag will record the 
dependent instruction’s slot tag and level. If 
the issue logic finds such instruction, the issue 
logic will find the entry's level of the 
instruction in the RUU. 
When the issue logic finds the issue level table 
where the instruction is, the issue logic 
enhances one level not only in the RUU but 
also in issue level table. In addition, the issue 
logic will move the entry from low issue level 
table to high issue level table.
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Figure 3.3: Execution Core with Issue table

That is, if the instruction is in issue level 1 
table and another instruction depends on this 
instruction, the issue logic will add 1 to the 
level in the RUU and add 1 to the level in the 
issue level table. Finally, the issue logic moves 
the instruction from the level 1 to level 2. 

The issue table is divided into 4 levels. 
When the instruction is wakeuped, the 
instruction's information is allocated onto 
issue table by means of the level of RUU. For 
example, the load instruction's level value is 4 
in the entry of RUU. The load instruction is 
dispatched into the issue level_4 table. The 
general instructions are only dispatched to 
issue level_1 table. When other instructions 
depend on this instruction, the instruction's 
level is increased and the instruction is moved 
into high issue table. 

The select logic picks instructions for 
execution from the highest level (issue level 4 
table). If there is no instruction in level 4 table, 
the select logic goes to the level 3 table and 
picks the instructions from level 4 table every 
cycle. 

There are two situations we need pay 
attention in select stage when the select logic 
picks 4 instructions to execute from issue level 
4 table. First, the select logic issues 
instructions which didn't get the functional 
unit. That is, the instructions need be issued 
next cycle. If the instructions which are not 
issued belong to the general instruction, the 
issue logic increases level value up to level 3 
by the constant. In order to ensure the 
instruction will be executed early, the level 
value is enhanced directly to level 3. 

 
 
 
 
 
 
 

Table 4.1: Baseline Architectures 
Configuration 

Inst. Fetch 4 lines per cycle. Only one taken branch per 
cycle. 

Branch Predictor 1. gshare, with 10-bit history register and 16K 
entry counter table. 
2. hybrid: gshare + bimodal (default) 
3. perfect 
Return stack with 64 entries. 

Out-of-Order 
Execution 
Mechanism 

Issue of 4 operations/cycle, 128 entry RUU 
(which is the ROB and the IW combined), 32 
entry load/store queue. Loads executed only 
after all preceding store addresses are known. 
Value bypassed to loads from matching stores 
ahead in the load/store queue. 

Architected 
Registers 

32 interger, hi, lo, 32 floating point, fcc. 

Functional Units 
(FU) 

4-integer ALUs, 2 load/store units, 2-FP 
adders, 1-Integer MULT/DIV, 1-FP 
MULT/DIV 

L1 D & I-cache 1024K bytes, 4-way set assoc., 64 byte line, 
LRU 1 cycle hit latency. 

L2 D & I-cache Unified, 2048K bytes, 4-way set assoc., 128 
byte line, LRU, 6 cycles hit latency 

Memory Memory access latency (first-18, rest-2) cycle. 
Width of memory bus is 8 bytes. 

BTB 512-entry 
Mispredict 
penalty 

3 cycles 

TLB Miss 30 cycles 

 
Table 4.2: Instruction Class Latencies 

Instruction Class Latency (in Cycles) 
integer arithmetic 1 
integer multiply 4, pipelined 

fp arithmetic 8, pipelined 
fp divide 16 

loads and stores 1 + dcache latency 
all others 1 

 
 
 
 
 
 
 



4 Simulation environment 

We use an executable-driven simulator to 
simulate the enhanced design. The simulator is 
simplescalar 3.0 tool suit [11] which was 
implemented by Wisconsin University. 

To perform our experimental study, we 
simulate all models with SPEC 2000. The 
programs were compiled with the gcc 
compiler include in the tool set. We simulated 
all benchmarks 500 million instructions. All 
machines are superscalar processors with 
out-of-order execution. Table 4.1 summarizes 
the parameters used in our baseline 
architectures. 

They required 2 cycles for fetch, 2 for 
decoded, 2 for rename, 1 for register read, and 
1 for commit. The ideal machine required 1 
cycle for scheduler, and the other required 2 
cycles. Table 4.2 present the different classes 
of instruction latency. 

5 Performance Analysis 

Figure 5.1 shows the IPC of the two machines 
over the SPEC2000 benchmarks. We compare 
the baseline with our model (maco), 
baseline_p, and maco_p IPC. The result shows 
maco enhance the average IPC of 22.5% in 
SPECInt and IPC of 45% in SPECfp than 
baseline. The baseline_p and the maco_p are 
not limit in instruction widths, RUU entries, 
and functional units. The result shows maco_p 
enhance the average IPC of 55% than 
baseline_p. The only limits on ILP in such a 
processor are true data dependences without 
speculation. 

Figure 5.2 shows the ratio of wakeuped 
instructions numbers between the baseline 
model and our proposed model (maco). More 
than one time of instructions are wakeuped. As 
a result of more instructions are wakeuped, we 
can use our model to select suitable 

instructions for execution. 
Results show more instructions are issued 

by means of speculative wakeup and issue 
table. Figure 5.3 shows that on the average 
maco increases 10% in total numbers of 
instructions to issue. If more instructions 
belong to the int-multiply, int-divide, 
FP-multiply, FP-divide, FP-sqrt, or Mem-port, 
there are still a lot of instructions waiting to 
get functional unit. 

Figure 5.4 shows that whether the issue 
table in our model affects the performance. We 
compare our model with issue table in baseline 
and perfect (maco_p) architectures 
configuration. If the issue table is removed 
from our model, the IPC will reduced 6.4% in 
baseline (maco) and 14% in perfect (maco_p) 
configurations. 

Figure 5.5 shows our model without 
limitation in instruction widths, RUU entries, 
but with different functional units. 
Issue_p_2fu have 2 times functional units than 
issue_p. Due to our model wakeups more 
instructions, when we increase the number of 
functional units, the performance will be 
enhanced. 

Figure 5.6 shows the two machines with 
4, 8, and 16 instructions width, respectively. 
We can see obviously that enhance the width 
from 4 to 8 will improve the performance. In 
baseline model, enhance width from 8 to 16 
will not improve the performance notably in 
SPECint2000. That is, if we just enhance the 
width, the performance will enhance less and 
less. This is because there are not enough 
instructions waked up for issue. Furthermore, 
the performance will lower in SPECfp2000. 
One reason is not enough instructions are 
waked up and another is more instructions are 
long latency. Our model will solve this 
problem and select suitable instructions, so 
when we enhance the width from 8 to 16, the 
performance is still promoted. 
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Figure 5.1: ILP available in a processor 
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Figure 5.2: Ratio of instructions wakeuped            Figure 5.3: Ratio of instructions issued 

 

 Figure 5.4: Issue table effectiveness 
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Figure 5.6: Comparison of the Two Machines for Different Instruction Width 
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6 Conclusions 

In modern superscalar processor, the 
main part of dynamic scheduling is wakeup 
and select logic. Issue logic in out-of-order is 
the most important part of our research. The 
issue table is attached to the RUU to help 
select logic issues the suitable instructions to 
functional units. Conventional issue logic is 
not very efficient because they don't issue the 
suitable instructions to functional units. That is, 
there are many instructions to wait to issue. 
This will cost a lot of time and then drop the 
performance. 

Simulations of the 2 machines using both 
4 and 16 functional units and several different 
decode, issue, and commit width are 
conducted. The result for a superscalar 
microprocessor present that these mechanisms 
in issue logic wake up more than one time 
instructions and increase 10% in total number 
instructions to issue over the typical machine. 
Compare our model with baseline machine, 
the average IPC is increased by 22.5% in 
SPECInt and 45% in SPECfp. If the issue table 
is removed from our model, the IPC will 
reduced 6.4% in baseline (maco) and 14% in 
perfect (maco_p) configurations. 

7 Acknowledgements 

This work was supported by National 
Science Council, Taiwan, under contract NSC 
91-2213-E-036-004. 

References 

[1] Inter Corporation. IA-32 Intel 
Architecture Software Developer's 
Manual Volume 1: Basic Architecture, 
2001. 

[2] Gurindar S. Sohi, “Instruction Issue 
Logic for High-performance, 
Interruptible, Multiple Functional Unit, 
“ Pipelined Computers, IEEE 
Transaction on Computers, 39(3): 349 – 
359, March 1990. 

[3] Folegnani,D.;Gonzalez,A., ”Energy-effe
ctive issue logic” ， Computer 
Architecture, Proceedings. 28th Annual 
International Symposium on, pp. 230 
-239, 2001. 

[4] Brown, M.D.; Stark, J.; Patt, Y.N.; 
“ Select-free Instruction Scheduling 
Logic,“ Microarchitecture, MICRO-34. 
Proceedings. 34th Annual ACM/ IEEE 
International Symposium on, pp.204 - 
213, 2001. 

[5] Ramon Canal ; Antonio Gonzalez，”A 
Low-Complexity Issue Logic”, 

Proceedings of the 14th international 
conference on Supercomputing,  pp. 
327-335, 2000. 

[6] Wang ; C.L. Wu, ”I-NET mechanism for 
issuing multiple instructions”, 
Proceedings of the 1988 ACM/IEEE 
conference on Supercomputing , pp. 
88–95, 1988. 

[7] Baniasadi, A.; Moshovos, 
A., ”Instruction distribution heuristics 
for quad-cluster, dynamically-scheduled, 
superscalar processors”, 
Microarchitecture, MICRO-33. 
Proceedings. 33rd Annual IEEE/ACM 
International Symposium on, pp. 
337-347, 2000. 

[8] Cotofana, S.; Vassiliadis, S., ”On the 
design complexity of the issue logic of 
superscalar machines”, Euromicro 
Conference, Proceedings. 24th, vol.1 , 
pp. 277-284, 1998. 

[9] Stark, J.; Brown, M.D.; Patt, Y.N., ”On 
pipelining dynamic instruction 
scheduling logic”, Microarchitecture, 
MICRO-33. Proceedings. 33rd Annual 
IEEE/ACM International Symposium on, 
pp. 57 -66, 2000. 

[10] M. Goshima, K. Nishino, Y. Nakashima, 
S.I. Mori, T. Kitamura, S. Tomita, “A 
High-Speed Dynamic Instruction 
Scheduling scheme for Superscalar 
Processors” Microarchitecture, 
MICRO-34. Proceedings. 34th Annual 
ACM/ IEEE International Symposium on, 
pp. 225 – 236, 2001. 

[11] Doug Burger*, " Evaluating Future 
Microprocessors: the SimpleScalar Tool 
Set," Technical Report CS-TR96 -1308, 
University of Wisconsin Madison, 1996. 

 


	Issue Logic with Issue Table
	
	Abstract
	1 Introduction


	2 Related work
	3 The Design of Issue Logic
	4 Simulation environment
	5 Performance Analysis
	6 Conclusions
	7 Acknowledgements
	References

