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Abstract— Recently, cryptographic applications based on
fields GF(2™) have attracted much interest. This article
presents bit-parallel systolic Montgomery multipliers over
GF(2™). The use of the transformation method to implement
low-complexity Montgomery multipliers is proposed for all-one
polynomials and trinomials. The presented multipliers have a
latency m+1 clock cycles, and each cell incorporates at most
one 2-input AND gate, two 2-input XOR gates and four 1-
bit latches. In the multiplication in GF(2™), novel multipliers
are shown to exhibit much significantly lower latency and
circuit complexity than the related systolic multipliers, and are
highly appropriate for VLSI systems because of their regular
interconnection pattern, modular structure and fully inherent
parallelism.

I. Introduction

Galois field arithmetic is important in error correcting
codes and public-key cryptography schemes [1,2]. In par-
ticular, two public-key cryptography schemes, elliptic and
hyperelliptic curve cryptostsyems [3], require arithmetic
operations to be performed in finite field. For the field
GF(2™), both software implementations and hardware
architectures have been studied extensively. A good multi-
plication algorithm, based on the element presentation of a
polynomial basis, depends on the field constructed from an
irreducible polynomial. For example, GF(2™) multipliers
using some popular polynomials, such as all-one polyno-
mials (AOPs) and trinomials, [4,5,6,7,8] have a low circuit
complexity. Since the elliptic scalar multiplication is based
on the multiplication over GF(2™), we therefore developed
and implemented an efficient hardware architecture for
bit-parallel multiplication over GF(2™).

In VLSI designs, systolic architectures are fundamen-
tally suited to rapid computation and depend on regular
circuitry to perform arithmetic operations over finite
fields GF(2™). Their common nature supports architec-
tural characteristics such as concurrence, 1/O-balance,
and simple and regular design. Most systolic multipliers
perform array-type multiplication, in which one operand
is processed slowly. Generally, the array algorithms are
classified as least-significant-bit first (LSB-first) and most-
significant-bit first (MSB-first) schemes, such as those of
Wang [9] and Yeh [10], which are both regularly connected
to identical cell and require a latency of 3m clock cycles.
However, the multipliers are result from directly unrolling
iterative algorithms and do not fully exploit inherent
parallelism. Consequently, the multipliers require a large
area and a large latency overhead to be fully pipelined.

Recently, Lee et al.[11,12] used the inner product operation
to implement efficient systolic multipliers with low-latency
and low-complexity architectures, defined by all-one and
equally-spaced polynomials. Unfortunately, irreducible all-
one polynomials are very rare. For m <100, the values of m
for which an all-one polynomial of degree m is irreducible
are 2, 4, 10, 12, 18, 28, 36, 52, 58, 60, 66, 82, and 100.
Recently, Koc and Acar [13] demonstrated a mod-
ular multiplication using the Montgomery technique
adapted for finite field multiplication over GF(2"). When
R(z)=z™, the Montgomery multiplication for computing
A(z)B(x)R™(z) mod P(z), where A(z), B(z) eGF(2™)
and P(x) generates the field, is suited to hardware and
software implementations. Wu [14] recently proposed a
trinomial-based Montgomery multiplier. Bajard et al. [15]
suggested a Montgomery multiplier over GF(p™). Their
multipliers were irregularly designed and are unsuitable
for implementing systolic architectures. Hence, the article
describes two bit-parallel systolic Montgomery multipliers
over GF(2™) using our proposed transformation method,
which can operate for the field generated by the AOPs
and the trinomials. Both circuits exhibit a lower hardware
complexity and lower latency than with other systolic
multipliers in [16,17]. Finally, the proposed multipliers are
very appropriate for VLSI systems because of their regular
interconnection pattern, and modular structure.

II. Preliminaries

In fact, the finite field GF(2™) includes 2™ elements,
where m is an integer, such that GF(2™)={0, 1, a, a2,
- azm_z}’ where « is a primitive element. An element
of GF(2™) can also be indicated as a vector space over
the subfield GF(2). According to the application, the field
element of GF(2™) can be represented by three major
types of basis, normal basis, dual basis and polynomial
basis. Specifically, two classical schemes, MSB-first and
LSB-first schemes, use a polynomial basis to implement
bit-parallel (or bit-serial) systolic architectures with reg-
ular and simple modulo reductions in parallel (or serial).
Using the polynomial basis representation, the generic field
element A €GF(2™) is represented through the m-vector

(ao, ai, -+, am—_1) with respect to the set {1, , a2, ---,
am=1}:

A=ay+aa+aa®+ -+ am_1am?



Therefore, the field element of GF(2") is unique linear
combination of polynomials. The set {1, a, a2, am™ 1y
is called a polynomial (standard) basis. Given this element
representation, addition and multiplication in GF(2™)
can be performed by polynomial addition and polynomial
modulo P(x) on the field elements represented as degree
m-1 or less.

GF(2™) bit-parallel multipliers have been suggested in
[5,6,8] to reduce the complexity of the field multiplication.
Among these, the AOP and the trinomial generator
have been shown to be implemented by low-complexity
multipliers. A polynomial of the form p(z) = 1+a+- - -4a™
is called the AOP, which is irreducible if and only if
m-+1 is a prime and 2 is a primitive modulo m-+1. Let
a be the root of the AOP of degree m. The important
advantage of a basis representation can be re-expressed
by the set {l,a , a?, ---, ™}, called the AOP basis,
since a™t1=1. Moreover an optimal normal basis of
type I is generated from the AOP [18]. The existence,
distribution and other characteristics of trinomials have
been comprehensively studied. For example, Stahnke [19]
revealed that, for m <200, almost primitive trinomials
exist for slightly over one half of the values of m. Brent
and Zimmermann demonstrated in [20] that trinomials
have the following characteristics:

Theorem 1: Let trinomials of the form ™ + 2™ 4+ 1 be
the almost primitive polynomials, such that ged(m,n)=1.

Theorem 2: Let trinomials of the form ™ + 2™ 4+ 1 be
the almost irreducible polynomials, such that ged(m,n) is
odd.

Based on trinomials to contruct the finite field GF(2™),
various multipliers have been developed in [6,7,8,14].
Among these, non-systolic bit-parallel multipliers with
1< n < m/2 have low-complexity architectures. Using
the Horner’s rule, Lee in [17] proposed a low-complexity
bit-parallel systolic multiplier for all trinomials. Wu in
[14] used the Montgomery technique to a low-complexity
Montgomery multiplier. Furthermore, in Table of [21]
irreducible trinomials with gecd(m,n) > 1 are rare. Ac-
cordingly, this paper will focus on AOPs and trinomials
with ged(m,n)=1, and discuss the advantages of poly-
nomials to investigate low-complexity bit-parallel systolic
Montgomery multipliers.

III. Conventional Montgomery Multiplication over
GF(2™)

Recently, Koc and Acar [13] adapted Montgomery
techniques for modular multiplication of large integers
have to modular multiplication in GF(2™). In the field
GF(2™), the selection of R(x)=z™ importantly affects
the Montgomery factor; i.e., it computes A(z)B(x)R™1(x)
mod P(z), where P(z) generates the field of GF(2™).
Since P(z) and R(z) are relatively prime, two polyno-
mials R~!(z) and P~!(z) exist with the characteristic
that R(x)R~'(2)+P~!(z)P(x)=1. Thus the Montgomery
multiplication of A(z) and B(z) is defined as follows.

Step 1. T(x)=A(z)B(z)

Step 2. U(x)=T(xz) mod R(x)

Step 3. C(x)=(T(x)+U(x)P(x))/R(x) mod P(x)

As explained above, the Montgomery multiplication is a
complicated arithmetic operation which incorporates three
steps: conventional multiplication, modulo multiplication
and division. The following section addresses the imple-
ment of a bit-parallel systolic architecture.

IV. Bit-Parallel Systolic Multiplier for Binomials

A special polynomial of the form a™+1 over GF(2),
called the binomial, produces simpler multipliers. Al-
though the finite field GF(2™) cannot be constructed
from this polynomial, an AOP-based multiplier is fre-
quently applied using the reduction polynomial of
the binomial p(z)=z™+1 to implement low-complexity
multipliers. For example, the reduction process using
the AOP P(z)=z™ '+2™ 2+...+2+1 over GF(2) is
usually carried out wusing the binomial z™41 since
(z4+1)P(x)=z™+1.

Theorem 3: Assume that A(z) = ap,_12™ ' + --- +
asr®+air+ag and B(z) = by _12™ - - A-boa? +b1x+ by
are an element of GF(2™). Since 2™=1, the computation
of the product of both A(x) and B(x) 1nvolves,

m—1 m—1

A(@)B(z) = (D aci—jjasbeiives
i=0  j=0
i+j=even
m—1 ]
+ Z A< (itjr1)/2>be(izj—1)/25)2(1)
1+J]:de

Proof: Since £™=1, the product of A(x) and B(z) is
straightforwardly computed as

m—1m—1

2) =YY aci bt (2)

i=0 j=0

where <p> denotes p modulo m. In the following, two
cases, even ¢ and odd ¢, are discussed

Case 1: even 1

Assume that % is an even value, where 0< k < m-1.
j is chosen so that j=<E> satisfy 4 < j < £+4|2-L]

i/ m—1
, Ea ey .
. Thus, substituting j=<Z£E> into Y.  aci—jsbja
i=
produces
%"‘Lm;lj m—1
Qi J>bx = Z a_izky <7.+k
J:% k even
Next, let & be odd number, j is chosen so that

j=<EELs satisfy 44| 2] 41< j < m-1 and



. , i/2—1
0< j < 3-1. Thus, substituting j:<’_kT_1> into

i=0
. mil .
acijsbja'+ . > a<;—j>bjx" produces
J=5+ 15+
%*1 m—1
a<i_j>bjx + a<z-_j>bjx
=0

J=3+E 4

m—1
= E a<¢i§i1>b<z7§71>
k=odd
k=1
Case 2: odd i

Assume that k is an even value, Where 0<k<m-l.jis
chosen so that j.:<%> satisfy 1+ LmT’lj <j<m-
1 and 0< j < % Thus, substituting j:<’_kT_1> into

i—1
) m—1

aci—j>bir't 3
0 J=S

a<i—j>bjz’ produces
Jj=

m—1

>

J=E 2

i—1
2
i i
E <i—j>bix'+ Q<i—j>b;x
7=0

m—1
= E a<i+l;+1>b<i—§—1>

k=odd
k=1

Next, let £ be odd number, j is chosen so that j:<# >

satisfy &1 < Jj < Sly |m=1] . Thus, substituting
| e |
j:<#> into > a<i—j>bjx’ produces

=T

Eahuiead

>

m—1
i § ) :
a<i,j>bjx = a<1;k>b<%>
j:ﬁi k=0
2

k=even

As indicated above, the final multiplication of A(z) and
B(z) can be represented as

m—1 m—1
A(JJ)B(I) = E ( E a<i_;l'>b<%1>
i=0 7=0
i+j=cven
m—1
E L o i
+ a<1+2z+1>b<172171>)x
=0
i+j=odd
|
m—1 m—1
Now for each > acizisb s+ >
Jj=0 Jj=0
i+j=even i+j=odd

a_itjr1 b_izyo1, a column vector is defined as
2 2

Wi = (woi, Wi, +, Wim—1)i) " 5 (3)

where

Wy a<i_;l'>b<%1> , for i+j=even

= a. z:+2z’+1>b< i1y, for i+j=o0dd

The sum of all entries in the column vector W; is exactly
m—1 m—1

‘Zo a<z_;1>b<%1>+ 'Zo a<¢+21~+1>b<¢72¢71> and W;
Jj= Jj=
iti=even

appears as the i
W=(w,;) where

i+j=odd

th column vector in the m by m matrix

1 x e zm-t
Woo Wo1 Wo,(m—1)
W = w10 w11 W1,(m—1)
W(m—-1),0 W(m-1),1 W(m—1),(m—1)

(4)
The structure of the matrix W indicates that, if i+j=
even, then the coefficients a <izis and b <itds in the
expression of w;; are determined 2loy the coefficients in the
expression of w(;_1) ;—1) and w(;_1),(i+1), respectively; if
i + j= odd, the coefficients CPSIRESES and b_i—j-1 in
the expression of w;; are determined by the coefficients
in the expression of w(;_1) j+1) and w(;_1) i—1), respec-
tively. From this observation, the proposed binomial-based
multiplication is regular and simple, and is well suited
to implementing systolic architecture by fully exploiting
inherent parallelism of the input data. In the following
example, Theorem 3 is applied to verify the correctness
of the configuration of the binomial-based multiplication
in Example 1.

4 .
Example 1: Let two elements be given by A(z)=>_ a;a”
i=0
4 .
and B(x)=>_ b;z", and let the multiplication be given by
i=0

4
A(z)B(xz) mod 2™+1 for m=5. Assume that C(z)=>_

. i=0
c;z' is denoted by the product of A(x) and B(zx), such
that the product C(x) using the structure of matrix W
in (4) can be obtained as

1 T 22 a3 xt
apbo aiby aiby azb;  asby
aiby agby  azby aiby agby
asby  azby  agba  agby  aibz
azbz  asbs  agby apbs asbo

+ a3b2 a3b3 a4b3 a4b4 a0b4
Co C1 C2 C3 Cq

For clarity, A(z) = a4z* + az2z® + a2 + a17 + ap
and B(z) = byr* + b3z + box? + byx + by are used
in an example to illustrate the systolic multiplier. Let
Di(z) = diax* + di32® + d;i 22 + di1x + d; o Tepresent
the i*" intermediate product of A(x) and B(z). Assuming
the initial Do(z)=0 is established, do ;=0 for 0 < j < 4.
Fig.1 shows a parallel-in parallel-out systolic multiplier.
The U-cell presented in Fig.2 is made up of one 2-input
AND gate, one 2-input XOR gate and three 1-bit latches.



Fig. 1.
GF(2%)

The bit-parallel systolic binomial-based multiplier over

d;
b<(i+j)/2>/a<(i+j+l)/2>
a ‘<(i-j)/2>/b <(i-j-1)/2>
b<(i+j)/z>/a<(i+j+l )2> b
A iy Picjory2>
)
Fig. 2. The detailed circuit of the U-cell

Assume that the U-cell is located in the " column and
jt" row of the proposed multiplier, which is performed
by d;; = d;i; + a<(i_j)/2>b<(i+j)/2> if 4 + j=even, or
dij =d;;+ a<¢_+2'+u>b<z_ﬁ2>u> if i + j=odd. Fig.1 shows
that the latency has m clock cycles, and each cell is
required by the maximum computation delay of one 2-
input AND and one 2-input XOR gate.

A polynomial 2" + -+ + 22 + z + 1 over GF(2) is
called an AOP of degree n. An AOP basis can be easily
shown to exists in GF(2") if and only if m=n+1 is a
prime and 2 is a primitive root modulo m. Thus, Fig.1
is called the AOP-based multiplier when m=n-+1 is a
prime and an AOP of degree n is irreducible. Applying the
properties of an AOP, an AOP-based multiplier in [11] is
the use of an inner-product multiplication to perform the
multiplication over GF(2") and thereby construct a fully-
bit-parallel systolic multiplier. The required latency is only
m clock cycles. We now compare the proposed AOP-based
multiplier with Lee’s multiplier in [11], both multipliers
have the same hardware complexity and latency. Notably,

Lee’s multiplier in [11] differs from that in the proposed
method. However, the most important problem of Lee’s
multiplier is its lack of suitability for an even m.

V. Proposed Transformation Method

The preceding section discusses a new bit-parallel sys-
tolic multiplier for binomials. This section will introduce
shuffling the coefficients of two elements to perform a
A(z)B(z)x™™ mod 2™+1 computation. Accordingly, the
next section will present the Montgomery systolic multi-
plier for trinomials.

Theorem 4: Let m be an integer, and let

(i) =q+i(m —n) mod m (5)

where 1< n < m-1, 0< ¢ < m-1 and qz<% >,
Assume that if the value of n is fixed on 1< n < m-1 and
ged(n,m)=1, then (i), for 0< ¢ < m-1, is permuted on
the complete residue set {0, 1, 2, --- , m-1}.
Proof: If ged(n,m)=1, then ¢+ i(m —n) mod m #

g+ p(m—n) mod m for each i,p such that 0 ¢ < p < m-1.
Therefore, w(i) = m — 1 4+ i(m —n) mod m (=0, 1, 2,

-, m-1) is a distinct residue modulo m, and the set {
g+i(m—n) mod m}i=o.1,2,...m—1 is & permutation of the
complete residue set {0, 1, --- , m-1}. [ ]

Following the representation of the matrix W in Exam-
ple 1, the following proposition is important in developing
the Montgomery multiplication.

Theorem 5: Observing the it" column vector W; in the
matrix W, assume that ¢ is fixed on 0< ¢ < m-1; then

1) <<m;> + <%>> =i, for ¢ + j =even

2) <<HHH S 4 <=lss o for i+ j =odd

Using Theorem 5, Eq. (1) can be rewritten as

A(x)B(x)
m—1 m—1 o o
_ ( Z a<ﬂ>b<ﬁ>x<<%l>+<’—2l>>
i=0  j=0 ’ ’
itji=even
m—1

E : . . <<l s 4 cinimls
+ a<z+21+1>b<172171>x 2 2 f@)

j=0
i+j=odd
Theorem 6: Based on Theorem 5 and 6, assume that @
is fixed on 0< i < m-1; then

1) <m(<Bls) 4r(<Sis)> = <q +7(i)>, for i+ j

=even
2) <m(<BE> 4 (<= S)> = <g+7(i)>, for i+
=odd

3) If i =m-1, then < ¢+ (i) >=m-1
Proof: Since 7(i) = ¢ + i(m — n) mod m, where
q:<m*T"*1 >, let ¢ and j be two integers, then
< w@)+7(j) >=q+i(m—n)+qg+jim—mn) mod m
g+ q+ (i+j)(m —n) mod m) mod m

g+ 7(i+j) mod m
<q+7(i+j)>



From Theorem 5,

< 7r(<l+‘7 >)+7r(<%>)>

= <q+7(i)>, for i+ j=ecven
e i

< w(<%>+w(<%>)>

= <q+m7(i)>, fori+j=odd

Assume that ¢ = m-1; it is easily to show that

<q+7(i)>=m—-n—-1+(m—-n)(m—1) mod m=m-—1

Applying Theorem 4 and 5, Eq. (6) can be rewritten as
follows:

m—1 m—1

> (2

i=0  j=0

it+j=even
p<T(<FE>) (<5 >)>
m—1
+ Z a,
1+J odd

<SR (<L ) )

A(x)B(z) =

Or(<izd >)b7r(<%i>)

1+J+1 bﬁ(<1 i— 1>)

m—1

Z W<q+ﬂ(i)>x<q+ﬂ(i)> (7)
=0

where

m—1

>

=0

i+j=even

Weginy> = aw(<%i>)bw(<%i>)

m—1

+ Z aw(<"—+%>)bﬂ(<"—*%>)
j=0
itj=odd

Now, consider the Montgomery multiplication for com-
puting A(z)B(x)z~™ mod z™+1. From [11],

B(z)z™" mod (z™+1) = B(z)™
= b<j+n>xj (8)
i=0

=

Clearly, B(z)(~™ is determined by shifting B(z) cycli-
cally n positions to the left, that is, by substituting
<j + n> into the subscript of b; on the element B(z).
Accordingly, A(x)B(x)x™™ mod z™+1 based on Eq. (7)
can be obtained as

A(z)B(z)xz™" mod (2™+1)
= A(x)B(z)™
m—l m—1
= Z w(<%¢>)b<vL+w(<%i>)>
AR
m—1
D i) iz ) e TTTOR)
ié-:?dd
A. Example
Given n=2 and m=5, 7(i)="-2=L+i(m — n) mod m,

0< i <4, 7(0)=1,m(1)=4, 7(2)=2, 7(3)=0, and 7(4)=3 can
be readily determined. Substituting 7(i) into the matrix
W in Example 1, let C(x Z ¢;zt, where ¢; is defined

=0
as the sum of all entries of the column vector W;, then

x? x0 x3 x x*
arb1  agbr  asby  azby  asb
agby  ajby  azby  aghy  agby
asby azbs  arba  apby  asby
azbg azbz agbs aiby azby

+ CLon aobo a3b0 a3b3 (251 b3

Cc2 Co Cc3 C1 Cq

The above results show that the sequence ¢, cq, 3, ¢1, C4
is a permutation of the sequence ¢y, c1, ¢, c3, ¢4, as com-
pared with Example 1. Moreover, if i+ j= even, the coefli-
cients Up(<izis)y and b<n+ﬂ( itisys in the expression for
wj; are determined by the coeﬁments in the expression for

W(j—1),(i—1) and w(;_1) (i+1), respectively; if ¢ + j= odd,
the coefﬁc1ents (< idgtl ) and b<n+ﬂ(<1_ﬁ;1>)> in the
expression of w;; are determined by the coefficients in the
expression for w(;_1) (;+1) and w(;_1),(i—1), respectively.

Now, consider the Montgomery multiplier for calculat-
ing D(z) = A(x)B(z)z~™ mod z™+1. Since B(z)(~™) can
be determined by shifting B(x) cyclically n positions to
the left, the product D(x) can be obtained as follows.

x2 x0 x3 x x*
ajbz asbs agby  azb;  asby
asbg  aiby  azbz3  asbs  agb:
azby axby  aiby apbs  asby
azbz azby agby aiby asbz

+ a0b4 ap b2 a3b2 agbo al b()

da do ds dq dy

As indicated above, the Montgomery multiplication for
binomials can be summarized as follows.

1) The term is located in position (i,j), and is thus
denoted as term (i,j). All coefficients in term (i,j) are
coefficients of the neighboring term. For example, the
term (2,2) is a1by, and the terms (1,1) and (3,3) include
the coefficient a;. Similarly, terms (3,1) and (1,3) include
coefficient by.

2) The Montgomery multiplication for computing
A(z)B(xz)z~™ mod z™+1 can be obtained from binomial-
based multiplication. That is, Fig.l can also of-



fers the multiplication of A(x)B(x)x™" mod x"+1
when the two vectors (ar(o),ar(1), "»0r(m—1)) and
(b<n+7r(0)>7 b<n+7r(1)>7 T 7b<n+7r(m71)>) are translated
from two vectors (ag, a1, -, am—1) and (bg, b1, -, bm—1)

From the above summaries, the circuit in Fig.1 can also
be shown to compute A(z)B(xz)z~™ mod z™+1. If m =
k+1 is a prime and the AOP of degree k exists, then the
binomial-based Montgomery multiplier as shown in Fig.1
is also called the AOP-based Montgomery multiplier. The
following section will use the proposed multiplier to realize
the trinomial-based Montgomery multiplication.

VI. Bit-Parallel Systolic Montgomery Multiplier for an
Irreducible Trinomials of the Form x™+4x"+1 with
ged(myn)=1

In [21], Brent and Zimmermann stated that almost
primitive trinomials of the form z™ + z™ + 1 satisfy the
condition of gcd(m, n)=1, and most irreducible trinomials
also satisfy the condition of ged(m,n)=1. Hence, this sec-
tion addresses the reduction process using the trinomials
of the form p(x) = 2™ 4 2™ + 1 with ged(m,n)=1 to de-
rive the low-complexity bit-parallel systolic Montgomery
multiplier.

Let A(z) = ap_12™ ' 4+ -+ ayx + ap and B(z) =
by_12™ L 4 oo 4 biw + by be two elements in GF(2™),
where the field is constructed from irreducible trinomial
P(z) = 2™ + 2™ + 1 with ged(m,n)=1. Assume that the
product T(z) = top,—22?™ 24 +t1x +1o is the general
multiplication of A(z) and B(z), where

to = aobo
tl = a0b1 + a1b0
tm—1 = @obm—1+ a1bp—2+ -+ am_1bo
tm = aibpm_1+ asbp_o+ -+ am_1b1
t2m72 = amflbmfl

Consider the intermediate multiplication T'(x) decom-
posed as follows.
T(x) = Ty(z) + To(z)z" + Ty(x)x™ ™ (10)
where

tnflwn_l +---+tix+ 1o
Ttz by

—n—2
m—n + . 4+ t7n+n+1$ + tm-&-n

tm—l—n—lxm
Ts(z) =
Theorem 7: Given the intermediate product
A(z)B(z)=Ti(2)+To(x)x" +T5(x)x™* ", the Montgomery
multiplication can be represented by
A(z)B(x)z™" (modz™ +1) = Ta(z) + T3(x) + Ty (x)z™ ™"
(11)
Proof: Given the intermediate product
A(x)B(z)=T1(z) + To(z)z™ + Ts(x)x™*™, using the

tom—2x

Montgomery multiplication in [13], the Montgomery
multiplication for computing A(z)B(x)z™" (mod 2™ + 1)
can be given by,

A(z)B(z)z™" (modx™ + 1)
Ty (z) + To(x)x™ + T3 ()™ ™ + Ty (x) (2™ + 1)

xn

To(xz) + T3(x)x™ + Ty ()™ "
= To(z)+Ts5(z) + Th(z)x™™ "

|
Next, the Montgomery multiplication for trinomials
with 2" + 2™ + 1 can be represented as

A(x)B(z)x™" (moda™ + ™ + 1)
Ty (x) + Ta(z)z™ + T3(x)a™ ™ + Ty (z) (2™ + 2™ + 1)

xn

= Tyh(z)+ Ts(x)a™ + Ti(z)x™™ " +Ti(z)
= (Ba(z) + T3(z) + To(z)a™ ") + (T1(x) + +T5(z)2")
= K(z)+G(z) (12)
where
K(x) To(x) + Ts(x) + Th(z)z™ ™"
= A(z)B(x)z™" (modz™ +1)
= ko+kiw+--+ kg™t
Gx) = Ti(x)++T5(x)z"”
= gotqiz+ -+ gm—mei2
m—1
ki = Z aﬂ(<”—;i>)b<n+ﬂ(<%i>)>
i+;::e(316n
m—1
+ Z aﬂ(<i‘é+u>)b<7l+ﬂ(<t‘;u>)>
g = t, for0<i<n-—1
tmti, forn <i<m—2
Since K(z) = To(z) + T3(x) + T (z)x™ ™™ and G(z) =

Ti(x) + T3(x)x™, each term in G(zx) is included in the
polynomial K(x); that is, the polynomial G(z) can be
extracted from K(z)= A(x)B(z)x™™ mod x™+1 compu-
tations. From Theorem 5 and 6, two polynomials, K(z)
and G(z), are given by

K(x) == k<q+ﬂ(0)>x<q+‘ﬂ'(0)> + k<q+7r(1)>x<q+7r(1)>
R k<q+7r(m_1)>x<q+7r(mfl)>
G(l') = g<q+ﬂ(0)>x<q+7r(0)> + g<q+7r(1)>x<q+7r(l)>

+o t Geganmony>a =TT

Moreover, each term g« g4r (i), for 0< i < m-2, in G(x)
can also be extracted from 1<<q+7T i+1)> computations since

G(l‘)l‘m_n — Tg(l‘) +T (x)xm—n (13)

Example 2: Let A(z) = ag2* + a3z® + a2 + a12 + ag
and B(z) = bya* + b32® + bax? + bz + by be two elements
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Fig. 3. The detailed circuits for W, Q, and V cells

of the field GF(2°) generated by the primitive trinomial
2% +122+1 over GF(2). The Montgomery multiplication for
computing K (z) = A(z)B(z)z~2 mod z°+1 is expressed

as
a1b3 a4b3 a4b1 a2b1 a2b4
a4b0 a1b1 agbg | a4b4 | a0b1 |
agby aghyp aijby  agbs agbo
azbs a1bs azbs
+ a0b4 a()b2 agbg a3b0 alb()
ko ko k3 ky ky

From the above multiplication, based on Eq. (12), the
polynomial G(z) can be represented as

G(z) =

= (asby + aghg)z<H7O> 4 gopyz<tTT>

<1+m(2)> + ( <14m(3)>

+a4b4x albo + aobl)x

Obviously, each term g<14r¢;)> in G(z) can be found and
marked in each term g.iyr(i+1)> in K(z). In summary,
the implementation of the bit-parallel systolic Mont-
gomery multiplier for trinomials is established by the
following steps:

step 1) The multiplication step uses the reconfiguration of

the proposed binomial-based multiplier to produce
two polynomials K(z) and G(x).

step 2) The final sum step is performed by the sum of K(x)

and G(x).

For clarity, Example 2 is used to illustrate the proposed
bit-parallel systolic Montgomery multiplier for trinomials.
Fig.4 shows the proposed trinomial-based Montgomery
multiplier, which includes two-unit circuits, the multi-
plication unit and the sum unit. In the first step for
constructing the multiplication unit, each masked entry

aobo + (a1bo + agby)x + (azby + asbs)x?® 4 asbya®

X

2 b

,ulliBlicalion unit

L

Sum unit

Fig. 4. The bit-parallel systolic Montgomery multiplier for the field
generated by x®+x2+1

is defined as the V-cell which is identical to one 2-input
AND gate, one 2-input XOR gate and four 1-bit latches,
as shown in Fig.3(a). And each unmasked entry is defined
as Q-cell that is composed of one 2-input AND gate,
two 2-input XOR gate and four 1-bit latches, as shown
in Fig.3(b). Based on the two basic cells, the result of
the multiplication unit in Fig.4 produces two polynomials
K(x) and G(z). Besides, in Example 2 the coefficient
g<14x(i)> for 0< @ <3 is easily shown to be produced in the
(+1) column. Finally, the sum unit in Fig.4 is composed
of m W-cells to perform the sum of K(x) and G(x). Each
W-cell is composed of one 2-input XOR. gate and one 1-
bit latch to perform C<ltn(@)> = I<i+nm(i)> T k<1+7r(i)>
computations, as shown in Fig.3(c). Therefore, Fig.4 is
using three basic cells to carry out the Montgomery
multiplication for the trinomials. As stated above, our
proposed bit-parallel systolic Montgomery multiplier only
requires a latency m+1. The maximum computation delay
in each cell is needed by on 2-input AND gate and one
2-input XOR gate.

The literature describes various bit-parallel systolic
multipliers using the polynomial basis, including those
of Wang [9], Yeh [10] and Lee [17]. Their multipliers
are based Horner’s rule. If the field of GF(2™) is con-
structed from a primitive polynomial with a general form,
then the latency of multiplier must still be 3m clock
cycles. In particular proposed applications, such as Lee’s
multiplier [17], the latency can be reduced from 3m to
2m+1. However, such multipliers cannot easily perform
the Montgomery multiplication. The use of the binomial-
based multiplication is considered first to realize the AOP-



TABLE 1

Comparison of the related systolic multipliers

[5] C.K. Koc and B. Sunar, ”Low-complexity bit-parallel canonical
and normal basis multipliers for a class of finite fields, 7 IEEE
Trans. Computers, Vol. 47, No. 3, PP. 353 -356, March 1998.

multipliers Yeh[10] Wang|9)] Lee[17] Fig.4 Fig.1
generating General ] General ] trinomials trinomialzvith AOP
polynomial polynomial polynomial ged(m,n)=1
U: m2 V:m?2-(n+1)(n+2)/2
number of cells m?2 m?2 V: m 1 Q:(n+1)(n+2)/2 (m+1)2
s W:m(m+1)2
cell complexity U Vv Vv Q@ W
2-input XOR 2 0 1 1 1 1 1 1
3-input XOR 0 1 0 0 0O 0 O 0
2-input AND 2 2 1 0 2 1 0 1
1-bit latches 7 7 4 2 4 4 2 3
gfnﬁpﬁﬁgnceu Ta+Tx Ta+Tsx TatTx | Ta+Tx Ta+Tx
latency 3m 3m 2m-1 m+1 m+1

based and the trinomial-based Montgomery multipliers
for implementing bit-parallel systolic architectures. Table
1 indicates that the proposed multipliers require lower
logic gates and have a lower latency than conventional
systolic multipliers in [9],[10]. Moreover, Lee multiplier
in [11] used the inner-product method to develop an
AOP-based systolic multiplier over GF(2™). This circuit
typically performs a binomial-based multiplication. The
major problem with Lee multiplier is its lack of suitability
for binomial multiplication of even degree because of inner-
product multiplication. More importantly, the latency of
the proposed multipliers requires only m+1 clock cycles.
That is, the proposed multipliers were designed to have
very low latency very high throughput, and significantly
reducing the time and space complexity.

VII. Conclusions

This article first addresses the use of the Montgomery
technique to realize bit-parallel systolic multipliers for
AOPs and trinomials. The proposed trinomial-based and
AOP-based Montgomery multipliers are shown to be
able to be translated from the proposed binomial-based
multiplier into simple systolic multipliers. Table 1 reveals
that the presented multipliers have lower latency and
circuit complexity than others. Consequently, the pro-
posed systolic multipliers are well suited to VLSI systems
because of their regular interconnection patterns, modular
structures and fully inherent parallelism. The proposed
multipliers are suitable for applications, such as smart
cards, mobile phone or other portable devices with limited
specific space constraints.

References

[1] E. R. Berlekamp, Algebraic Coding Theory, New York:
McGraw-Hill,1968.

[2] M. Y. Rhee, Cryptography and Secure Communications,
McGraw-Hill, Singapore, 1994.

[3] N. Kobliz, ”Elliptic curve cryptography,” Mathematics of com-
putation, Vol.48, No.177, PP. 203-209, Jan. 1987.

[4] C. Paar,” A new architecture for a parallel finite field multiplier
with low complexity based on composite fields, ” IEEE Trans.
Comput., Vol. 45, No. 7, PP. 856 -861 , July 1996.

[6] B. Sunar and C.K. Koc, "Mastrovito multiplier for all trinomi-
als,” IEEE Trans. Computers, Vol. 48, No. 5, PP. 522-527, May
1999.

[7] M. Diab and A. Poli, "New bit-serial systolic multiplier for
GF(2™) using irreducible trinomials,” Electronics Letters , Vol.
27, No.20, PP. 1183 -1184, June 1991

[8] J.H. Guo and C.L. Wang, ” A low-complexity power-sum circuit
for GF(2™) and its applications,”; IEEE Trans. Circuits and
Systems II, Vol. 47, No. 10 , PP. 1091 -1097, Oct. 2000.

[9] C. L. Wang and J. L. Lin, ”Systolic Array Implementation of

Multipliers For GF(2™), IEEE Trans. Circuits and Systems II,

Vol. 38, PP. 796-800, July 1991.

C. S. Yeh, S. Reed, and T. K. Truong, ”Systolic multipliers for

finite fields GF(2™),” IEEE Trans. Computers, Vol. C-33, PP.

357-360, Apr. 1984.

C. Y. Lee, E. H. Lu, and J. Y. Lee, "Bit-Parallel Systolic

Multipliers for GF(2™) Fields Defined by All-One and Equally-

Spaced Polynomials,” IEEE Trans. Computers, No. 5, PP. 385-

393, May 2001.

C.Y. Lee, E.H. Lu, and L.F. Sun, ”Low-complexity bit-parallel

systolic architecture for computing AB2 + C in a class of finite

field GF(2™),” IEEE Trans. Circuits and Systems II, Vo. 48,

No. 5, PP. 519 -523, May 2001

C. K. Koc and T. Acar, "Montgomery multiplication in

GF(2%),” Designs, Codes and Cryptography, Vol.14, No.1, PP.

57-69, April 1998.

H. Wu, ”Montgomery multiplier and squarer for a class of finite

fields,” IEEE Trans. Computers, Vol. 51, No. 5, PP. 521 -529,

May 2002.

J.C. Bajard, L. Imbert, C. Negre and T. Plantard, ”Efficient

multiplication in GF(p*) for Elliptic Curve Cryptography, ”

IEEE Symp. Computer Arithmetic, PP. 181 -187, June 2003

C.L. Wang, "Bit-level systolic array for fast exponentiation in

GF(2™),” IEEE Trans. Computers, Vol. 43, No. 7, pp. 838-841,

July 1994.

C.Y. Lee, "Low complexity bit-parallel systolic multiplier over

GF(2™) using irreducible trinomials,” IEE Proc.-Comput. and

Digit. Tech., Vol. 150 , PP. 39 -42, Jan. 2003.

A.J. Menezes, Applications of finite fields, Kluwer Academic

Publisher, 1993.

W. Stahnke, ” Primitive binary polynomials,” Math. Comp., Vol.

27, PP. 977-980, 1973.

R. P. Brent and P. Zimmermann, ” Algorithms for finding almost

irreducible and almost primitive trinomials,” Proceedings of a

Conference in Honor of Professor H. C. Williams, Banff, Canada,

May 2003

G. Seroussi, "Table of low-weight binary irreducible polynomi-

als,” Visual Computing Dept., Hewlett Packard Laboratories,

Aug. 1998. Available at: http://www. hplhp.com /techre-

ports/98/ HPL-98- 135.html.



