
STPPE: Source Transparent Packet Pre-Marking Engine

in DiffServ Networks
Chih-Heng Ke, Yu Yun Shuai, Ce-Kuen Shieh

EE Department, National Cheng Kung University, Taiwan R.O.C.
Email: {smallko, kaede, shieh}@hpds.ee.ncku.edu.tw

Abstract

In this paper we propose a source
transparent packet pre-marking engine (STPPE)
to help legacy applications maintain end-to-end
throughput in DiffServ networks. By means of
Linux Firewall, packets sent from legacy
applications will be divert to a specific system
port. After that, STPPE uses Linux Divert Socket
to receive those packets, modifies the
Differentiated Services Code Point (DSCP)
fields in the IP headers, and then re-injects the
packets into network. In this way, users’ traffic
can be pre-marked without any modification of
original legacy applications to inform the service
provider that higher service is needed if their
requirements can not be met.

Keyword: DiffServ, STPPE, Divert Socket

I. Introduction

The Internet has historically offered a
best-effort delivery service, where all user
packets are equally treated in the network. Under
this kind of service model, it is insufficient to
meet the requirement of time- and
performance-critical applications, and difficult to
provide a better-than-best-effort service when
customers are willing to pay more for more
bandwidth. Therefore, two different service
models have been defined for network Quality of
Service (QoS) by IETF [1] (Internet Engineering
Task Force: the Integrated Services (IntServ)
model [2] and the Differentiated Services
(DiffServ) model [3]. IntServ is an architecture
that provides service discrimination by explicit
allocation and scheduling of resources in the
network. However, due to the complexity and
scalability problems of IntServ, DiffServ has
drawn more attention lately on addressing the
QoS issue. Based on a simple model, DiffServ
classifies traffic upon entering the network edge
into several different behavior aggregates. Each
behavior aggregate is a collection of packets
with common characteristics and is identified by
a single DSCP (Differentiated Service

CodePoint). Within the core of a network,
packets are forwarded according to the Per-Hop
Behavior (PHB) associated with the DSCP.
Since the core routers do not need to maintain
per-flow state, they can achieve better
scalability.

The two basic PHBs defined for DiffServ
are the Expedited Forwarding (EF) and the
Assured Forwarding (AF) PHBs. The EF PHB is
used to provide services that require low delay,
low jitter, and low loss, while the AF PHB is to
support more elastic services that impose
requirements only on throughput without any
delay or jitter requirements. The idea behind AF
PHB is to give the customer the assurance of a
minimum throughput, even during periods of
congestion, while allowing him to consume
more bandwidth when the network load is low.
Thus a connection using the assured service
should achieve a throughput equal to the
subscribed minimum rate, also called target rate,
plus some share of the remaining bandwidth
gained by competing with all the active
connections. The AF PHB provides four
independent classes for the delivery of IP
packets, where each class is allocated a certain
amount of resources, such as bandwidth and
buffer, in each DiffServ node. Within each AF
class, IP packets are marked with one of three
drop precedence levels (or three colors)---green,
yellow, and red---where green has the lowest
drop probability and red has the highest drop
probability. That is, at the time of congestion,
packets with red marking are dropped first, and
then packets with yellow marking are dropped
next if the congestion condition continues.
Finally, packets with green marking are dropped
if the congestion persists. In this way, it is
expected that with appropriate negotiation and
marking, end-to-end minimum throughput could
be assured or at least assured to some extent.

 Recently, some intelligent markers have
been proposed to provide the minimum
throughput guarantee [4][5] or to overcome the
unfairness problem associated with different
RTTs and different target rates [6][7][8] in AF

based DiffServ network. But, these researches
put more efforts on network than on applications.
We argue that applications themselves are also
important and need to be evolved. The
consideration of customer’s preference is an
indispensable necessity for supporting QoS
within the end-system, as only the customer is
able to decide which application is important for
him/her and should be preferred. Thus customers
can pay more to meet their requirements. Also,
service providers would maximize their return
on investment in network infrastructure through
offering different better-than-best-effort services
and charging more money.

However, legacy applications are
QoS-unaware which means that these
applications do not allow users to choose
preferred service. One solution of this problem is
to design QoS-aware applications from scratch.
But this will cost a lot of effort. Another is to
modify the source codes of legacy applications
to add the QoS ability. But this needs the source
code available. Therefore, we propose a source
transparent packet pre-marking engine (STPPE),
which is based on Linux Firewall and Linux
Divert Sockets [9], to help legacy applications
transparently pre-mark the traffic to get better
service without any modification of original
application source codes. The only thing user
need to do before application running is to
specify some parameters, such as destination IP
address, destination port number, and the wished
transfer target rate. Then traffic sent by this
application will be pre-marked to inform the
service provider that the higher service is
needed.

The rest of the paper is organized as
follows: Section II presents the implementation
of STPPE. Section III validates the effectiveness
of STPPE and tests the overhead of Linux Divert
Sockets. Then we conclude in section IV.

II. Source Transparent Packet
Pre-Marking Engine (STPPE)

The details how STPPE works are shown
in Fig. 1. Before running legacy application, user
have to set up some parameters, such as
destination IP address, destination port number,
and the desired transfer target rate, through the
graphical user interface of STPPE shown in Fig.
2 which is implemented by GTK. After that,
STPPE will use the information given by the
user to setup the Linux Firewall rules. When
application begins to send packets, all the
packets matched the rules will be redirected to a
specific system port. Then STPPE use Linux
Divert Sockets to get all the redirected packets,
modify the DSCP in the IP header if needed, and
finally re-inject them into network. In current
state, we only implement Time Siding Window
Two Color Marker (TSW2CM) [10] in STPPE.
When the average sending rate is below the
desired target rate, the packets will be
pre-marked with low drop probability. When
above the target rate, the packets will be
pre-marked with normal drop probability.
STPPE will monitor the transmitting rates of the
applications and shows them in the Statistics
area (see Fig 2).

User Space

IP Firewall

Kernel Space

Host

Application

STPPE

Divert Socket
Firewall

rules

Data
Flow

Network

. Figure 1. The packet processing by STPPE

3

2

4

5

6

1

Figure 2. The graphical user interface of STPPE

III. Experimental Result

Two experiments are conducted in order to
evaluate the feasibility of the STPPE. The first
experiment verifies the effectiveness of the
STPPE, while the second experiment measures
its overhead.

A. Effectiveness of the STPPE

Fig. 3 shows the experimental
environment. There are three hosts and one
router. The two sending hosts are named Henry
and Liza. Bob is the destination for both traffic
streams. Henry uses FTP client program to send
traffic, and sets target rate to 500Kbytes/sec
through STPPE, while Liza uses default
best-effort service to send packets. Grace is a
Linux-based pc router, which enables General
Random Early Detection mechanism [11].
GRED is a queuing mechanism that generalizes
CISCO’s DWRED and Dave Clark’s RIO. The
RED parameters {minth, maxth, Pmax} used
are :{ 40, 80, 0.02} for low drop probability
packet; and {4, 8, 0.1} for normal packet. All
interfaces of Grace are 10 Mbps point-to-point
Ethernet links.

Henry

Bob

Liza

Grace

 Figure 3. The experimental environment

0

200

400

600

800

1000

0 10 20 30 40 5

Time (sec)

Tr
an

sf
er

 R
at

e
(K

by
te

s/s
ec

)

0

Henry Liza

Figure 4. The transfer rate of Henry and Liza
(After 32 second, Henry has transferred all
the testing data)

Fig. 4 shows the transfer rate of Henry and

Liza. The average transfer rate of Henry’s flow
is 512Kbytes/sec which meets the desired target
rate (i.e., 500Kbytes/sec). Therefore it shows the
effectiveness of STPPE.

B. overhead of Linux Divert Sockets

 The interception and re-injection of
IP-packets, which is the essential part of the
STPPE, induces an overhead. To evaluate the
influence of Linux Divert Sockets, the average
delay time with variable packet size is estimated.
As Fig. 5 shows, the Host A sends echo request
to Host B, and waits for the echo response. Each
echo response would be redirected by Linux
Divert Sockets for packet marking before
transmission. Then the round trip time (RTT) is
measured in Host A to compare the time
difference of echo responses with and without
redirection.

Figure 5. Overhead Testbed

Table 1. Divert socket average delay time

ICMP

 Packet

 Size

 (bytes)

RTT

Without

 marking

(ms)

RTT

with

marking

(ms)

Time

 Difference

 (ms)

Time

 Difference

/

RTT

 without

marking

56 0.975 0.981 0.006 0.61538%

512 2.579 2.587 0.008 0.31021%

1024 4.344 4.356 0.012 0.27614%

2048 6.849 6.864 0.015 0.21901%

Table 1 shows the experimental result.
From the ratio of Time Difference to RTT
without marking, the overhead of Linux Divert
Sockets for packet processing can almost be
neglected compared to the delay of packet
transmission.

IV. Conclusion and Future Work

In this paper, we have proposed a source
transparent packet pre-marking engine that can
transparently modify the DSCP in the IP header.
Hence the existing Internet applications on
Linux platform can be pre-marked without
modification or recompilation of source codes.

In the future, we will plan to add more
adaptive packet pre-marking algorithms in
STPPE and test these algorithms on more
complicated Diffserv networks. We will also find
some methods that can help legacy Microsoft
Windows based applications become QoS-aware
without any modification to their source codes

References

[1] “IETF home page,” http://www.ietf.org/

[2] R. Braden, L.Zhang, S. Berson, S. Herzong,
and S. Jamin, “ Resource ReSerVation
protocol (RSVP)---Version 1 functional
specification,” RFC 2205, Sept. 1997.

[3] Y. Bernet, J. Binder, S. Blake, M. Carlson,
B. E. Carpenter, S. Keshav, E. Davies, B.
Ohlman, and D. Berma, “A framework for
differentiated services,” Internet Draft, Feb.
1999.

[4] Wu-Chang Feng, Dilip D. Kandlur,
Debanjan Saha, and Kang G. Shin,
“Adaptive Packet Marking for Maintaining
End-to-End Throughput in a
Differentiated-Services Internet,”
IEEE/ACM Transactions on Networking
Vol. 7, No. 5, October 1999.

[5] Xiaoning He, Hao Che, ” Achieving
end-to-end throughput guarantee for TCP
flows in a differentiated services network,”
Computer Communications and Networks,
2000.

[6] Mohamed A. El-Gendy, Kang G. Shin,
“Equation-Based Packet Marking for
Assured Forwarding Services,” IEEE
INFOCOM, 2002.

[7] K.R. Renjish Kumar, A.L. Ananda,
Lillykutty Jacob, “TCP-friendly traffic
conditioning in DiffServ networks: a
memory-based approach,” Computer
Networks, 2002.

[8] B. Nandy, N. Seddigh, P. Pieda, and J.
Ethridge, “Intelligent traffic conditioners
for assured forwarding based differentiated
services networks,” IFIP High

Performance Networking, June 2000.

[9] Divert Sockets for Linux:
http://www.anr.mcnc.org/~divert/index.ht
ml

[10] J. Heinanen and R. Guerin, “A two rate
three color marker”, RFC 2698,September
1999

[11] GRED queuing discipline:
http://www.opalsoft.net/qos/DS-27.htm

http://www.ietf.org/
http://www.anr.mcnc.org/~divert/index.html
http://www.anr.mcnc.org/~divert/index.html
http://www.opalsoft.net/qos/DS-27.htm

