
Issue Logic with Issue Table

Shiao, Feng-Jiann

Department of Computer Science and Engineering

Tatung Univeristy

maco@amigo.ttu.edu.tw

Shieh, Jong-Jiann

Department of Computer Science and Engineering

Tatung University

shieh@ttu.edu.tw

Abstract

In order to enhance the computer
performance, nowadays microprocessors use
superscalar architecture. But the superscalar
architecture is unable to enhance the
performance effectively due to two reasons.
One reason is the complexity design will
reduce the clock frequency seriously and
another reason is data dependency makes the
instructions parallelism unable to break the
dataflow limitation.

In this paper, a speculative wakeup logic
is used to exploit the instructions parallelism.
In order to issue more instructions every cycle,
an issue table is added to help the select logic
select the suitable instructions to issue.
Simulation results show the average IPC is
increased by 22.5% in SPECInt and 45% in
SPECfp over a conventional architecture. If
the issue table is removed from our model, the
IPC will reduce 6.4% in baseline and 14% in
perfect configurations

Keywords: issue logic, issue table, superscalar,
speculation

1 Introduction

In order to achieve higher processor
performance, researches have been focused on
increasing the instruction-level parallelism
(ILP). ILP is measured as the average number
of instructions committed per cycle (IPC). In
the past twenty or more years, pipeline depths
have grown from 1 (Intel 286), now up to
more than 20 (Intel Pentium 4) [1]. In the
future the pipeline depth will continue
increasing to exploit more parallelism.

A high IPC rate implied hardware has to
fetch and issue multiple instructions in parallel.
The conventional RUU (Register Update Unit)
architecture [2] was set up to solve the
problem of data and control dependence, and
enhances the effective of issue logic.

In this paper we will introduce a new
issue logic to select instructions for execution.
It adopts the speculative aspect [3] to wakeup
more instructions and then use the issue table
to select the suitable instructions to issue.
Construction of the dynamic table depends on
the instructions of different priority level. The
issue table is so small that compare, search,
and update table can be done in a small time
that will not affect the clock cycle time. That is,
we can improve the issue logic and it doesn't
cost us much.

The rest of the paper is organized as
follows: Section 2 introduces related works
necessary for understanding this study. Section
3 describes the design of the proposed issue
logic. Section 4 presents the evaluation
methodology, and section 5 analysis the
performance. Finally, we summarize this study
in section 6.

2 Related work

This section we will introduce the related
works necessary to help for understanding our
study. Section 2.1 introduces the pipeline
model. Section 2.2 presents the conventional
scheduling. Section 2.3 presents the related
paper to guide our research.

2.1 Pipeline Model

Figure 2.1 shows the pipeline of a typical
conventional superscalar out-of-order
processor. The pipeline has 7 stages: fetch,
decode, rename, schedule, register read,
execute/bypass, and commit. Some stages of
the pipeline require more than one cycle.

Figure 2.1: Processor Pipeline

First, fetch unit fetches instructions from

the instruction cache. The instructions are
decoded, registers are renamed and then all
these information are placed in the RUU.

When the resources are available, the

mailto:maco@amigo.ttu.edu.tw
mailto:shieh@ttu.edu.tw

instructions will be issued to functional unit
for execution. After finishing the execution,
the RUU checks whether other instructions in
RUU depend on the completed instructions. If
some instructions are ready, they will be
scheduled (that is, this instruction wakeup and
wait for select) to issue.

2.2 Conventional Scheduler

Figure 2.2 shows the conventional
execution core [4]. The dynamic scheduler
includes three pieces of logic: rename logic,
wakeup logic, and select logic.

Figure 2.2: Conventional Execution Core

Wakeup Logic: Figure 2.3 [3] shows the
conventional scheduling which focus on
wakeup logic. It detects dependencies between
instructions in the same cycle. The sources of
each instruction are compared to the
destinations of all previous instructions in the
same cycle.

In decode stage, each RUUE (Register
Update Unit Entry) contains information about
instruction's sources, such as whether the
source is ready, source tag which was used to
compare the result tag, the readyL bit and
readyR bit of instruction are initialized, and
physical register identifier(tag) for the source
is recorede.

If the Ins(R) has the result written but
Ins(L) doesn't, the ready(R/L) of instruction
are initialized to 1/0. That is, instruction sleeps
in the RUU waiting for the readyL to be set.
The readyL bit and readyR bit for each source
are set when both the data for that source are
available in the register file or is available for
bypass from a function unit. This time, the
wakeup logic sends the request signal
indicating which instructions are ready for
execution.
Select Logic: In Figure 2.3, we can see the
select logic choices instructions from those
marked Request signals for execution onto a
given functional unit. In conventional
architecture design, the select logic contains a
prioritizer which typically takes the oldest

instructions from the request signals.
It is possible to select more than one

instruction per cycle to execute on multiple
functional units. After execution, instruction's
destination tag will be broadcasted to the
common data bus (CDB). Instructions have
different execution latencies, the wakeup logic
just need wait the tag broadcasted to CDB.

2.3 Advanced Scheduler

Select-Free scheduling logic [14]
describes a technique that break the scheduling
(wakeup and select) logic into two smaller
loop: a critical loop for wakeup and a
non-critical for select. With select-free
scheduling logic, this will solve the collisions
(where more instructions wakeup than can be
select, resulting in a mis_speculation) and
pileups (dependents of the collision victims
may wake up before they are really ready to be
scheduled, that is entering the scheduling
pipeline too early) problems. The authors
introduce the select-N schedulers and predict
another wakeup (PAW) to avoid the collision.

Figure 2.3: Detail Circuit of Conventional

Wakeup Logic

Low-Complexity Issue Logic [5] reduces

the hardware load of associative look-up, the
consumption of power, and clock-rate. More
effective issue logic used the dynamic
manners to control the instruction issue logics
were proposed. These mechanisms [3, 6] can
save power and issue multiple instructions. In
the framework of Wang and Wu [6], by
avoiding the delay of pre-decode stage the
issue rate will be improved. Recently, issue
logic with cluster of instructions promotes
more effective performance but takes too
much time [7] [8].

Pipelined scheduling with speculative
wakeup was proposed in [9], which pipelines
this logic over 2 cycles while still allowing
back-to-back execution of dependent

2

instructions. This technique pipelines the
scheduling logic without eliminating its ability
to execute dependent instructions in
consecutive cycles. This will exploit more
parallelism in processors, and then allow
processors to achieve higher performance.

A new scheduling scheme was introduced
that uses matrices, to represent the dependent
between instructions [10]. The distances
between two dependent instructions are
generally short. This will reduce the effective
size of the matrices for small IPC penalties.

3 The Design of Issue Logic

In this section, we will explain how to
design the issue logic and how to operate in
superscalar in detail.

3.1 Speculative Wakeup

In superscalar architecture, wakeup logic
can wake up several instructions in one cycle
and then select logic will select the higher
priority instructions that waked up. If we can
wake up more instructions efficiently in one
cycle, how to select the suitable instructions
for execution is very important.

If the sources of an instruction are ready
as shown in figure 2.3, the Grant signal will be
triggered in wakeup circuit. There are three
kinds of situations in Speculative wakeup
logic: one, the left source is ready, the parents
of right source are ready, but right source is
not ready; another, the right source is ready,
the parents of left source are ready, but left
source is not ready; the third, the right source
and left source are not ready, but the parents of
left source and the parents of right source are
ready.

3.2 Issue Logic

After fetching the instructions, the
instructions will be dispatched to RUU. The
RUU will be allocated some basic information
such as instruction bits, instruction op,
spec_mode of the instruction, status of the
instruction, and so on. In decode stage, we
proposed the Priority table as shown in Figure
3.1. The Priority table is established to help
issue logic select the suitable instructions from
many waked up instructions for execution.

Instruction’ Category level
Loads or Stores Instructions 4
Control Instructions 4
Long Latency Instructions 4
Other Instructions 1

Figure 3.1: Priority Table

Slot tag Spec_mode level
Figure 3.2: Entry of Issue Table

The Priority table was divided into levels,

according to Loads or Stores Instructions、
Control Instructions 、 Long Latency
Instructions and general instructions. In
process of allocation in decode stage, the
decoder will refer the Priority table to judge
what kind of level the instruction belongs to.

We add the issue table which was divided
into 4 level to help the issue logic select the
suitable and highest priority instruction for
execution. Figure 3.2 shows the entry of issue
table. The level value and slot tag of RUU are
recorded in the issue table. A 2-bit level is
added to each entry in the RUU, this will easy
the finding of the right issue level table.

Spec_mode bit of the issue table entry
shows whether the instruction is speculative or
not. If mis_speculatve happen, the instructions
will be flushed which have spec_mode value 1
in the RUU and in issue table.

Figure 3.3 shows an execution core with
issue table. Before allocating information to
the RUU, the processing instruction compares
the instructions which are in RUU to see
whether the instruction depends on another
instruction which is not issued. If the
instruction depends on another instruction, the
instruction’s entry of Dslot tag will record the
dependent instruction’s slot tag and level. If
the issue logic finds such instruction, the issue
logic will find the entry's level of the
instruction in the RUU.
When the issue logic finds the issue level table
where the instruction is, the issue logic
enhances one level not only in the RUU but
also in issue level table. In addition, the issue
logic will move the entry from low issue level
table to high issue level table.

3

Figure 3.3: Execution Core with Issue table

That is, if the instruction is in issue level 1
table and another instruction depends on this
instruction, the issue logic will add 1 to the
level in the RUU and add 1 to the level in the
issue level table. Finally, the issue logic moves
the instruction from the level 1 to level 2.

The issue table is divided into 4 levels.
When the instruction is wakeuped, the
instruction's information is allocated onto
issue table by means of the level of RUU. For
example, the load instruction's level value is 4
in the entry of RUU. The load instruction is
dispatched into the issue level_4 table. The
general instructions are only dispatched to
issue level_1 table. When other instructions
depend on this instruction, the instruction's
level is increased and the instruction is moved
into high issue table.

The select logic picks instructions for
execution from the highest level (issue level 4
table). If there is no instruction in level 4 table,
the select logic goes to the level 3 table and
picks the instructions from level 4 table every
cycle.

There are two situations we need pay
attention in select stage when the select logic
picks 4 instructions to execute from issue level
4 table. First, the select logic issues
instructions which didn't get the functional
unit. That is, the instructions need be issued
next cycle. If the instructions which are not
issued belong to the general instruction, the
issue logic increases level value up to level 3
by the constant. In order to ensure the
instruction will be executed early, the level
value is enhanced directly to level 3.

Table 4.1: Baseline Architectures
Configuration

Inst. Fetch 4 lines per cycle. Only one taken branch per
cycle.

Branch Predictor 1. gshare, with 10-bit history register and 16K
entry counter table.
2. hybrid: gshare + bimodal (default)
3. perfect
Return stack with 64 entries.

Out-of-Order
Execution
Mechanism

Issue of 4 operations/cycle, 128 entry RUU
(which is the ROB and the IW combined), 32
entry load/store queue. Loads executed only
after all preceding store addresses are known.
Value bypassed to loads from matching stores
ahead in the load/store queue.

Architected
Registers

32 interger, hi, lo, 32 floating point, fcc.

Functional Units
(FU)

4-integer ALUs, 2 load/store units, 2-FP
adders, 1-Integer MULT/DIV, 1-FP
MULT/DIV

L1 D & I-cache 1024K bytes, 4-way set assoc., 64 byte line,
LRU 1 cycle hit latency.

L2 D & I-cache Unified, 2048K bytes, 4-way set assoc., 128
byte line, LRU, 6 cycles hit latency

Memory Memory access latency (first-18, rest-2) cycle.
Width of memory bus is 8 bytes.

BTB 512-entry
Mispredict
penalty

3 cycles

TLB Miss 30 cycles

Table 4.2: Instruction Class Latencies

Instruction Class Latency (in Cycles)
integer arithmetic 1
integer multiply 4, pipelined

fp arithmetic 8, pipelined
fp divide 16

loads and stores 1 + dcache latency
all others 1

4 Simulation environment

We use an executable-driven simulator to
simulate the enhanced design. The simulator is
simplescalar 3.0 tool suit [11] which was
implemented by Wisconsin University.

To perform our experimental study, we
simulate all models with SPEC 2000. The
programs were compiled with the gcc
compiler include in the tool set. We simulated
all benchmarks 500 million instructions. All
machines are superscalar processors with
out-of-order execution. Table 4.1 summarizes
the parameters used in our baseline
architectures.

They required 2 cycles for fetch, 2 for
decoded, 2 for rename, 1 for register read, and
1 for commit. The ideal machine required 1
cycle for scheduler, and the other required 2
cycles. Table 4.2 present the different classes
of instruction latency.

5 Performance Analysis

Figure 5.1 shows the IPC of the two machines
over the SPEC2000 benchmarks. We compare
the baseline with our model (maco),
baseline_p, and maco_p IPC. The result shows
maco enhance the average IPC of 22.5% in
SPECInt and IPC of 45% in SPECfp than
baseline. The baseline_p and the maco_p are
not limit in instruction widths, RUU entries,
and functional units. The result shows maco_p
enhance the average IPC of 55% than
baseline_p. The only limits on ILP in such a
processor are true data dependences without
speculation.

Figure 5.2 shows the ratio of wakeuped
instructions numbers between the baseline
model and our proposed model (maco). More
than one time of instructions are wakeuped. As
a result of more instructions are wakeuped, we
can use our model to select suitable

instructions for execution.
Results show more instructions are issued

by means of speculative wakeup and issue
table. Figure 5.3 shows that on the average
maco increases 10% in total numbers of
instructions to issue. If more instructions
belong to the int-multiply, int-divide,
FP-multiply, FP-divide, FP-sqrt, or Mem-port,
there are still a lot of instructions waiting to
get functional unit.

Figure 5.4 shows that whether the issue
table in our model affects the performance. We
compare our model with issue table in baseline
and perfect (maco_p) architectures
configuration. If the issue table is removed
from our model, the IPC will reduced 6.4% in
baseline (maco) and 14% in perfect (maco_p)
configurations.

Figure 5.5 shows our model without
limitation in instruction widths, RUU entries,
but with different functional units.
Issue_p_2fu have 2 times functional units than
issue_p. Due to our model wakeups more
instructions, when we increase the number of
functional units, the performance will be
enhanced.

Figure 5.6 shows the two machines with
4, 8, and 16 instructions width, respectively.
We can see obviously that enhance the width
from 4 to 8 will improve the performance. In
baseline model, enhance width from 8 to 16
will not improve the performance notably in
SPECint2000. That is, if we just enhance the
width, the performance will enhance less and
less. This is because there are not enough
instructions waked up for issue. Furthermore,
the performance will lower in SPECfp2000.
One reason is not enough instructions are
waked up and another is more instructions are
long latency. Our model will solve this
problem and select suitable instructions, so
when we enhance the width from 8 to 16, the
performance is still promoted.

0

2

4

6

8

10

12

14

16

bzip2cc1 gzipmcfparserperlbmkvortexvprammpart equakemesabenchmark

I
P
C

baline maco baline_pmaco_p

Figure 5.1: ILP available in a processor

5

Figure 5.2: Ratio of instructions wakeuped Figure 5.3: Ratio of instructions issued

 Figure 5.4: Issue table effectiveness

0

5

10

15

bzip2 cc1 gzip mcf parserperlbmk vortex vpr ammp art equakemesa Averagebenchmark

I
PC

issue_p issue_p_2fu issue_p_4fu issue_p_8fu issue_p_16fu

Figure 5.5: The effect of numbers of Functional Units

Figure 5.6: Comparison of the Two Machines for Different Instruction Width

6

6 Conclusions

In modern superscalar processor, the
main part of dynamic scheduling is wakeup
and select logic. Issue logic in out-of-order is
the most important part of our research. The
issue table is attached to the RUU to help
select logic issues the suitable instructions to
functional units. Conventional issue logic is
not very efficient because they don't issue the
suitable instructions to functional units. That is,
there are many instructions to wait to issue.
This will cost a lot of time and then drop the
performance.

Simulations of the 2 machines using both
4 and 16 functional units and several different
decode, issue, and commit width are
conducted. The result for a superscalar
microprocessor present that these mechanisms
in issue logic wake up more than one time
instructions and increase 10% in total number
instructions to issue over the typical machine.
Compare our model with baseline machine,
the average IPC is increased by 22.5% in
SPECInt and 45% in SPECfp. If the issue table
is removed from our model, the IPC will
reduced 6.4% in baseline (maco) and 14% in
perfect (maco_p) configurations.

7 Acknowledgements

This work was supported by National
Science Council, Taiwan, under contract NSC
91-2213-E-036-004.

References

[1] Inter Corporation. IA-32 Intel
Architecture Software Developer's
Manual Volume 1: Basic Architecture,
2001.

[2] Gurindar S. Sohi, “Instruction Issue
Logic for High-performance,
Interruptible, Multiple Functional Unit,
“ Pipelined Computers, IEEE
Transaction on Computers, 39(3): 349 –
359, March 1990.

[3] Folegnani,D.;Gonzalez,A., ”Energy-effe
ctive issue logic” ， Computer
Architecture, Proceedings. 28th Annual
International Symposium on, pp. 230
-239, 2001.

[4] Brown, M.D.; Stark, J.; Patt, Y.N.;
“ Select-free Instruction Scheduling
Logic,“ Microarchitecture, MICRO-34.
Proceedings. 34th Annual ACM/ IEEE
International Symposium on, pp.204 -
213, 2001.

[5] Ramon Canal ; Antonio Gonzalez，”A
Low-Complexity Issue Logic”,

Proceedings of the 14th international
conference on Supercomputing, pp.
327-335, 2000.

[6] Wang ; C.L. Wu, ”I-NET mechanism for
issuing multiple instructions”,
Proceedings of the 1988 ACM/IEEE
conference on Supercomputing , pp.
88–95, 1988.

[7] Baniasadi, A.; Moshovos,
A., ”Instruction distribution heuristics
for quad-cluster, dynamically-scheduled,
superscalar processors”,
Microarchitecture, MICRO-33.
Proceedings. 33rd Annual IEEE/ACM
International Symposium on, pp.
337-347, 2000.

[8] Cotofana, S.; Vassiliadis, S., ”On the
design complexity of the issue logic of
superscalar machines”, Euromicro
Conference, Proceedings. 24th, vol.1 ,
pp. 277-284, 1998.

[9] Stark, J.; Brown, M.D.; Patt, Y.N., ”On
pipelining dynamic instruction
scheduling logic”, Microarchitecture,
MICRO-33. Proceedings. 33rd Annual
IEEE/ACM International Symposium on,
pp. 57 -66, 2000.

[10] M. Goshima, K. Nishino, Y. Nakashima,
S.I. Mori, T. Kitamura, S. Tomita, “A
High-Speed Dynamic Instruction
Scheduling scheme for Superscalar
Processors” Microarchitecture,
MICRO-34. Proceedings. 34th Annual
ACM/ IEEE International Symposium on,
pp. 225 – 236, 2001.

[11] Doug Burger*, " Evaluating Future
Microprocessors: the SimpleScalar Tool
Set," Technical Report CS-TR96 -1308,
University of Wisconsin Madison, 1996.

	Issue Logic with Issue Table
	
	Abstract
	1 Introduction

	2 Related work
	3 The Design of Issue Logic
	4 Simulation environment
	5 Performance Analysis
	6 Conclusions
	7 Acknowledgements
	References

