Extractor Codes with Applications

Rong-Jaye Chen Ming-Yu Liu

Abstract

Extractors are functions which can “extract”
random bits from certain distributions that contain
some randomness. There are many applications of
extractors in complexity theory. Extractor codes
are codes which use extractors to encode informa-
tion. These codes have the very good distance prop-
erty. Therefore they have the soft-decision decoding
ability and could be suitable for highly noisy chan-
nels.

In this paper, we first explain extractors and
some relations with codes. We introduce an explicit
extractor code based on Trevisan’s extractor. Then
we show an application of extractor codes on
EC-RAID. We also bring up explicit and efficient
calculating and recovering algorithms in our EC-
RAID system, so that this new system can offer
high reliability and performance.

Keywords: Extractors, list decoding, soft-decision
decoding, extractor codes, RAID.

1 Introduction

An extractor is a function to extract truly ran-
dom bits from weak random sources. Extractors
were first defined and constructed by Nisan and
Zuckerman [5]. In recent years, an important
discovery of the extractor is Trevisan’s extractor.
Trevisan [10] connected Nisan-Wigderson genera-
tor [4] with extractors. This extractor only needed
O(logn) truly random bits , and the idea offered
another way to construct extractors. Later there
were several improved methods derived from Tre-
visan’ extractor, as in [7, 9]. Ta-Shma and David
Zuckerman [9] discovered that extractors have the
good distance property and can be used in coding
theory.

Our main contribution is to build a RAID-like
system using extractor coding. This RAID-like sys-
tem has high fault-tolerance ability, so it can offer
good reliability. We bring up an explicit calculating
algorithm to describe how to store data efficiently,
and three explicit recovering algorithms in different
serious situations to recover original data. We show
it is possible to rescue original data even if there are
more than half storage devices broken. This RAID-
like system can be designed as the multi-level fault-
tolerance system, so that the manager can maintain
and classify data easily.

The organization of this paper is described as fol-
lows. We introduce soft decoding concepts and ex-

*Computer Science and Info Engineering Dept, National
Chiao-Tung University, Hsinchu 30050, Taiwan, Email:
{rjchen, myliu, cydeng, sctsai}@csie.nctu.edu.tw.
The work was supported in part by the National Science
Council of Taiwan under contract NSC 91-2213-E-009-102.

Chin-Yuan Teng Shi-Chun Tsai*

tractor codes in Section 2. We introduce Trevisan’s
extractor in Section 3. In section 4, we introduce a
RAID systems using Reed-Solomon coding. Section
5 contains all the details of our RAID-like system
using extractor coding, and Section 6 shows an ex-
ample.

2 Preliminaries

2.1 Soft-decision decoding

Here we use the notation [n, k, d, to describe a code
over Fy. The codeword length is n, the length of
original information is k, and the distance of C' is
d. In coding theory, when receiving a word r, the re-
ceiver tries to find the closest codeword. This is the
well-known mazimum likelihood decoding (MLD). If
there were less than or equal to |(d — 1)/2] errors
made, the receiver can correct the received word
by MLD. Therefore we try to use another reason-
able solution to deal with this bad condition: find
all possible codewords within a specified Hamming
distance from a received word. This decoding solu-
tion is called list decoding. Reed-Solomon codes is a
well-known code which has the list decoding.

Now we consider more highly noisy channels.
Suppose a code C with a large alphabet 3. If each
received symbol may be one of some = symbols with
equal probability, it is very hard to find a small set
of possible codewords by list decoding. There is a
more generalized solution to deal with these prob-
lems, called soft-decision decoding. The word “soft”
means that we take total symbols with probabilities
instead of the correct one.

Let C be a code of length T over alphabet [M] =
{1,2,..., M}. In soft decoding, we want to describe
that the ith received signal induces a probability
distribution over all possible symbols in the alpha-
bet [M], for any i € [T]. We model this as a weight
function: w : [M] x [T] — [0,1]. So we can think
w(y, 1) is the probability that ith received signal be-
comes y € [M]. Define the relative weight of w to

be =xeltlicll] W) 14 easy to see that p(w) is
a real number between 0 and 1.

Definition 2.1. (Agreement) The agreement
Ag(u,w) between a word u and a weight function
w is defined as Ag(u,w) = ;e wlui, i).

In maximum likelihood decoding or list decod-
ing, we can simplify a weight function to describe a
received word w. Let the weight function have ex-
actly one “1” in each column and the other entries
be “0”. In this condition, the agreement Ag(u, w) is
the number of digits in which u and w are the same.
So the decoding process of MLD is to find a unique
codeword u € C' that Ag(u,w) > T — |(d —1)/2],
and list decoding is to find the set of possible code-
words ¢1, ...,¢m € C that Ag(u,w) >t~ d/2.
Definition 2.2. (Soft decoding) A4 code C has

(L, 6) soft decoding if for every weight function w
the set T's(w) = {u € C|Ag(u,w) > (p(w) + §)T}
has size at most L.

2.2 Extractors

Definition 2.3. (Statistical difference) The sta-
tistical difference between two random wvariables
X and Y with range {0,1}" is | X — Y| =

pogo 8% o) [PHT(X) = 1] = Pr(T(Y) = 1]

If the distance between two distributions X and
Y is less than ¢, then we say that X and Y are -
close. A distribution on n bit strings is e-uniform
if it is e-close to U,.

Definition 2.4. (Extractor) A function E : [N]x
[T] — [M] is a (L,§) extractor if for every subset
X C [N] of cardinality at least L, the distribution
E(X,Y) (where Y is uniformly distributed in [T])
s §-uniform.

Definition 2.5. (Strong Extractor) A function
E : [N] x [T] — [M] is a (L,d) strong extractor if
for every subset X C [N] of cardinality at least L,
the distribution E(X,Y)oY (whereY is uniformly
distributed in [T]) is d-uniform.

Definition 2.6. (Extractor codes) Let E : [N] x
[T] — [M] be an extractor. For each x € [N], de-
fine a word u(z) = (u1,uz,...,ur) € [M]F where
u; = E(z,i). The extractor code Cp = {u(x)| x €
[N]} € [M]T.

3 Trevisan’s extractor

Amnon Ta-Shma and David Zuckerman [§]

showed some relations between extractors and
codes. They also proved that a good extractor
yields a code with good soft decoding and efficient
encoding.
Theorem 3.1. ([8]) If E : [N] x [T] — [M] is
an (L,0) strong extractor, then the extractor code
Cg has (L,9) soft decoding. Conversely, if Cr has
(L,6) soft decoding, then E is a (%,25) strong ex-
tractor.

They used Trevisan’s extractor to construct an
explicit extractor code with efficient encoding and
decoding. Trevisan’s extractor uses a main combi-
natorial object, called a design. It is a collections
of sets with small pairwise intersection. Here we
introduce an improved version given by Ran Raz,
Reinfold, and Vadhan [7]. It is called a weak design.
Definition 3.1. (Weak design) Forp > 1, a fam-
ily of sets S1,...,Sm C [t] is a (I, p) weak design if

1. For alli, |S;| =1, and
2. Foralli, >, ;219051 <p.(m—1)

Besides the weak design, Trevisan’s extractor
uses a good error correcting code BC' : {0,1}" —
{0,1}", 7 = poly(n, 2). This code BC need to have
the list decoding property: There has at most %
codewords in every ball of radius (3 — a)7.

Let © € {0,1}™ be the input choosing from a
weak random source, y € {0, 1} be another input
choosing from uniform distribution. Trevisan con-
structed an extractor Erg(x,y) as follows. First

encode the input x using the error correcting code
BC, denoted #. Let | = logn. We use a (I, p)
weak design Si, ..., Sy, for all S; C [t]. We define
yls, € {0,1} to denote the string chosen from y
corresponding to the set S;. Then consider % as a
truth table. It means that & can be seen as a func-
tion f; with the length of input is logn = [. For
all i € [m], we use each y|g, as the input of the
function Z. Therefore we can get m output bits fi-
nally. Trevisan’s extractor is generally defined in
the following way:

Err(z,y) = fa(yls,) © fa(yls,) o ... 0 fa(yls,.)

The extractor codes based on Trevisan’s extrac-
tor has the following property.
Theorem 3.2. ([8]) For every § = 6(n) > 0 and
M = M(n), Let {Crrn} denote a Trevisan’s ex-
tractor code with Crr C [M]T. The code has
efficient encoding and efficient (L,d) soft decod-
ing, and |CTR| = T = 20((logn+logm+log(%))2)7
L <p(T,M, %) for some polynomial p(-).

4 Reed-Solomon codes in RAID

The concept of Redundant Array of Inexpensive
Disks (RAID) was first introduced by Paterson,
Gibson, and Katz [6]. The RAID technique is us-
ing small and inexpensive disk arrays instead of big
and expensive simple disk. Using disk arrays, we
can simply spread data over multiple disks, called
striping. It not only increases the available stor-
age but also increases the effective I/O bandwidth
by allowing multiple disk accesses to data striped
on different disks at same times. However, disk ar-
rays are prone to failure because the failure rate
increase linearly with the number of disks in an ar-
ray compared with single large disk. We can avoid
this condition by adding redundancy information in
the disk array. In the way, disk array will also have
more reliability.

4.1 Reed-Solomon Codes

Reed-Solomon codes, abbreviated RS codes, are one
of the most practical and well-known codes. These
codes can be used as both error-correcting and era-
sure codes.

Definition 4.1. (Reed-Solomon codes) Let vy be
a fizred primitive element of Fy, and let k be an in-
teger with 0 < k <n=q—1. We let Py denote the
set of polynomials of degree less than k, including
the zero polynomial. Then

C={(f), f), FO)s s FT2)) If € Pi}

is an [n, k,n —k + 1] Reed-Solomon code over F.

The Definition is the narrow sense Reed-Solomon
codes. It can be generalized that n can achieve q
by adding the first digit of the original information
to the codeword. The well-known decoding algo-
rithm of Reed-Solomon codes is Berlekamp-Welch
decoding algorithm in [11].

4.2 Reed-Solomon coding in RAID-like
systems

We now use the Reed-Solomon coding in RAID-like
systems. First we define our storage specification.

Let there be k main storage devices, Dy, Do, ..., D.
There are called the Data devices. Let there be
m additional storage devices, Cq, Cy, ..., Cp,. There
are called the Checksum devices. Each data device
stores the original data, and the contents of each
checksum device will be calculated from data de-
vices. This RAID-like system, called RS-RAID, can
reconstruct the contents from the non-failed devices
if at most any m of Dy, Do, ..., Dy, C1,Co,...,Cp,
fail.

We define our failure model is that of an era-
sure. When a device fails, it shut down, and the
system recognizes this shutting down. It is reason-
able because all operating systems today can detect
whether the hard drives work properly or not.

The RS-RAID method breaks up each storage de-
vice into words. Let the size of each word is [bits,
! being chosen by the management with some con-
straints that we will discuss later. So one block of
the storage devices contains

8 bits 1 word 4k
12 _ R _
(512 bytes) (byte) (Thits > ; words

If a storage device contains w blocks, it can store
‘”“T’” words. The calculation of the contents of each
checksum device C; requires a function F; applied
to all the data devices. This function F; operates
on a word-by-word basis, as in Figure 1, where d; ;
(or ¢;,;) represents the jth word of device D; (or

i)

To make the notation simpler, we now assume
that each device holds just one word and drop the
extra subscript. Thus there are consisting of k£ data
words dp, ...,dr and m checksum words ¢y, ...,cpm,
which are computed from the data words in such a
way that the loss of any m words can be tolerated.
Now we define the RS-RAID algorithm. There are
three main parts of this algorithm.

4.2.1 Calculating checksum words

We consider each word as one digit of a codeword
of the Reed-Solomon code. The codeword length is
n = k+m, and the operations are over GF'(2¥). So
we need the constraint that & +m < 2. Let v be
a fixed primitive element of GF(2"). Suppose the
data that we want to store are w = (wy, ..., wg), and
all w; € GF(2"). We can calculate the contents of
each device by using the encoding matrix.

di

1 1 . 1 w :
1 ~ . e w2 | dk
. . C1

i ,yk+.m—1 - ,y(k+m—'1)(k—1) wk -
Cm

Using the Reed-Solomon codes, all data devices
do not store the original data w. Even if reading
the data, we need to decode the codeword. We can
overcome this drawback by simplifying the encoding
matrix. We modify the matrix to let d; = w; for
1 < i < k and every subset of k rows of the matrix

are still linearly independent.

10 . 0 dy
: wy

0 0 1 R N A

11 1 N i
. Wk

i 771}1 ,y(mfl.)(kfl) Cm

The checksum word c¢; is calculated by the func-
tion F; which is a linear combination of the data
words.

k—1
¢ = Fy(dy,dy,dy) = Y 7= id;
j=0

Define the function F; as rows of the calculating
matrix F. We can see that F' is an m x k Vander-
monde matrix. Without loss of generality, we can
define v* =i+ 1 for 0 < ¢ <n-—1. So we get the
calculating matrix F' as follows.

1 1 .. 1 di c1

1 m .. mP? di Cm

4.2.2 Maintaining checksum words

When one of the data words d; changes to d;-, then
we need to update each of the checksum words. The
general method is using the calculating matrix F'
to recalculate all checksum words. But this way
wastes much time on the calculation of unchanged
data words. Let the updating function U; ; for ith
checksum word and jth changed data word. We can
use the addition property of the matrix to simplify
the maintaining process.

C,IL- = Ui’j(Ci,dj,d;-) C; + FZ,J(d; — dj)

= C; + ij_l(d;- — d])

4.2.3 Recovering from failures

If there are at most m broken disk, the entire RS-
RAID system can be reconstructed. We now ex-
plain how to recover from errors. Review the matrix

A which we use to encode. A = 11; } . It composes

a k x k identity matrix I and a m X k calculating

matrix F. Define a vector E to represent all de-

D

vices. F = [C } D is a k x 1 matrix containing

the data words dq,...,di, and C' is a m X 1 matrix
containing the checksum words cq, ..., ¢;,. We can
see the equation AD = FE in above works, and each
device in the system as having a corresponding row
of the matrix A and the vector E.

When a device fails, we reflect the failure by
deleting the device’s row from A and from E. What
results a new matrix A’ and a new vector E’ that
adhere to the equation: A’D = E’. Suppose ex-
actly m devices fail. Then A’ is a k x k matrix.
Because F' is a Vandermonde matrix and I is an
identity matrix, every subset of k rows of matrix
A is guaranteed to be linearly independent. Thus,

D, D, D; Cy C
dy,1 dy 1 d 1 C11 Ca1
dy, dy ds Ci2 Cy2
dy3 dy3 d33 Ci3 C23
dig dy g ds 4 Ci4 Caa

Figure 1: Dividing the storage devices into words. (k = 3,m = 2)

A’ is non-singular and there exists an inverse ma-
trix A"~ that A’"1A’ = I. We can get D by cal-
culating from A""'A’'D = D = A'"'E’ or using
Gaussian elimination. Hence all data devices can
be recovered.

If there are less than m devices that fail, we
choose k devices of the unbroken devices arbitrarily.
The system can also be recovered in the same man-
ner. Thus, the RS-RAID can tolerate any number
of device failures up to m.

5 Extractor codes in RAID

The extractor codes based on Trevisan’s extrac-
tor consequently need an explicit code with list de-
coding property. We now use a simple idea “con-
catenation” which puts two codes together and ob-
tains a code. Here we use be an [n,k,n — k + 1],
Reed-Solomon code as the outer code, denoted R.S,
and an [n,logn,n/2]s Hadamard code as the in-
ner code, denoted Had,,. The concatenated code
RS o Had,, is an [n?, klogn, M]g code. We
denote this concatenated code CrS—_Had-

Lemma 5.1. Let Crs_pgaq be the concatenated
code as above. Then Crs—_pHaqa has list decoding

property \/— — ﬁ

Proof. Let € = 5= — 5=. We want to prove the list

2n

decoding property 5 = \/_ Note that the distance
of Crs—praa is 225 = (L — ko Ly — (L
e)n2. Since § = /e > %\/ﬂ, By the Johnson bound
from [8], this code has (g52°5. = 1,) soft decoding.
That means every Hamming ball of relative radius
(3 — V) has at most 1 codeword. O

The concatenated code with an outer Reed-
Solomon code and an inner Hadamard code also
can be efficiently list decoded. So we can take ad-
vantage of the property of Crs—pqq to use in the
construction of Trevisan’s extractor. Another im-
portant thing of Trevisan’s extractor is a ([, p) weak
design. It was proved in [7] that there exists a (I, p)

Sy C [f] with t = [1, for

p > 1. Let p =2, we choose t at least 22.

It is trivial that we can construct a weak design
with ¢ = ml. The subsets S, ...,.S,, are disjointed.
Here we introduce a simple construction of a (I,2)
weak design with ¢t = 4 , if m = 4cl, for an integer
¢ > 2. The construction uses four dlfferent methods

weak design Sy, ..., My

to partition ¢ into 7 = cl disjoint subsets of size .

Define Si(j) be the ith subset constructed by the jth
method.
First , we construct the subsets by choosing ele-

ments in sequence. It means that S(l) ={1,2,..,1},
S = {1+1,1+42,..,21}, . S(l)—{t—l—i—lt—
152, 1)

Second, we separate all subsets Sz-(l) into ¢ groups,
so every group have [subset. For each group, we can
construct subsets by choosing elements that have
the same value modulo [. So the first group contains

I subsets: S = {1,1+1,..,12—1+1}, S =
(2,142, ..., 12=1+2}, ..., 8% = {1,21, ..., 12}, and the
second group contains [subsets Sl+1 ={I?+1,+
I+1,..,202—1+1}, ..., ={I?+1,1%+2l,...,21%}.
There are ¢ groups, so we have another ¢/ = ¢
subsets. 5)
Third, let Si() contain the kth element in Si(+)k_1
that 1 < k < [. It means that we pick up elements

with an interval | + 1. There are cl subsets 5’53)
S = {1,0+2,.. 12}53) (2,0 +3,..., 12 + 1},
588 = {t—1+1,141,...,12—1}. For convenience,

if i > ¢l, we define 5(2)
Fourth, let SZ-(contain the kth element in SZ(kel

that 1 < k < [. It means that we pick up elements

(
S@ .; recursively.

with an interval [— 1. There are cl subsets S; (4)
SW = 1,20-1,...,12— z+1} S = {i1+1,20, ..., 12—
1}, o SW — {l-1,2l—2,...,t}. We finally collect

all subsets SZ-(k), forl <i<clandl <k < 4.
There are exactly 4cl = m subsets.

Lemma 5.2. The collection of subsets Si(k), where
1<i<cdcandl <k <4, isa(l,2) weak design
with t = 2L,

Proof. Tt is easy to see that for any two different
subsets Si(k) and Sj(k),

o if k= k', then ‘ka) ms}’”‘ —0.

o if k £ K/, then

s nst <1,

Notice that Y-, _, 21915l = 31. 21 < 2(m — 1), for
all 4. Therefore thls simple construction is a (I, 2)

weak design with ¢ = mTl. O

5.1 Calculating algorithm

The classification of storage devices is the same with
the RS-RAID system. Let there be x data devices,
Dy, ...,D, and y checksum devices C4,...,Cy. The
RAID-like system, called EC-RAID, also breaks up
each storage device into words of size m bits. Let
w, k be two positive integers, n = 2% and k < n. We
divide the original information needed to store into
units of size klogn bits. For every unit, we encode
it with an extractor code and store each digit of
the codeword in a corresponding checksum device.
Besides, we separate each unit into the data devices
that contain m bits individually.

Suppose there is a unit © = ug, U2, ..., Uk logns
where every u; € {0,1}, 1 < i < klogn. First,
we encode the unit u with a concatenated code,
CRrs—rad- We store full original information of the
unit to the data words di,...d;, so the number of

data devices is = klc’%.

Define the codeword Crg_pqq(u) = 4. We treat
this codeword as the outputs of hard functions, de-
noted f3. The length of codeword 4 is n?, so the
size of the truth table is n?. We need that each
subset in a (I = log(n?) = 2w,2) weak design
has size Let z € {0,1}, run Trevisan’s extractor
ETR(uv Z) = fﬁ(’z|31) o fﬂ(Z|S2) 0...0 fﬁ(z|sm) We
consider the output of Erg(u,z) which is just m
bits a checksum word, and store it in the checksum
device C,41. So the number of checksum devices is
y = 2. In fact, we store each symbol of the code-
word Crr(u) in the checksum devices.

Calculating Algorithm

Parameters : k,w, m are positive integers, with:
o k< 2% =n, mkw, and t > min{8w?, 2mw}.
Storage devices :

e Data devices D1, D2, ..., D guw -

m

o Checksum devices C1, Cy, ..., Cqyt.

Prepare : A fixed (I = 2w,2) weak design
S1yeeSm C [t]
Input : A unit u € {0, 1}F%.
Procedure :
1. Divide u into E2 words of size m bits, store

ith word in the data devices D;.

2. Let Crs_gap be a [22w,kw,(% — €)22%],
k—1

S FT) and calculate @ =

code with ¢ =
Crs—map(u).

3. For every z € {0,1}¢, and i € [m], calculate
fa(zls;) and store it to ith bit in the (24-1)th
checksum devices.

The maintaining algorithm of EC-RAID is the
same as the calculating algorithm. We have to

encode new information u again with the concate-
nated code Crs_pgap to get 4.

5.2 Unique recovering algorithm

Here we suppose that all of the data devices and
some of the checksum devices are broken. The way
to recover the original data is equal to the method
to decode extractor codes.

The first step is that finding the contents of code-
word 4 encoded by Crs_pgaq- Consider the check-

sum devices as an oracle. For w € {0,1}!, if there
exists at least one subset S; and z € {0,1}* such
that z|s, = w and (z + 1)th checksum device does
not fail, we can know what the value fz(w) is. Giv-
ing different w exactly 2! times, we can recover the
fully codeword 4.

It is easy to see that the bit, which equals to
fa(w), is stored 2¢~! times in the ith location of
each checksum device. Therefore if there exists at
least one unbroken checksum device that contains
fa(w) in the ith location for all w, we can only read
the ith location of each checksum word and restore
the codeword 4.

We can build an inverted table to find S; with
the mentioned property efficiently. Let Fj,, be the
inverted table that

Finp(w,) = {21, 29, ..., 2901 }.

For every j € [2¢7!], we have z; € {0,1}' and
zjls, = w. From the contents of the weak design,
we can constructed this table in time poly(m,T).
It needs space of size t - 28~ . [. m bits. Given the
inverted table, for any S;, we can check whether
S; satisfies the property or not in time O(¢ -
2=y = O(TlogT). After getting the codeword
a € {0, 1}”2, we divide this string into n partitions.

The second step is to decode the Hadamard code.
We can use the brute force to compare all codewords
and find the correct one. So there are total n strings
of size logn bits we get.

The third step is to decode the Reed-Solomon
code by using the Berlekamp-Welch decoding algo-
rithm or calculating equations with Gaussian elim-
ination. Finally, we can get the original data wu.

Unique Recovering Algorithm UR-I

Prepare : An inverted table Fjy,
Input : A codeword Crr(u) € [M]T with some

erased symbols.
Procedure :

1. Find a subset S; with the property: There
exists at least one z = z(w) that z(w) €
Finy(w,i) and the (z(w)+ 1)th symbol is not
erased, for each w € {0, 1},

2. Construct the codeword @ € {0, 1}? by
o1 = (CTR(UW)(w)+1),;

3. Decode 4 by first decoding the Hadamard
code with brute force and second decod-
ing the Reed-Solomon code with Berlekamp-
Welch algorithm.

Output : A corresponding u € {0, 1}*%.

The algorithm UR-I works if and only that we
can find a subset with the above property. If there
is no subset with this property, it is still possible to
uniquely recover the original data. We improve this
point and describe another algorithm as follows.

Unique Recovering Algorithm UR-II

Prepare : An inverted table Fj,,
Input : A codeword Crr(u) € [M]T with un-

known e locations.
Procedure :

1. Define u’ € {0,1,~1}* and initialize u; =
—lforalll<j<2l

2. Foreveryw € {0,1},1 <i<m, z € F(w,1),

let uclqul = (CTR(u)Z+1)i if CTR(u)z+1 is

not erased.

3. Construct the codeword @ € {0, l}zl by
N u ifup #—1
— k k
Uk = { unknown if uj = —1
4. Decode 4 by first decoding the Hadamard
code and second decoding the Reed-Solomon
code.

Output : A corresponding u € {0, 1}*v,

The following theorem shows that the unique
recovering algorithm UR-II is correct and efficient.
Theorem 5.3. Let ¢ = £=% and n = |t]. If the
number of unknown locations e is less than (1 —
(% +€)M)2Y, we can find the correct u uniquely in
time poly(n, m,T) with the algorithm UR-II.

Proof. The distance of Crs_ Haq i8 (% —€)22%, Sup-
pose that the last (3 —€)2* bits are different. So if
there is a subset chooses one bit in this region, the
corresponding symbols of Crgr(u) and Crgr(v) are
different. Without loss of generality, assume there
are n = HJ disjoint subset Si,...,.S, in the weak
design. Consider S; and all locations of Cprg(u)
and Crg(v), there are (3 —€) fraction are different.
Consider Sy and the partial locations which are the
same corresponding to S, there are still (%*6) frac-
tion are different because S; and Sy are disjoint. In
the similar way, we have that the identical fraction
are at most (5+€)". So the relative distance of Crr

is at least (1— (3 +¢€)"). We need time O(2') for the
step 1 and 3 in UR-IL, O(l - m - t - 2¢7) for step 2,
O(n? +nlogn) for step 4. Therefore the algorithm
runs in time poly(n,m,T). |

This theorem also shows the recovering ability of
EC-RAID system. It can tolerate up to arbitrary
broken (1 — (% + €)7)2t checksum devices. If there
are more checksum devices failed, it is obvious that
we may not get original data uniquely. Next we
present the second algorithm to deal with this ter-
rible situation.

5.3 Soft recovering algorithm

We have to run the identical step 1 and step 2 in
the algorithm UR-II before starting the second al-
gorithm. Then we decode the Hadamard code and
construct a weight function w : [n] x [n] — [0,1]
to describe the probability of each digit in a Reed-
Solomon code. w(y,i) means the probability that
ith digit equals to some y € [n]. The way to con-
struct the weight function is the same to decode the
Hadamard code with brute force.

Now consider how to soft-decision decode Reed-
Solomon codes. A trivial solution is to calculate
the agreements of all codewords and pick up those
with the highest value. But the time is exponential

to the codeword length. Here we use the algorithm
presented by in [3].

We describe some essential elements in this algo-
rithm.
Definition 5.1. (weighted degree) For non-
negative weights wy, wq, the (wy,ws)-weighted de-
gree of the monomial x*y? is defined to be iw, +jws.
For a bivariate polynomial P(xz,y), the (wi,ws)-
weighted degree of P, denoted degy, v, (P), is the
maximum over all monomials with non-zero coeffi-
cients in P of the (w1, ws)-weighted degree of the
monomial.

Let Ny, w,(0) be the number of monomials in P

that deguw, w,(P) < 4.
[T -5 17] +

Lemma 5.4. ([3]) N1 x(0) =
1) > £(%5),

Given a point («, 3) and a bivariate polynomial
P(z,y), we know that if («,) is one root of P(z,y),
then P(a,) = 0. If this point (o,) is a root
with multiplicity m, all monomials in the shifted
polynomial P(z+a, y+) have degree at least m. In
other words, the coefficients of the monomials in the
shifted polynomial of degree less than m are all zero.
Let a;; be a coefficient of monomial z;y; in P(z,y),
and by be a coefficient of monomial zxy; in P(x +
a,y +). From the well-known explicit relation of
coefficients between the bivariate polynomial and
the shifted polynomial, we have

Al

i>k j>1

So by =0if k+1 < m.

Thus P(z,y) passes through a given point with
multiplicity at least m if and only if its coefficients
a;; satisfy that %m(m—l— 1) constraints in the shifted
polynomial are zero. The first step of Koetter-
Vardy algorithm is to find a bivariate polynomial
Q(x,y) over GF(n) of (1,k — 1)-weight degree at
most n — 1. The bivariate polynomial Q(x,y) must
pass through all given pairs with different multi-
plicity. We can think that the multiplicity indicates
the importance. For example, let y1,y2 € [n] and
w(y1,i) > w(ye,?) # 0 in some weight function, it
means that the probability of ith digit equals to ¥
is more than the ith digit equals to y2. So it is sen-
sible to let y; have more multiplicity than yo. We
describe how to change a weight function w to a
n x n multiplicity matrix M.

Constructing Multiplicity Matrix Algorithm

Input : A weight function w : [n] X [n] — [0, 1] and
a positive integer s.
Procedure :

1. Initialize m;; = 0 for every 0 < i < n —1,
1<j<n.

2. Let W be an n x n matrix and @;; = w(i, 5).
3. Find the position (4,j) of the largest entry

oo T oo w(i,5) e
w;; in W, and set w;; = mij’+2’ mij; = myj+

1 and s = s — my;.
4. If s > 0, go to the step 3.
5. If s <0, mj; = my; — 1.
Output : The multiplicity matrix M.

For convenience, we consider the [n,k,n —
k + 1], Reed-Solomon code defined as Crs =

{(f(1), f(2), f(3),..., f(0)) |f € Pr}. Therefore the
input pair is (j,¢) with multiplicity m,;, for every
i,7 such that m;; # 0.

Definition 5.2. (multiplicity matrix cost)
Given a n x n multiplicity matric M, we define the
cost of M by C(M) = $ 3070 S0 myj(my; + 1).

The cost C(M) equals to the number of re-
stricted coefficients in shifted polynomial. So we
list C'(M) linear equations to solve unknown coef-
ficients of Q(z,y). We can always find a solution if
Nig—1(n—1) > C(M). Let a positive integer s in
the multiplicity algorithm be Nj ;_1(n —1) —1. So
C(M) is certainly less than Ny ,_1(n — 1).

The second step of Koetter-Vardy algorithm is to
factor the bivariate polynomial Q(x,y) and identify
all the factors of Q(z,y) of type y—p(x), where p(x)
has degree at most k£ — 1. Then it outputs a list of
codewords that correspond to these factors.

Soft Recovering Algorithm SR

Input : A word u’ € {0,1, —1}"2.
Procedure :

1. For every 1 < i < n, find the set h; that
contains all symbols ¢ € {0, 1}'03" that
Had(c); = (u}); for every (u}); # —1.

2. Define a weight function w : [n] X [n] — [0, 1]
8}7: Ify € h’i7 w(y, l) = Ihi|717 else w(y7 l) =

3. Construct a multiplicity matrix M with w
and s = Ny p_1(n—1) — 1.

4. Compute a bivariate polynomial Q(z, y) over
GF(n), deg1 1—1(Q) < n—1, that has a zero
of multiplicity at least m;; in M at point
(4, 1) for every i, j that m;; # 0.

5. Find all polynomials p(x) over GF(n),
deg(p) < k — 1, that y — p(z) is a factor of
Q(z,y).

6. For all p(z), let u(p) be the correspond-
ing codeword, calculate the agreement
Yo w(u(p)i,i). Add u(p) that has maxi-
mum agreement to the output list.

Output : A list of u = u(p) € {0, 1}*.

It is easy to see that the step 1 ~ 3 take time

O(n?). Solving the linear equations and factoring
a polynomial can be accomplished in time poly(n)
by some efficient algorithms, given in [2] and [12].
We now show the correctness of the soft recovering
algorithm.
Lemma 5.5. ([1]) Suppose that a bivariate poly-
nomial Q(x,y) over GF(n) passes through a point
(o, B) with multiplicity at least m, and let p(x)
be any polynomial over GF(n) such that p(a) =
B. Then the polynomial Q(x,p(x)) is divisible by
(x —a)™.

For a word v, we define the score of v with a given
multiplicity matrix M as Sy(v) = Ag(v, M).
Theorem 5.6. Let C = C(M) be the cost of
a given multiplicity matric M. The polynomial
Q(z,y) has a factor y—p(x), where p(x) evaluates to

a codeword ¢ € Crg, if Sm(c) > /2(k—1)C + 1.

Proof. Let ¢ = (ey,...,¢,) be a codeword € Cgg,
and let p(z) be the polynomial that evaluates to c.
That means ¢(i) = ¢; for 1 <i <n. Given Q(z,y),
we define the polynomial g(z) = Q(z,p(x)). By
Lemma 5.5, we have the fact that the polynomial

g(x) is divisible by the product

(z — D)Mot (g — 2)Me22. (x — n)Men
where a point (4, ¢;) with multiplicity at least m, ;
in the matrix M. It is clear that either deg(g) >
Mey, 1 +Mey 2+ oo FMe, n = Sam(c) or g(x) is an all-
zero polynomial. We need to show that deg(g) <
Sm(e), so g(x) = Q(z,p(x)) = 0. Therefore Q(z,y)
has a factor y — p(z).

We define the function A(C) to represent the
minimum degree such that the number of mono-
mials are exactly more than v, so

Ay, (V) = min{d € Z| Ny, w, (6) > v}

Here we simplify the notation, let A be Ay ;_1(C).
Notice that Nl,lcfl(A) >C > Nl,kfl(A —1). By

Lemma 5.4, we have N ,_1(A—1) > A’-1 Then

2(k-1)"
V2k—-1)C+1>A.
Since deg(p) < k — 1, it is easy to see that degree
of g(x) can not exceed the (1, k—1)-weighted degree
of Q(z,y). Thus we have degq r-19(z,y) < A <

20k — 1)C + 1 < Sp (o). O

6 An example

As an example, suppose k = 2 and m = 2. We
choose w to be two, since n = 2% > k. It means that
the Crs we use is a [4,2,3]4 Reed-Solomon code
and Hady is a [4,2,2]s Hadamard code. Consider
the trivial case t = ml = 2mw = 8, then the (4,2)
weak design contains two subsets: S7 : {1,2,3,4}
and Sy : {5,6,7,8}. Here we need %" = 2 data de-
vices, denoted D1, Do, and T = 2! = 256 checksum
devices, denoted Cj..., Casg.*

Define the operations 4+ and - over GF(4). We
use “0” to denote 00, “1” denote 01, “2” denote 10,
and “3” denote 11, so we have

wf o] — O |+
w N = O | O
DO W] O | =
O O W 1| |]
== N ol [o
e feu lew Few | fau
o W N O | |
===
| | = Sf | W

o 1o | O

Review data stored in each device by the word of
size m = 2 bits. Now consider we have to store data
u = (u1,u2) = (2,3) = 1011. First, divide v into
words and place in data devices: Dy = 10, Dy = 11.
Next, we encode u with the Reed-Solomon code.
The polynomial g(z) that w indicate is 2 + 3z, so
we have

Crs(u) = g(1) 0 g(2) 0 g(3) 0 g(0) = 1302

Then we encode each digit of Crg(u) with the
Hadamard matrix

Mn this example, we want to explain how a design works,
so there are 256 checksum devices needed. Actually, we can
choose m = 1, then there are only T = 214 = 16 checksum
devices, and %" = ¥ = 4 data devices.

cocoo
Y)
=)
oR~O

So the codeword 4 = Crg—_pad(u) to represent a
truth table of size | = 4.

0000 [O[] OIO0 [O [1000 J O [1100 J O
000I [TJJoToI [T 1001 [O [II0I [O
00I0 [O JJOITI0O [T | 1010 [O || 1110 [1
OOIT [T|JOIIT JO |JI0IT J O || TIIT | 1

We store fi(2]s,)o fa(z|s,) in the checksum devices
C,.1 for every z € {0,1}%. For example, Cy7; =
f@(00101110|1234) ¢} fﬁ(00101110|5678) = fﬁ(OOlO)]
fa(1110) = 01.

Now consider data devices D; and D, are
lost. Then we use the unique recovering algo-
rithm to save original data from the checksum
devices. In the first time, we have to build an
inverted table Fynv for searching needed bits
quickly. Recall that Fj,,(w,i) contains a set
of strings which equal to w by choosing bits
according to S;. For example, Fj,,(1100,1) =
{11000000, 11000001, ..., 11001110, 11001111}.
Therefore, if we want to know the 13th bit of
codeword 4, we can read the first corresponding bit
in any one of the checksum devices C93 ~ Caos.

Suppose Cq,Cs,...,C1¢ still works, we get the
contents 00, 01, 00, 01, 00, 01, 01, 00, 00, 00, 00,
00, 00, 00, 11, 11. Because all of the corresponding
second bit in checksum devices Cf,...,Cig exactly
go through the entries in the truth table. So we
have 4 = 0101011000000011.

Decode every four bits in @ by the Hadamard
code, we have Crg(u) = 1302. That means

i) [

By applying Gaussian elimination, we can choose
any two equations and calculate these. Finally, we
can get u = (2, 3).

Suppose there are all data devices and check-
sum devices lost expect Cp, C3, Cs, Cy, Cy, Co,
C13, C14 and (5. The contents of these unbroken
checksum devices are 00, 00, 00, 00, 01, 00, 00, 00,
01. We fill up the truth table and get the string
»' = 00J00J001000000010, where [J denotes the
erased symbol. Because there are total 7 unknown
symbols more than d(Crs—gad) = 32 = 6, we need
to use the soft recovering algorithm.

Construct the set hi, ho, hz and hy and we have
hi = {0,1},he = {2,3},hs = {0,3},hs = {2}.
Therefore, a weight function w : [4] x [4] — [0, 1]

1
1
1
1

O WN

that
05 0 05 0
o5 0 0 o
w = 0 05 0 1
0 05 05 0

Since Njj—1(n — 1) = N11(3) = 10, let s =
Nijg—1(n —1) —1 =9. The iterative construction

of M is

Tteration | Point (%,) [Later w;; | ms; | Total cost
i 2,4) 0.5 1 T
2 (0,1) 0.25 1 2
3 (0,3) 0.25 1 3
4 (1,1) 0.25 1 4
5 (2.2) 0.25 1 5
6 (2, 4) 0.33 2 7
7 3,2) 0.25 1 8
8 3,3) 0.25 1 9

We have the multiplicity matrix M as follows:

1 0 1 0

_ |1 0 0 o
M=10o 1 0 2
0 1 1 0

The point set contains pairs: (1,0), (1,1), (2,2),
(2,3), (3,0), (3,3) with multiplicity 1 and (4, 2)
with multiplicity 2. Suppose a bivariate polyno-
mial Q(z,y) that passes through these points. By
solving the linear system, we can get

Qz,y) = 3x+43y+22%+ 22y +2°+9°
= (y+3z+2)(y+2)(y+2x+2)

We have three factors pi(x) = 2 + 3z, p2(z) = =,
ps(x) = 2 4+ 2z. So there are candidates
u(pr) = 1302, wu(p:) = 1230, u(ps) = 0132.
Because Ag(u(p1),w) = 25, Ag(u(ps),w) = 1,
Ag(u(ps),w) = 2. Therefore, the output is
u=(2,3).

References

[1] V. Guruswami and M. Sudan, “Improved de-
coding of Reed-Solomon and algebraic-geometric
codes,” IEEE Transactions on Information The-
ory, 45:1757-1767, September 1999.

[2] E. Kaltofen, “A Polynomial-Time Reduction from
Bivariate to Univariate Integral Polynomial Fac-
torization,” In 28rd Annual Symposium on Foun-
dations of Computer Science, 57-64, 1982.

[3] R. Koetter and A. Vardy, “Algebraic soft-decision
decoding of Reed-Solomon codes” IEEE Transac-
tions on Information Theory, August 31 2001

[4] N. Nisan and A. Wigderson, “Hardness vs random-
ness,” Journal of Computer and System Science,
49:149-167, 1994.

[5] N. Nisan and D. Zuckerman, “More deterministic
simulation in logspace,” In Proceedings of the 25th
Annual ACM Symposium on the Theory Compul-
ing, 235-244, 1993.

[6] D. A. Patterson, G. Gibson, and R. H. Katz,
“A case for redundant arrays of inexpensive disks
(RAID),” ACM SIGMOD International Confer-
ence on Management of Data, 109-116, June 1988.

[7] R. Raz, O. Reingold, and S. Vadhan, “Extract-
ing all the randomness and reducing the error in
Trevisan’s extractors,” Proceedings of the 81st An-
nual ACM Symposium on Theory of Computing,
149-158, 1999.

[8] A. Ta-Shma and D. Zuckerman, “Extractor
Codes,” Proceedings of the 33rd Annual ACM
Symposium on Theory of Computing, 193-199,
July 2001.

[9] A.Ta-Shma, C. Umans, and D. Zuckerman, “Loss-
less Condensers, Unbalanced Expanders, and Ex-
tractors,” Proceedings of the 83rd Annual ACM
Symposium on Theory of Computing, 2001.

L. Trevisan, “Extractors and pseudorandom gen-
erators,” Journal of the ACM, 48(4):860-879, July
2001.

L. R. Welch and E. R. Berlekamp, “Error correc-
tion for algebraic block codes,” US patent, Number
4, 633, 470, 1986.

X-W. Wu and P.H. Siegel, “Efficient root-finding
algorithm with application to list decoding of
algebraic-geometric codes,” IEEE Trans. Inform.
Theory, 47:2579-2587, September 2001.

