
- 1 -

A Routing System Using Minimum Starting-tag Fair

Queueing
Jen-Bang Feng

Institute of Computer
Science

National Chung Hsing
University

jbonf@cs.nchu.edu.tw

Yi-Hung Huang
Department of Information

Networking Technology
Hsiuping Institute of

Technology
ehhwang@mail.hit.edu.tw

Yen-Ping Chu
Institute of Computer

Science
National Chung Hsing

University
ypchu@nchu.edu.tw

Abstract

Minimum Starting-tag Fair Queuing
(MSFQ) is an efficient packet scheduling algo-
rithm with theoretically proved in performance
metrics such as delay bound, fairness, and time
complexity. However, MSFQ algorithm didn’t
have any implementation yet. In this paper, we
established a configurable routing system based
on Linux with MSFQ as the routing scheduling
algorithm and provide an efficient way to build a
testing environment.

In the process of implementation, we de-
signed and improved the internal part of data
structures, embedded MSFQ algorithm into
Linux kernel according to structures of Linux
Network Traffic Control extended from Linux
advanced routing project called iproute2. In or-
der to boot MSFQ from kernel, we also modified
‘tc’ package in iproute2 project.

An analysis model is built to evaluate the
performance of proposed routing system. The
comparison between MSFQ algorithm and other
scheduling algorithms built in Linux kernel such
as prio, sfq, etc. is also provided. The result of
implementation proved the behaviors of MSFQ
both theoretically and essentially. We also of-
fered an easier and faster process to implement
other algorithms so that any new algorithms will
be implemented and analyzed more efficiently.

Keywords: MSFQ, QoS, Linux, Packet Sched-
uling Algorithm, Kernel

1. Introduction

Design of the packet scheduling algorithms
is one of the most important issues in providing

quality of service (QoS). As each connection
interacting with others at each switching node,
different packet scheduling algorithms cause
different behaviors. The lower delay time re-
duces the better response time, the smaller the
delay jitter increase the stabilization of the con-
nections, and fairness avoid the starvation.

In order to provide a better-behaved ser-
vice, many algorithms such like VC (Virtual
Clock), GPS (Generalized process sharing),
PGPS (Packet-by-packet GPS), Self-clocked
Fair Queueing, Starting-time Fair Queueing,
Stochastic Fair Queueing (SFQ, [8])… have
been proposed. Minimum Starting-tag Fair
Queuing (MSFQ, [1]) has been also proposed in
the same theme after well design and mathe-
matically analysis. This paper is proposed to test
and verify the efficiency and performance of
MSFQ, to make sure that MSFQ works as well
as we suggested.

Linux is an open sourced operation system
with well-designed network components, and is
already working in many systems. If we can
make MSFQ works on Linux, then it should
work at any platform or any switching router.
For this reason we choose Linux kernel 2.4 to-
gether with iproute2 project ([3]) to be our plat-
form, and MSFQ will run inside the patched
kernel with fixed tools to control it.

After building a MSFQ router, we test the
delay time under varies algorithms, and analyze
the performance in several situations. Also we
compare MSFQ with other packet scheduling
algorithms already built in Linux kernel.

This paper is organized as follows: intro-
duction in Chapter 1 and MSFQ is introduced in
Chapter 2. Chapter 3 is the Implementation of
the Proposed System and we establish our test

- 2 -

bed in Chapter 4. Finally the testing results and
conclusions are in Chapter 5 and 6.

2. Minimum Starting-tag Fair Queue-
ing (MSFQ)

MSFQ belongs to the class of Guaranteed
Rate (GR) scheduling algorithms ([9]) and has
finishing tag to decide which packet to be served
next from least to largest value. The formula of
MSFQ is:

0)(0 =f
i pF , (1)

)(min)(
)(

tStv i
jfjtBj

i
i ≠∧∈

= , (2)

1)},()),((max{)(1 ≥= − kpFpAvpS k
f

ik
f

iik
f

i , (3)

1,)()(≥+= k
r
l

pSpF
f

k
fk

f
ik

f
i , (4)

where pf
k is the k-th packet of connection f, Bi(t)

is the set of all connections existed at time t, Sj
i(t)

is the minimal starting tag of connection j at time
t in node i, Si(pf

k) is the starting tag of pf
k, Ai(pf

k)
is the time that node i accept pf

k, Fi(pf
k) is the

finishing tag of pf
k, lf

k is the length of pf
k, and rf is

the reserved bandwidth of connection f.

When the traffic characterization conforms
to the leaky bucket policing mechanism ([5,6]),
the delay bound of MSFQ is equal to GR algo-
rithms:

∑
=

+
−+

≤
M

i
i

f

ffk
f C

l
r

lM
d

1

maxmax)1(σ , (5)

where maxl is the maximal length of all packet

in node i, iC is the capacity of node i, andσf is
the characteristic coefficient of connection f.

The fairness of MSFQ is presented in [1]
as the different throughput between any two con-
nections during any time interval [t1, t2] as:

},,)(max

,)(max,,{

max
),(),(

maxmaxmax

)(

max

)(

maxmax

2121

m

m

f

f

m

m

i

i
tBi

f

f

i

i
tBi

m

m

f

f

m

m

f

f

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
l

r
ttW

r
ttW

++

+

≤−

∈

∈

(6)

where),(21 ttW f is the throughput of connec-
tion f during time interval [t1, t2], fr is the

bandwidth reserved for connection f, and max
fl is

the maximal packet length of connection f. The
detail discussion was already provided in
Huang's researches.

3. Implementation of the Proposed
System

Figure 1 shows the Linux traffic control
structure designed by Werner Almesberger ([2]),
a queueing discipline (Qdisc) is a model for im-
plementing our algorithm. After upgrading ker-
nel, we insert MSFQ as a choice of routing algo-
rithm. Inside this structure, the major parts of all
the process are en-queue and de-queue.
En-queue process puts an arriving packet into
the queue and de-queue process choose a packet
to go, Figure 2 is the flow chart of the two proc-
esses.

Figure 1. Processing of network data ([2])

If class exists Get Tags
value

Create new
class

Push packet at the
bottom of the

queue that
belongs to its

class

Y

N

Input
Devic

e

Enqueue

Figure 2.1 En-queue processes

- 3 -

Dequeue
System Call Is there packets

Choose
Packet
(Class)

Pop the front
packet of the

class

Remove the
class

If the class
empty

Return

Y

N

N

Y

Output
Device

Dequeue

Figure 2.2 De-queue processes

Figure 2. Flow chart of en-queue and de-queue processes

In order to lower the time complexity, we
use a hashing table to record the information
about each connection and packet belonging to
the connection itself. By using this table, we can
reduce the access complexity to O(1). MSFQ
needs to query the least valued starting and fin-
ishing tag both, so we construct two minimal
heap tables to record tags of each connection.
This time complexity of finding the least valued
connection is O(1), but adjusting heap table
costs O(log N), where N is the number of active
connections. Thus the total complexity of
en-queue process in the above figure is O(1)
when connection is already existed, O(log N)
when connection does not exist. De-queue proc-
ess costs O(log N) to choose a packet. Figure 3 is
the simplified data structure we used.

MSFQ data

Each packet information
of this class

Starting tag

Finishing tag

Hash table

Class index

Heap table: Starting tag

Heap table: finishing tag

Class index

Class index

Figure 3. Simplified data structure in MSFQ

In order to evaluate the performance, we
use two selective parameters. One is the maxi-
mum connection (flow) size we recorded and the
other is the buffer size of each connection
(buffer). The total memory size used for MSFQ
module in Linux system is

bufferflowflow ×++ 840105 bytes.

Our achievement is already published on
Internet under the GNU license. Anyone can
download this source code of MSFQ in Linux
kernel 2.4 at web1 site.

1 Please visit our web page at
http://www.cs.nchu.edu.tw/~phd9213/MSFQ.ht
m and download the patch files to update system
with MSFQ.

4. Analysis Models

We construct two models for analyzing
MSFQ, as shown in Figure 4. Each server runs
Linux and is equipped with tbf queuing disci-
pline ([3]) to make the network traffic charac-
terization conformed to leaky bucket model. And
every router between the connections is also a
Linux machine running MSFQ algorithm.
Benchmark programs are running on Clients to
retrieve the results.

The first analysis model is a strait path between
source and destination. Extension from Analysis
Model 1, we let another connection path overlap
the original one. Then every router takes double
the connections flow and connections interact to
each other across the middle part of Analysis
Model 2.

MSFQ ServerClient

Figure 4. Analysis Model 1

MSFQMSFQ
Server 1Client 1

Server 2Client 2 n routers

Figure 5. Analysis Model 2

5. Test Bed and Benchmark Results

We use WebBench 4.1, a licensed PC
Magazine benchmark program with Ziff-Davis
as the vendor, to measure the performance of
Web servers. WebBench 4.1 reports the results of
average connections per second, average
throughput per second, average delay time, etc.

First we use our Analysis Model 1 to
measure our program performance under varies
settings. Every server has traffic characteristic
withσ=3Kbytes, ρ=50Kbytes/Second and maxi-
mum bandwidth equals to 50Kbytes/Second. The

- 4 -

following figure shows the result of Analysis
Model 1.

Average Throughput (Bytes/seconds)

Average Requests/Second

Figure 6. Results of analysis model 1

Table 1. Parameter settings in Analysis Model 1

 MSFQ
1

MSFQ
2

MSFQ
3

MSFQ
4

Flow size 127 23 17 17

Buffer size 128 32 20 18

Memory
used 136204 7050 3836 3236

Most of the modern operation systems use
page memory management method. Since the
page size in Linux cache memory is 4Kbytes, the
settings of the proposed system with memory
used around 4KB is focused.

Also according to the result of different
MSFQ settings, we can find that flow size to be
17 and buffer size to be 20 are better. The analy-
sis result in the first model also shows that
MSFQ is capable for sharing connection band-
width. We use MSFQ3 and set flow size to 17
and buffer size to 20 in the following tests to get
the best performance.

We use the Analysis Model 2 by reducing
the bandwidth between routers to 500kbit/second
and enlarge the server traffic with throughput at
10Mbits/second, also we set our clients sending
requests to the different servers. This will pro-
duce a bottleneck in Analysis Model 2. Figure 7

is the result using Analysis Model 2 for FIFO,
SFQ, and MSFQ.

Average Throughput (Bytes/second)

Average Requests/Second

Figure 7. Results of Analysis Model 2

The result shows that although FIFO is the
simplest algorithm, it provides fewer successful
connections than other algorithms. We can de-
rive a reasonably conclusion that both MSFQ
and SFQ can share delay time to each class of
connections better than FIFO. After we made all
the analysis, we showed that MSFQ behaves
well in varies situations.

6. Conclusions and Future Works

From the result of our tests we can figure
that system architecture is a critical factor of
overall performance. When the memory we al-
located is over 4K bytes, which is the size of a
single page in Linux, total throughput decreases
significantly. If we want to use MSFQ in other
operating systems, we need to realize the system
architecture and design a specially designated
structure for MSFQ.

When a new method or new solution in
networking was proposed, it usually needs an
experimental system to prove the feasibility.
Linux advanced routing and traffic control suit
most of the requirements. We just used a part of
all the functions in this paper and other parts of
Linux advanced routing will be used to other
architectures further.

- 5 -

Reference

[1] Y. P. Chu & E. H. Hwang (1997). A New
Packet Scheduling Algorithm: Minimum
Starting-tag Fair Queueing. IEICE trans-
actions on Communications, Vol.E80-B,
No. 10.

[2] Werner Almesberger (2001). Linux Net-
work Traffic Control -- Implementation
Overview. EPFL ICA.

[3] Linux 2.4 Advanced Routing HOWTO:
Introduction to iproute2

[4] LARTC -- Linux Advanced Routing &
Traffic Control list.

[5] ATM Forum. ATM forum traffic manage-
ment specification version 4.0. Contribu-
tion 95-==13R11.

[6] J. Turner (1986). New directions in com-
munications (or which way to the informa-
tion age?), IEEE Comm. Mag., Vol. 24,
pp.8-15.

[7] S. Keshav & AT&T Labs-Research (1997).
An engineering approach to computer
networking: ATM networks, the internet,
and the telephone networks, Addi-
tion-Wesley.

[8] A. Sen, I. Mohammed, R. Samprathi, & S.
Bandyopadhyay (2002). Fair queuing with
round robin: a new packet scheduling al-
gorithm for routers. Computers and Com-
munications, 2002 Proceedings. of
Seventh International Symposium.

[9] P. Goyal, S. Lam, & H. Vin (1995). De-
termining end-to-end delay bounds in het-
erogeneous networks. Proceeding of the 5th
international Workshop on Network and
Operating System Support For Digital Au-
dio and Video, pp. 287-298, Durham, New
Hampshire.

[10] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, & Clifford Stein (2001).
Introduction to Algorithms, Second Edition,
Massachusetts Institute of Technology.

