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Abstract

The enormous growth of the world wide web in the
recent years has made it important to discover re-
sources efficiently. In this paper, we develop and eval-
uate approaches for focused crawling whose objective
is to retrieve particular topical portions of the World
Wide Web quickly without having to visit all web pages.
Keyword: Focused Crawler,Text Categoriza-
tion,Information Retrieval

1 Introduction

The web environment provides a huge amount of
data that offers us more chances than we to find out
what we are looking for. Thus many search engines
such as Google[6], Yahoo[7], and AltaVista[8] have
bloomed in recent years. But these general search
engines often produced low quality results. Thus in
recent years, topic-specific search engines arisen from
this perspective. Topic-specific search engines are con-
structed according to some domain knowledge. They
can be more powerful than general search engines when
users knows what they need belongs to a certain topic
domain. For example, ResearchIndex[12] is the full-
text indexing of scientific literature that aims to im-
prove the dissemination and feedback of scientific liter-
ature and to provide improvements on functionality, us-
ability, availability, cost, comprehensiveness, efficiency,
and timeliness.

In this paper, we study how context information af-
fects focused crawling, and propose an algorithm incor-
porating with context information to improve the per-
formance of focused crawling system. The remainder
of this paper is organized as follows. Section 2 gives
preliminaries for focused crawling and reviews some

related work. Section 3 presents our strategy for or-
dering URLs in crawling. Section 4 describes our sys-
tem architecture. Section 5 gives experimental results.
And section 6 concludes this paper and gives further
remarks.

1.1 Related Work

Jason Rennie et. al.[3] created a topic-specific spider
to find scientific papers from the web. They claimed
that the creation of efficient web spiders is best solved
by reinforcement learning, a branch of machine learn-
ing that concerns itself with optimal sequential deci-
sion making. One strength of reinforcement learning is
that it provides a formalism for measuring the utility
of actions that give no immediate benefit, but do give
benefit in the future.
Charu C. Aggarwal et. al.[20] propose a novel con-
cept of intelligent crawling which actually learns char-
acteristics of the linkage structure of the world wide
web while performing the crawling. Specifically, the
intelligent crawler uses the inlinking web page content,
candidate URL structure, or other behaviors of the in-
linking web pages or siblings in order to estimate the
probability that a candidate is useful for a given crawl.
M. Diligenti et. al.[2] demonstrate the credit assign-
ment for the focused crawler can be significantly im-
proved by equipping the crawler with the capability of
modeling the context graph. A context graph encodes
a limited number of the parent links around the tar-
get web page, which apparently keep the relationship
between content and layer information with a specific
topic.

1.2 Our Contributions

Our approach is based on the assumption that sim-
ilar pages have links pointing to related pages. We
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propose ordering strategies that combine information
from page contents, hyperlinks, query words and con-
text graphs.

• Hot Word: We observe if the link’s anchor text
contain query word , this link often is valuable.
So we use query word as ”Hot Word”. Computing
similiarity between Hot Word and link’s anchor
text as Hot Word Score. If score > θh, it is highly
possible that the page pointed to by this link is a
target page.We then put this link in queue 0

• Link Information: In M. Diligenti et.
al.[2],Queue is not a priority queue. So we use link
information , let our queue be a priority queue.We
compute similiarity between out link’s anchor text
and anchor texts from all hyperlinks in Li.Li be
the set of hyperlinks pointing to some pages in
layer i for 0 ≤ i ≤ N .

2 Preliminaries

2.1 Web Crawler

Web crawlers are widely used today. For exam-
ples: Crawlers for the major search engines attempt
to visit most web pages in order to build context in-
dexes (e.g., Google, Altavista, InfoSeek, Excite, and
Lycos[6, 8, 9, 10, 11]). Other crawlers may also visit
many pages, but may look only for certain types of
information (e.g., e-mail addresses). Sometime, web
crawlers are annoying because certain crawler imple-
mentations can overload networks and servers. There-
fore, a standard for robot exclusion has been proposed
by Martijn Koster in 1993[13]. It urges robot writers
to obey the rules defined by webmasters in a special
file ”robots.txt”.

2.2 Focused Crawler

A focused crawler(or topic-specific spider) is a
crawler aiming to search and retrieve web pages from
the world wide web that is related to a specific topic.
Rather than collecting and indexing all accessible Web
documents, a focused crawler analyzes its crawling
boundary to be mostly relevant for the crawling so that
irrelevant regions of the Web can be skipped. This
leads to significant savings in hardware and network
bandwidth resource.

The simplest focused crawler uses a fixed model of
the relevancy class, typically encoded as a classifier,
to evaluate the retrieved documents for topical rele-
vancy. The classifier is either provided by the user in

Focused Crawling algorithm
enqueue(url_queue, starting_url);
While(not empty(url_queue)){

url = dequeue(url_queue);
page = crawl_page(url);
enqueue(crawled_url,url);
url_list = extract_urls(page);
for each u in url_list{

if u not in url_queue and u not in crawled_url
enqueue(url_queue,u);

}
reorder_queue(url_queue);

}

Figure 1. The general focused crawler in
pseudo-code.

the form of query terms, or can be built from a set of
seed documents. An ideal focused crawler traverses the
minimal number of irrelevant documents and retrieves
the maximal number of relevant pages. In figure1 ,
the pseudo code of a general focused crawler is given.
During the process of crawling, a lot of hyperlinks are
retrieved. Each link is assigned the score of the doc-
ument to which it leads. A major open problem in
focused crawling is to assign proper credit to all pages
along a crawl route to yield highly relevant documents.

3 Our approach

A focused crawler should visit on-topic pages as
early as possible and avoid traversing off-topic areas
of the Web. Hence, it’s the most important task for
a focused crawler to measure whether a page can lead
to a lot of on-topic pages. Our approach bases on con-
text graphs[2] and improves the ordering strategies by
incorporation information from hyperlinks and query
words.Figure2.2 is an overview of our crawling algo-
rithm. Follow is a pseudo code. Decide which queue
this link be assigned to and their priority in each queue.

3.1 Hot Word Similiarity

Let h be a hyperlink, q be the query, and p be the
web page containing h. We first compute a hot-word
score, denoted as hot(h, q), of h which is the similarity
between anchor text of h in p and query words in q.
For example: query word is ”î=Ú¬t” and anchor
text is ”û˝F¬t”. We use bigram to compute their
similarity score. If hot(h, q) > θh, it is highly possible
that the page pointed to by h is a target page. We then

2



hθ<

hθ>

Figure 2. Overview of our focused crawling system.

put h in queue 0. If hot(h, q) < θh, we put h in queue
k, where k is the link distance predicted by our Page
Layer Prediction classifier based on the content of p.

3.2 Page Layer Prediction

See figure3.Given examples of target documents, we
construct a context graph for each one. Each document
appearing in the context graphs is assigned a label that
is the minimum link distance from that document to
a target document. These documents with their labels
form a training set to train a classifier that predicts
the link distance from a new document to target docu-
ments. A Naive Bayes classifier is used to predict link
distance.

The preliminary step for classification is data col-
lection. The next step is term extraction and selec-
tion. We use the 2-gram-based model to select candi-
date terms for documents in Chinese language. Then
we use χ2 - statistic method to select representative
and informative terms for each class such that selected
terms can let classifier distinguish one class from the
others. In [4],[5] Tsay and Wang did an extensive com-
parison of several measures for term selection in Chi-
nese text categorization, such as odds ratio, IG, MI
and CHI. In their experiment, CHI achieves the best
performance while combined with Naive Bayes classi-
fier, hence we use CHI as term selection method in
our crawling system.Figure4 show Top 28 terms in the
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Figure 3. A context graph represents how a target doc-
ument can be accessed from the web.
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Figure 4. Top 28 terms in the feature distribution for
the topic ”î=Ú¬t” in all layers.

feature distribution for the topic ”î=Ú¬t”.Such as
”¬t” is a meaningful term for the topic ”î=Ú¬t”.
The Bayesian approach classifying a new instance is to
assign the class with the maximum probability, CNB :

CNB =
argmax

Ck∈C
P (Ck|Doc)

3.3 Link Layer Prediction

Each queue is a priority queue in which hyperlinks
are ordered according to their similarity scores com-
puted by anchor texts as follows(see figure5). Let G
be the context graphs derived from the training ex-
amples. The web page appearing in G are partitioned
to layer 0, layer 1, . . . , layer N , where a page is in
layer i if its link distance to target pages is i. Li be
the set of hyperlinks pointing point to a page in layer
i for 0 ≤ i ≤ N , and LN+1 be the set of pages not
in any Li, 0 ≤ i ≤ N . Score sim(h, Li) is defined as
the average cosine similarity between the anchor text
of h and all anchor texts of all hyperlinks in Li. Let
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Figure 5. sim(h, Li) the average cosine similiarity be-
tween the anchor text of h and all texts of all hyeperlinks
in Li Let i = argmax0≤j≤N+1sim(h, Lj)

i = argmax0≤j≤N+1sim(h, Lj). The priority of h in
queue k is assigned as (i, sim(h, Li)). All hyperlinks
in the same queue are ordered by i first, and then by
sim(h, Li) for those with the same i. Note that we use
English words and Chinese bigrams as index terms to
compute cosine similarity[18].

4 System Architecture

We implemented our system on Microsoft Windows
2000 operation system, using Java language with JDK
1.3.1[16]. There are four distinct stages to use the al-
gorithm when using this system:

• Collecting Data : In this stage, web pages and
context graphs are collected to train topic spe-
cific features.When constructing context graphs
for target pages, we need to know the whole web
structure in advance. One solution to know the
structure is to look up the web graph structure
database. We use special search mechanism, link
search, provided by Google and AltaVista to con-
struct the structure. Figure 8 shows it on Google.

• Training classifier: By using the data collected
in previous stage, the classifier is trained to have
the ability to rank documents according to its rel-
evancy to the specific topic. We also provide an
approach to help the classifier to rank documents
more precisely. our system tries to train Naive

Our Crawling algorithm 
enqueue(url_queue[N+1], starting_url); 

while (not empty(url_queue)) { 

    url = dequeue(url_queue); 

    page = crawl_page(url); 

    enqueue(crawled_url, url); 

    url_list = extract_urls(page); 

    for each u in url_list{ 

        if u not in url_queue and u not in crawled_url { 

            if hot(u) > θ  

              n = 0; 

            else 

              n = predict(page); 

            enqueue(url_queue[n], u); 

            reorder_queue(url_queue[n]); 

        } 

    } 

} 

 

Figure 6. Our focused crawling algorithm.

dequeue(queue) : 

remove the element at the beginning of the first non-empty 

queue and return it. 

hot(url) : 

return similarity between anchor text of url and query word. 

sim(url, L) : 

score = average similarities of url’s anchor_text vector and all 

document vectors in L 

return score; 

predict(page) : 

results = classifier_predict(page); 

winner_layer = results[0]; 

winner_layer_score = results[1]; 

if winner_layer_score < threshold 

   winner_layer = N+1; 

return winner_layer; 

reorder_queue(queue) : 

for each u in url_queue{  

   ),(maxarg 10 jNj Lusimi +≤≤= ; 

   priority of u = )),(,( iLusimi ; 

}  

sort url_queue by i first; 

if the same i 
  sort by ),( iLusim  

 

Figure 7. Function description of our focused crawling
algorithm.

4



��� ��������	�
���� �� 
��������

������
����������

Figure 8. Link search mechanism provided by Google
search engine.

Bayes classifiers and build ordering functions, for
further use. We use Naive Bayes classifier to pre-
dict page layer and build ordering function for link
layer prediction. Our goal is to be able to use clas-
sifiers to assign a web page to a set of N +2 classes
corresponding to the layers 0, 1, 2, · · · , N and a cat-
egory ”other”, and combine ordering function to
order all URLs in the priority queue. In our ex-
periment, we set N to 4.

• Crawling Pages: Our crawler use both the
trained classifier and anchor information to rank
all the web pages and crawls the web according to
this ranking.

• Ranking Output: A mechanism for ranking the
output crawled pages is used in this stage. It ranks
all the output pages in the order of their relevancy
to user specified topic. After the crawling phase,
our focused crawler can retrieve many web pages
from the Web. However, it is difficult for user to
discover and exploit these web pages. Therefore,
we provide a ranking mechanism to rank these re-
trieved pages by calculating their relevance with
respect to the focused topics.

5 Evaluation

In this chapter, we will compare the performances of
our crawling system to two crawlers, one is a breadth-
first crawler[21] and the other is a traditional context-
graph crawler. Currently, we choose three topics ”î=

Ú¬t” and ”ëY” to be evaluated.
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Figure 9. The crawling stage: the focused crawler uses
the ordering function to predict the possibility of finding
topically relevant documents.

Topic: 
�� ���������� ����� �������

 

Extracted term size: 61,383 

Layer Number of nodes 

0 26 

1 71 

2 115 

3 122 

4 196 

Total 530 

 

Figure 10. Statistics: the context graph for the topic
”î=Ú¬t”.

Topic: 
�� ����� ��

 

Extracted term size: 177,306 

Layer Number of nodes 

0 9 

1 104 

2 193 

3 299 

4 552 

Total 1157 

 

Figure 11. Statistics: the context graph for the topic
”ëY”.
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Figure 12. Top 28 terms in the feature distribution for
the topic ”ëY” in all layers.

5.1 Experiment Setup

The context graph data set is summarized in Table
10, Table 11 respectively. All the 2-gram terms are
extracted from HTML documents, exclusive of HTML
tags and their attributes.

All the on-topic documents are selected by user from
the documents returned by general text-based search
engine. For example, when constructing the context
graph for the topic ”î=Ú¬t”, our system submits
query such as ”î=Ú¬t” to Google search engine,
and extracts the top 100 relevant documents. Then we
choose 26 documents as seeds, and iteratively find their
back-links to construct their context graphs.

In these three tables, we observe some interesting
characteristics. First, we found the topic ”ëY” has
much more terms than the topic ”î=Ú¬t”. Sec-
ondly, pages related to the topic ”ëY” have more back-
links than those related to the topic ”î=Ú¬t”. This
suggests that there is a bigger ”ëY” community in the
Web than the one of ”î=Ú¬t”. In fact, there are
many ”ëY” web pages in the Web and usually these
pages have much higher in-degree than ”ëY” pages.

In the training stage, we use the above two train-
ing data to build Naive Bayes classifiers and ordering
function. In order to obtain some understanding of the
effectiveness of this approach, we list the top 28 ranked
terms below in Figure 4 and Figure 12.

As we can see in Figure 4 and Figure 12, many of
these terms are very predictive and uniquely describe
the specified topic. These terms are likely to be used
to describe the contents of the target topics. They are
good predictors for the specified topics.

5.2 Experiment Results

We compare the performance of our focused crawler
to two other crawlers.We introduce three examples,
three topics: ”î=Ú¬t” and ”ëY”

Figure 13. Both the context-graph crawler and our
focused crawler are more effective than a traditional
breadth-first crawler when retrieving ”î=Ú¬t” docu-
ments.

• The result of the Topic(î=Ú¬t): See
figure13,we found a interesting phenomenon the
curve is not smooth. The increase of the curve is
very little between 3500 pages and 7000 pages.We
consider that when focused crawler is directed to
off-topic domain , it must do a likely BFS search
to search more page in order to find the next on-
topic domain.Because this topic is a small domain
topic, the distribution of on-topic pages is more
loose.See figure14,the performance of dump result
is close to the perfect performance.Figure15 show
top rank of pages,we can see that even 1023th page
is also on-topic.

• The result of the Topic(ëY): See figure16,this
curve is more smooth than cure in topic of ”î=Ú

¬t”. Because the topic of ”ëY” is a big domain,
it have more pages and links and many pages are
linked by each other. So this kind of this topic is
easy to crawl. Just using a suitable start point ,
it will perform well. And shows that our focused
crawler performed even better than other crawlers.
See figure17,The ranking result for topic ”ëY” is
also better. Figure 18 show that even 1003th page
is aslo on topic.

6 Conclusion

In this paper, we proposed an ordering strategy that
combines information from page contents, hyperlinks,
query words and context graphs. Experiments show
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Figure 14. The dump ranking result of the downloaded
documents computed using our ranking function.

�����������
	�
���������������������������� ��!��"�#�!��$���%�'&("*)+�-,/.0�1"*)+�,/2'�3.�2'45�6"6���7����,
89
:��;<"=�?>A@ BDCFEHGHIHJHKLGNMLOQP RQSNTHU VWGNRQS XZYN[FGW\ ]L^`_
���������ba�c��
	�
��������������������������$���d!��"�#�!��$���%�1e�f��-#d"g�1hi��,j�
89
:��;<"=��kmlLEHGHIHJHKLGNMLOQP RQSN\ ]L^L_

�����������ncd26o
	�
��������������������������7;$
$p�7�����d!�q"�#�!�$���%�r"*)*��,j�ts-u3�1"�"��n.��7����,v;
89
:��;<"=��wmxQEHGQy JHzLGNMLOQ{ |~}LU ���i��� ��� GH�

Figure 15. The ranking result examples for topic ”î=

Ú¬t”

Figure 16. Both the context-graph crawler and our
focused crawler are more effective than a traditional
breadth-first crawler when retrieving ”ëY” documents.

Figure 17. The dump ranking result of the downloaded
documents computed using our ranking function.
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Figure 18. The ranking result examples for topic ”ëY”

that our approach can obtain relevant pages faster than
BFS and focused crawler only using context graphs.
However, there are still some further improvements for
our system.

• Handle Dynamic web page and complicated
HTML layout

• More scalable

• More precise relevancy metrics

• Support Multiple languages
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