

Fast IP Lookups Using Binomial Spanning Trees
Yeim-Kuan Chang

Department of Computer Science and Information Engineering
National Cheng Kung University

Tainan, Taiwan R.O.C.
ykchang@mail.ncku.edu.tw

Abstract—High performance Internet routers require an

efficient IP lookup algorithm to forward millions of packets per
second. Various data structures based on binary trie are
normally used in software-based IP router design, including
network processor-based routers. Binary trie based lookup
algorithms have not only simple and easy IP address search
process but also the routing entry update process. In this paper,
we propose a new IP lookup algorithm based on binomial
spanning tree. The proposed algorithm has the same advantages
of simple search and update processes as the binary trie-based
algorithms. However, the performance of the proposed algorithm
is better than the schemes based on binary tries, such as path-
compression and level-compression.

Keywords — Binary trie, binomial spanning tree, and IP lookup.

I. INTRODUCTION
The increase of the Internet traffic continues in an

unprecedented rate mostly due to the advent of the
World Wide Web (WWW) [5]. Backbone routers with
link speed of gigabits per second (e.g., OC-192, 10
Gigabits and OC-768, 40 Gigabits) are thus commonly
deployed. Among all the fundamental functions of the
routers, IP address lookup is the most critical one. Fast
lookup algorithms make packet forwarding rate of the
routers keep up with the link speed and router bandwidth.
These backbone routers have to forward millions of
packets per second at each port. In this paper, we focus
on the choice of data structure and its adaptation to the
typical routing tables with a large number of routing
prefixes. We evaluate the performance of the proposed
algorithm and other existing ones using a software
implementation.

The routing table in a router that is used to lookup an
IP address stores an array of entries, each consisting of a
network address that is the prefix of a group of IP
addresses and the corresponding next port number to the
network. When a router receives a packet, it must
determine the next port number through which the
packet must be forwarded. The longest prefix in the
routing table that matches the destination IP address of
the packet is the best match prefix (BMP). Sequential
search for the BMP has a time complexity of O(N)
which is not scalable.

A large variety of routing lookup algorithms was

classified and their worst-case complexities of lookup
latency, update time, and storage usage were compared
in [1]. Among them, a category of algorithms is based on
a trie/tree structure. The binary trie is in fact a binary
search tree using the bit value (0 or 1) to guide the
search moving toward the left or the right part of the tree.
The binary tree structure is usually implemented using
linked list data structure. Each trie node has the left and
right pointers pointing to its left and right sub-tree,
respectively. A space efficient array implementation of
trie-based algorithms is also possible [12].

Among all the IP lookup algorithms proposed in the
literature, only the binary range search proposed in [3, 4]
can store the lookup data structure in a sequential array.
Instead of trying to store the complete prefixes, the
binary range search encodes the prefixes by the start and
end addresses of the ranges covered by them. All the
start and end addresses of ranges are sorted and stored in
a sequential array. The binary search method can then be
applied using the array index. Obviously, a subtle design
(e.g., “>” and “=” ports) must be employed to make the
binary search on the sequential array work. The primary
idea of the binary range search is to pre-compute the port
number when the target IP is equal to one of the start and
end addresses of ranges or locates between two
consecutive addresses.

Based upon this primitive trie structure, a set of
prefix compression and transformation techniques are
used to either make the whole data structure small
enough to fit in a cache [9], or to transform the set of
original prefixes to a different one in order to speed up
the tree traversal procedure [10]. The hardware based
lookup algorithms using multi-bit trie proposed in [11] is
in fact a variation of the prefix transformation techniques.
The extreme case is a 32-bit extended trie which trades a
memory consumption of 32 Gbytes and inefficient prefix
updates for only one memory lookup latency. We can
classify the 32-bit extended trie as a perfect hashing
approach which is obviously not minimal. Since finding
a minimal perfect hashing table for the whole set of
prefixes is difficult, a binary search on prefix lengths is
proposed in [7]. In this scheme, a binary search scheme
is conducted on a set of hash tables, where prefixes with
same length are organized in one hash table. In [8], the
authors use CPU caching hardware to perform routing
table caching and lookup directly by carefully mapping
IP addresses to virtual addresses.

In this paper, we shall propose a new IP lookup
algorithm that uses a binomial spanning tree. The
spanning tree is constructed from a hypercube structure
of dimension n onto which the n-bit prefixes of the
routing table are mapped, where n is 32 for IPv4 or 128
for IPv6.

Formally, a hypercube or an n-cube consists of 2
n

nodes, can be topologically represented as an n-
dimensional cube in which a node is located on each of
the 2

n
 vertices of the cube. Each of the 2

n
 nodes in an n-

cube has a unique n-bit binary address, and two nodes
are adjacent and connected by a link if and only if their
addresses differ in exactly one bit. Subcubes of an n-
cube are denoted by ternary strings in {0, 1, *}, where *
is the Don't Care bits which can be replaced by either 0's
or 1's. For example, 00** is a subcube of dimension 2 in
a 4-cube which contains 4 nodes with addresses 0, 1, 2,
and 3.

A special tree structure called the binomial spanning
tree can be constructed from a hypercube. The fan-out of
a node in the binomial spanning tree can be in the range
of 0 … n in an n-cube. A four dimensional hypercube
and the corresponding binomial spanning tree are
depicted in Figure 1. In the figure, some of nodes are
also shown with their corresponding 4-bit addresses.

The proposed IP lookup algorithm based on the
binomial spanning tree has the similar characteristics to
that based on the binary tries. In other words, both of the
algorithms based on binomial spanning trees and binary
tries have the advantages of simple and easy searching
mechanism, tree construction, and updates. The basic
searching method for the proposed lookup algorithm is
also in a bit-by-bit fashion starting from the most
significant bit and following the pointers in the nodes.
The worst-case number of memory references with the
basic binomial spanning tree is less than n since we can
easily pick a root node which has the maximum
hamming distance of less than n from all other nodes
with valid prefixes. We will then develop some
techniques to further reduce the number of nodes and the
tree depth in the binomial spanning tree using level and
path compression and the special properties of the
hypercube [10, 12].

The rest of the paper is as follows. Notations,

terminology, definitions are introduced in Section 2. In
Section 3, we describe the data structure of the proposed
IP lookup algorithm using binomial spanning tree.
Section 4 describes a software implementation that we
use to conduct the experiments for lookup performance
comparisons. Finally, a concluding remark is given in
the last section.

II. PRELIMINARIES
The notations and terminology used in this paper

are first given as follows.
In an n-cube, node i has binary address, (in-1 in-1…i0).

The set of node addresses is N = {0, 1, …, 2n–1 }, and
the set of dimensions is D = {0, 1, …, n – 1}. The
bitwise Exclusive-OR operation is denoted as ^ (used in
C language). | S | denotes the cardinality of a set S.

Definition 1: A binary n-cube is a graph G = (V, E)
such that V = N and E = {(i,j) | i ^ j = 2m, for all i and j
belong to N }. An edge (i,j) connects nodes i and j
through dimension m.

Definition 2: The Hamming distance between nodes
i and j is Hamming(i, j) = ∑ m=0

n-1 (im^ jm).
Definition 3: A binomial spanning tree (n-BST)

with root node s = (sn-1 sn-2…s0) is defined [2] as follows.
The set of the root’s children is {(sn-1sn-2…sm…s0)}

for m = n – 1, …, 0. The set of children of another node i
with the address (in-1 in-2…im…i0) is {(in-1 in-2…im…i0)} for
m = p – 1, …, 0, where c = i^s and ck = ik^sk for k =
0 …n – 1, and cp-1 = … = c0 = 0 and cp = 1. In other
words, p is the position of the least significant set bit.
The sub-BST containing nodes in the p-cube 0..01p* is
connected to the root node along dimension p.

n3.n2.n1.n0/l/p: the length format of prefixes. It
represents a prefix of length n associated with a next port
number p, where n3.n2.n1.n0 is dotted notation of a 32-
bit IP address using 4 octal numbers. The notation
n3.n2.n1.n0/l will be used when no confusion is incurred.

bn-1…bi*…*/p: the ternary format of prefixes. It
represents a prefix of length n-i associated with a next
port number p and bj = 0 or 1 for n-1 ≥ j ≥ i. When we
use tn-1…t1t0 as the ternary format of a prefix, where ti =
0, 1, or * (don’t care), we must follow the rule that if tk
is * then tj must also be * for all j < k. For simplicity, a
single don’t care bit is used to denote a series of don’t
care bits. Thus, the prefix 1* denotes 1**** in a 5-bit
address space.

Prefix Enclosure. Consider two prefixes in their
ternary format: A = bn-1…bi* and B = bn-1…bj* and
assume j > i. Therefore, A is enclosed by B.

Disjoint prefixes. Two prefixes A and B are said to
be disjoint if none of them is enclosed by the other.

III. PROPOSED DATA STRUCTURE
Using the binomial spanning tree as the basic

structure to store the routing table is not as simple as we
first thought. Each vertex of an n-cube is associated with
an n-bit binary address which can be directly mapped to
a node in the binomial spanning tree. Storing routing
table in the binomial spanning tree will be
straightforward when all the prefixes of the routing table

0000

1000

1000
0000

1100

1100

1110

1110 1111

1111

0

0

1

1

2

2

3
3

Figure 1: A 4-cube and its corresponding binomial
spanning tree.

are of length 32. However, the prefixes of the routing
table are in the range of 1 to 32. We need to devise a
method to store a prefix of any length in a node of the
binomial spanning tree such that performing an IP
lookup will have a correct result. What we do is to
convert the prefix bn-1…b0/len/p to bn-1…bn-len0…0/len/p
and store it in the node with address bn-1…bn-len0…0.

The above conversion leads to a problem that a
node may be mapped from more than one prefixes. For
example, the node with an address bn-1…b0 can store any
one of the prefixes {bn-1…bn-k+11n-k0…0*x…*0/len | len =
n – 1 – x and x = –1… n – k – 1}, called the set of
conflicting prefixes in a node. This conflict situation can
be solved by two approaches. The first approach uses an
additional prefix array to record the conflicting prefixes.
The node will contain a pointer to this prefix array.
When a lookup ends in a node of the binomial spanning
tree containing a non-empty conflicting prefix array, an
additional process must be performed to search the
prefix array for the proper match. Since this kind of
enclosure situation is rare, the LC trie uses this approach
[12].

The second approach expands the conflicting
prefixes of shorter lengths to ones of longer lengths in
such a way that all the expanded prefixes are disjoint.
Disjoint prefixes are mapped onto different nodes of the
binomial spanning tree. For example, two conflicting
prefixes 0*/p and 000*/q in the 4-bit address space are
initially mapped to the same node with address 0000.
The converted set of prefixes are 01**/p, 001*/p, and
000*/q that are mapped to three distinct nodes with
addresses, 0100, 0010, and 0000. One might think that
this approach is the same as the approach that is
designed to remove the enclosure situations. The
following example explains it is not. Consider two
prefixes, 0*/p and 01*/q in a 4-bit address space. The
former prefix encloses the latter. It can be seen that these
two prefixes are not conflicting because they are mapped
onto two distinct nodes with addresses 0000 and 0100.
This is the approach we adopt in this paper.

Figure 2 shows the binary tree and the
corresponding binomial spanning tree for a small routing
table. We can see that the depth of the binomial
spanning tree is one less than the binary trie and the
number of links is two less than that of the binary trie.
The number of links is proportional to the required
memory space because the links are usually
implemented as pointers.

The insertion procedure in the syntax of C
programming language for the proposed lookup

algorithms is given in Figure 3. This insertion procedure
is the building block of the tree construction and update
processes. Formally, the insertion procedure is called
every time when a prefix is added in the routing table.
The last three parameters of the insertion procedure, ip,
len, and port, represent the prefix being added. If the
hamming distance between the root and the node
mapped to the inserted prefix is h, there are h nodes in
the binomial spanning tree that will be traversed or
created if necessary in the insertion process, excluding
the nodes that will be created by the conflicting node
resolution process. Lines 1-9 show the core codes that
create the necessary nodes along the path from the root
to the final node of the prefix. The input IP is first
Exclusive-ORed with the root address. The position of
the most significant set bit is then computed by using the
‘bsr’ (bit scan reverse) instruction of the Intel processor
family starting from Intel 80386. When coming to the
final node where the input prefix is supposed to locate,
we check if a conflicting prefix already exists and
perform the appropriate conflict resolution operations.
Referred to the line 10 in Figure 3, we assume that if the
final node having a port number greater than 0 indicates
a conflicting prefix was already assigned to this final
node. If no conflicting prefix exists in this final node, we
update its len and port fields.

Figure 4 shows the procedure for solving the
conflicting situation. The prefix assigned to this node is
the one with the longest length. The prefix with a shorter
length is split into two prefixes that are in turn inserted
recursively into the same node.

Finally, we show the lookup procedure in Figure 5.
The lookup process works in a bit-by-bit fashion as in
the insertion procedure. Each time a node is looked-up
when traversing the binomial spanning tree, the
matching process is performed. If the input IP matches
the prefix stored in the traversed node, the node port
number is recorded as default port and the lookup
process continues. The final matched node is the best

void insertion(node32 *root32, unsigned root_ip,
 unsigned ip,unsigned len,unsigned port)
{
1 unsigned x = root_ip ^ ip, i;
2 while (x != 0){
3 i =BSR(x);//Pentium’s bsr instruction(bit scan reverse)
4 if (root32->ptr[i] == NULL)
5 root32->ptr[i] = create_node32();
6 root32 = root32->ptr[i];
7 x = x ^ (1<<i);
8 root_ip = root_ip ^ (1<<i);
9 }/*end while */
10 if (root32->port > 0) {
11 conflict_resolve(root32, root_ip, ip, len, port);
12 } else {
13 root32->len = len;
14 root32->port = port;
15 }
}

Figure 3: The insertion procedure for the proposed
binomial spanning tree.

a: *** => 000
b: 11* => 110
c: 010
d: 011

a

b

c d
(a) Routing table (b) Binary trie (c) Binomial Spanning tree

a

b

c d

Root

Root

Figure 2: a small routing table example for the
proposed algorithm.

100

000
010

011

110

matched prefix whose port number is returned.
Otherwise, the default port is returned.
A. Node Representation:

As you may have noticed that the data structure of
the node in Figures 3-5 contains fixed number of
pointers depending on where the node locates. The root
node has n pointers since it may have at most n children
in an n-BST. In general, there are 2k nodes with n – k – 1
pointers, for k = 0 to n – 1. A lot of pointer space will be
wasted because some of the prefixes may not exist and
thus most of pointers are NULLs. We propose to use a
bitmap to record which pointers are not NULLs. Take a
node with 8 pointers as an example. If only pointers at
bits 3 and 5 are not NULL, we use 00101000 as the
bitmap and an array of two pointers. When we check if
the pointer at bit i is NULL or not, we check if the ith bit
in the bitmap is set or not. If the ith bit of the bitmap is
zero, the corresponding pointer is NULL. If not, we
compute how many set bits that precedes the ith bit
(inclusive) to locate and follow the pointer to the next-
level node.
B. Optimizations:

There are a number of optimization techniques
proposed in the literature for the binary trie. Path
compression, level compression, and k-level
segmentation are examples of the optimization
techniques. We will show that these techniques can also
be applied to the proposed IP lookup algorithms using
binomial spanning tree.

Path compression of the binomial tree is
straightforward. The non-prefix node with only one child
can be removed by the path compression technique.
Figure 2 (c) shows node 100 can be compressed into
node 100 which stores prefix b.

Employing level compression technique in the
binomial spanning tree is similar to finding a subcube
that contains the node at which the level compression is
applied. For example, assume there are 14 prefixes that
are stored in a binomial spanning tree shown in Figure 6.
There exists a 3-cube that contains the root node 0
(prefix 0). The data structure of the root node as shown
in Figure 6 contains a modified bitmap, 11***, to
indicate that there are nine pointers stored in the node.
There are seven pointers pointing the 7 nodes in a 3-cube,

00***, (nodes 1, 2, 3, 4, 5, 6, and 7) and another two
pointes pointing to nodes 8 and 16 along dimensions 3
and 4, respectively. If the incoming IP is 01001, the
second pointer (with prefix 8) is first selected because
the most significant set bit of IP is in dimension 3. After
it reaches at node 8 with address 01000, the same
process continues. If the incoming IP is 00101, the
seventh pointer will be followed.

The k-level segmentation is mostly used in the
hardware-based IP lookup algorithms [1]. For our
binomial spanning tree, we also use the k-level
segmentation array of 2k pointers, each pointing to the
corresponding sub-binomial spanning tree of dimension
n – k. Therefore, when an incoming IP arrives, the most
significant k bits are used to locate the corresponding
sub spanning tree. Then the usual lookup process can be
performed in the sub-spanning tree to find the best
matched prefix.

Besides the path compression, level compression,
and k-level segmentation, intelligent selection of root
node and dual roots, a pair of diagonally opposite nodes
in the n-cube, can be used to further reduce the depth of
the binomial spanning tree. Consider the example shown
in Figure 2 (c). If the node c (010) is selected as root,
then the constructed binomial tree rooted at node c has
only depth of one. Nodes a, b, and d are all one hop from
node c. Therefore, the tree depth can be reduced by
carefully selecting a root for a sub-tree.

We know that the hamming distance between the
pair of diagonally opposite nodes A and B is n, the
maximum, in an n-cube system. Node A is the only node
that has a distance n from node B. For example, nodes A
and B could be the nodes with addresses 0 and 2n – 1.
We will use these two addresses for the dual roots as the
default ones when we describe our idea as follows.

void conflict_resolve (node32 *root32, unsigned root_ip,
 unsigned ip, unsigned len, unsigned port)
{
1 unsigned q, lmin, pmin, lmax, pmax;
2 if (root32->len == len) return;
3 (root32->len < len ? lmin=root32->len : lmax=len);
4 root32->len = lmax;
5 (root32->len < len ? pmin=root32->port : pmax=port);
6 root32->port = pmax;
7 q = root_ip^(1<<(31-lmin));
8 insertion(root32, root_ip, q, lmin+1, pmin);
9 insertion(root32, root_ip, root_ip, lmin+1, pmin);
}

Figure 4: The conflict resolution procedure for the
proposed binomial spanning tree.

unsigned lookup(node32 *root32, unsigned root_ip,
 unsigned traffic_ip, unsigned default_port)
{
1 unsigned x = root_ip ^ traffic_ip, i, j;
2 while (x != 0){
3 if (root32->len != 0) {
4 j = 32 - root32->len;
5 if ((root_ip >> j) = = (traffic_ip >> j))
6 default_port = root32->port;
7 }
8 i =BSR(x);//Pentium’s bsr instruction(bit scan reverse)
9 if (root32->ptr[i] == NULL) return default_port;
10 root32 = root32->ptr[i];
11 x = x ^ (1<<i);
12 root_ip = root_ip ^ (1<<i);
13 }/*end while */
14 j = 32 - root32->len;
15 if ((root_ip >> j) == (traffic_ip >> j))
16 return root32->port;
17 else return default_port;
}

Figure 5: The lookup procedure for the proposed
binomial spanning tree.

The maximum distance between either A or B and
any other node is n/2. Therefore, we can use this
property to build two binomial spanning trees, one
rooted at A and the other rooted at B. The previous
proposed insertion procedure can be employed directly
as follows. When the binary address of a prefix using the
address conversion scheme described above is closer to
root A than B, we insert this prefix in the binomial
spanning tree rooted at A. Otherwise this prefix is
inserted into the spanning tree rooted at B. After a prefix
has been determined to be inserted in the tree rooted at B,
the address conversion scheme is different from the
original scheme and will be described later. If there
exists an address covered by a prefix that is closer to A
than B then this prefix is inserted into the tree rooted at
A. At the same time, it is possible that there is also an
address that is covered by the prefix is closer to B than A.
If it is the case then a marker prefix must also be inserted
into the binomial tree rooted at B. For example, if the
prefix, 3.0.0.0/8, must be inserted both into the trees
rooted at A and B. When inserted into the tree rooted at
node A, we use the original address conversion scheme.
However, when inserted into the tree rooted at node B,
we use a different conversion scheme in order to reduce
the distance between node B and the converted address.
What we do is converting the prefix 3.0.0.0/8 to address
3.255.255.255 by padding ones to the don’t-care bits. If
the prefix to be inserted is 4.0.0.0/24 then no marker
prefix is created.

The lookup process is similar to the insertion. When
the incoming IP is closer to root A than B, the lookup
process is preformed on the spanning tree rooted at A.
Otherwise the lookup process is performed on the tree
rooted at B.

IV. PERFORMANCE EVALUATION
In this section, we conduct experiments based on our

implementation of the proposed IP lookup scheme. We
use two routing tables for the measurements, one is a
small table, funet, used in LC paper [12] and another one
is a big routing table [6] which reflects the current
situation in modern routers. The funet and oix tables
contain 41,709 and 120,637 routing entries, respectively.
Both tables contain the prefixes of lengths ranging from

8 to 32.
In addition to the proposed scheme, the binary trie

and the Level-Compressed (LC) schemes are also
considered for comparisons. The binary trie scheme is
the most fundamental trie structure. The LC scheme is
the optimized version of the binary trie scheme using
adaptive internal subtrie expansions, first k-level
segmentation, and pre-allocated array. The C codes for
the LC trie are obtained from the web site published by
the authors. In fact, we also implemented a variant of
path compressed scheme. Since the performance of the
path compressed scheme does not perform better than
LC, its results are not given in this paper.

The methodology of the conducted experiments is
taken from the LC paper. The input traffic pattern is
taken from the routing table. Therefore, the lookups will
always be hits. Notice that the IP of the traffic is
randomized before feeding into our simulator. All
experiments will be performed with k=0, 8, or 16 level
segmentation. The clock cycles for each experiment are
measured by using the special instruction, rdtsc (read
time stamp counter), provided by Intel Pentium
processor. The clock counts obtained from different
CPUs may have different scales. For example, the clock
counts from Pentium IV are greater than that from
Pentium III for the same experiments. It does not
necessarily mean that the conducted algorithms perform
better on Pentium III than on Pentium IV. We need to
convert the clocks to seconds, which is an easy task.
However, we will not perform this conversion for the
clarity of the figures shown.

In addition, a minor adjustment is made for better
performance when selecting a diagonally opposite node
of the original root. Since most of the prefixes are of
length 24 or shorter, we only consider the first 24 bits
when selecting the dual nodes in the schemes with k-
level segmentation. For example, consider the ith
segment in a 8-level segmentation. The address of the
first root is i.0.0.0 as usual. However, the address of the
second root is chosen to be i.255.255.0 instead of
i.255.255.255. For the proposed scheme without
segmentation, the dual roots are 0.0.0.0 and
255.255.255.255.

Figures 7 and 8 show the experiments results of clock
cycle counts on a 2.4G Pentium IV processor with 8KB
L1 and 256KB L2 caches with a 16-level segmentation.
In Figure 7, we can see that there are similar number of
peaks for the proposed scheme and the LC. However,
the peaks of the proposed scheme move toward to the
left end. This means the time taken for the proposed
scheme is smaller than the other two schemes. Notice
that there are five peaks in LC because the number of
levels in LC is five. In Figure 8, we compare the
proposed schemes with one root and two dual roots. We
can see that the shapes of these two schemes are similar
except curves on the right side. There are more hits with
longer clock cycles in the scheme with only one root
than that with dual roots. This improvement is because

00011

0
1

2

Bitmap 11***
Pointer

array

Root node’s data structure

00001
Root

16 8

Port and Length

1 2 3 4 5 6 7

4

3

00010

00000

00100
00101

00111 00110

01000 01001

01100

10000

10010

Figure 6: level compression example for the
proposed algorithm.

10011

17 18 9 12

lookups with longer cycles in the scheme with one root
is transferred to tree rooted at the diagonally opposite
root. The lookups with shorter cycles will not be affected.

The results of the same experiments for funet routing
table are depicted in Figures 9 and 10. The difference
between these two routing tables is not significant. The
proposed scheme still performs better than other
schemes.

We also conduct experiments on the 1G Pentium III
CPU with 16KB L1 and 256KB L2 caches. As shown in
Figure 11 without first k-level segmentation, the LC
scheme has the same peaks as previous experiments on
Pentium IV. The peaks in the curve for the proposed
scheme are not as clear as LC scheme. Figures 12 and 13
show the results of LC and the proposed scheme with
dual roots with an 8-level and a 16-level segmentation.
Figure 14 compares the performance for the proposed
scheme with 0, 8, and 16-level segmentation. Obviously,
the scheme with a 16-level segmentation performs the
best. In order to summarize the performance for all the
schemes run on Pentium IV processor, we calculate the
average clock cycles and show the results in Table 1.
Again, the proposed scheme with dual roots performs
better than any other scheme.

V. Conclusions
In this paper, we introduced a new method based on

the binomial spanning tree. By mapping the prefixes of
different lengths on the vertices of an n-cube, we can
construct the binomial spanning tree using the simple
tree construction and update procedures. The
fundamental binomial spanning tree can be optimized by
using the path compression, level compression, k-level
segmentation and the property of diagonally opposite
nodes. We implemented the proposed scheme and other
existing trie-based schemes and showed that the
proposed binomial spanning tree based scheme performs
the best.

REFERENCES

[1] M. A. Ruiz-Sanchez, Ernst W. Biersack, and Walid
Dabbous, “Survey and taxonomy of IP address

lookup algorithms”, IEEE Network Magazine,
15(2):8--23, March/April 2001.

[2] S.L. Johnsson and C.-T. Ho “Optimum Broadcasting
and Personalized Communication in Hypercubes”,
IEEE Transactions on Computers Vol. 38, No. 9,
Sept. 1989.

[3] M. Akhbarizadeh and M. Nourani, “IP Routing
Based on Partitioned Lookup Table,'' in Proceedings
of the IEEE International Conference on
Communications (ICC) (New York, NY), pp. 2263-
2267, April 2002.

[4] Butler Lampson, Venkatachary Srinivasan and
George Varghese, “IP lookups using multiway and
multicolumn search", IEEE/ACM Transactions on
Networking, Volume 3, Number 3, Pages 324-334,
1999.

[5] Geoff Huston, “Analysis of the Internet's BGP
routing table”, Internet Protocol Journal, 4(1), March
2001.

[6] David Meyer, “University of Oregon Route Views
Archive Project: oix-damp-snapshot-2002-12-01-
0000.dat.gz “ at http://archive.routeviews.org/

[7] M. Waldvogel, G. Varghese, J. Turner and B.
Plattner. “Scalable high-speed IP routing lookups,”
Proceedings of ACM Sigcomm, pp.25-36, October
1997.

[8] T. Chiueh et al, High Performance IP Routing Table
Lookup Using CPU Caching, INFOCOM99’

[9] M. Degermark, A. Brodnik, S. Carlsson, and S.
Pink. “Small Forwarding Tables for Fast Routing
Lookups.” ACM SIGCOMM‘97, Palais des
Festivals, Cannes, France, pp. 3-14.

[10] K. Sklower, A Tree-based Packet Routing Table for
Berkeley Unix, Proc of 1991 Winter Usenix Conf,
1991, pp.93-99

[11] P. Gupta, S. Lin, N. McKeown, Routing Lookups in
Hardware at Memory Access Speeds, INFOCOM99’

[12] S. Nilsson and G. Karlsson “IP-Address Lookup
Using LC-Tries”, IEEE Journal on selected Areas in
Communications, 17(6):1083-1092, June 1999.

Figure 9: The proposed binomial scheme with one root,
binary trie, and LC with a 16-level segmentation
for funet routing table on Pentium IV.

Figure10: The proposed binomial scheme with one root
and that with dual roots without segmentation
for funet routing table on Pentium IV.

Figure 11: The proposed binomial scheme with one root and
LC with an 8-level segmentation for oix routing
table on Pentium III.

Figure 7: The proposed binomial scheme with one root,
binary trie, and LC with a 16-level segmentation
for oix routing table on Pentium IV.

Figure 8: Proposed binomial scheme with one root and
that with dual roots without segmentation for
oix routing table on Pentium IV.

3
1

2

1

1

1
1

1

1

2

2

2

3 3

3

1
2

1
1

11

1

2

2
2

2
2

2

Figure 12: The proposed binomial scheme with dual roots
and LC with an 8-level segmentation for oix
routing table on Pentium III.

3

1

2

1

1

1

1

1

1

2

2

2
3

2

1
1

2

2

2

2 2
2

1 2

2

2

2

2

1

1
1

1
1

1 2

2

2

1
22

1 binomial-tree –x 8
2 LC –x 8

1 binomial-tree-dual –x 8
2 LC –x 8

oix-120k / Pentium IV oix-120k / Pentium IV

funet-41k / Pentium IV funet-41k / Pentium IV

oix-120k / Pentium III oix-120k / Pentium III

13

3

1 binomial-tree –x 16

3 LC 16-level
2 binary trie –x 16

1 binomial-tree-dual
2 binomial-tree

1 binomial-tree –x 16

3 LC 16-level
2 binary trie –x 16

1 binomial-tree-dual
2 binomial-tree

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

5000

4500

4000

3500

1000

500

0

3000

2500

2000

1500

4500

4000

3500

1000

500

0

3000

2500

2000

1500

4500400035001000 500 0 3000 2500 2000 1500 4000350010005000 30002500 2000 1500
Clock cycles Clock cycles

1000

500

0

3000

2500

2000

1500

35001000 500 0 30002500 2000 1500 10005000 3000 250020001500
Clock cycles

Clock cycles

1000 500 0 300025002000 1500
Clock cycles 10005000 3000250020001500

Clock cycles

8000

7000

2000

1000

0

6000

5000

4000

3000

8000

7000

2000

1000

0

6000

5000

4000

3000

1000

500

0

2000

1500

Scheme Table1(120637
entries) clock

Table2(41709entries)
clock

Binomial-x-0 1467 1165
Binomial-x-0-dual 1362 1064

Binomial-x-8 1287 875
Binomial-x-8-dual 1140 845

Binomial-x-16 827 528
Binomial-x-16-dual 682 483

Lc-trie-x-0 1208 587
Lc-trie-x-8 905 578

Lc-trie-x-16 879 557
Binary-trie-x-0 1989 1553
Binary-trie-x-8 1802 1357

Binary-trie-x-16 1395 1094

Figure 13: The proposed binomial scheme with dual roots and LC
with a 16-level segmentation for oix routing table on
Pentium III.

Figure14: The proposed binomial scheme with dual roots
with 0-level, 8-level, and 16-level segmentations
for oix routing table on Pentium III.

Table 1: Average cycle counts of the proposed binomial scheme with one root
and dual roots, the binary trie, and the LC schemes with 0-level, 8-
level, and 16-level segmentations for oix routing table on Pentium IV.

1 binomial-tree-dual –x 16
2 LC –x 16

1

2

1

1 1

2
2

2

1 binomial-tree-dual –x 16

3 binomial-tree-dual
2 binomial-tree-dual –x 8

2

1

3

1 1

1

2
2

3

3

oix-120k / Pentium III oix-120k / Pentium III

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

1000 500 0 300025002000 1500
Clock cycles

0

7000

2000

1000

6000

5000

4000

3000

10005000 3000250020001500
Clock cycles

0

7000

2000

1000

6000

5000

4000

3000

