
- 1 -

A Chip-Multiprocessor Architecture with Two
Execution Modes

具雙重執行模式之單晶片多處理機架構

 伍朝欽, Chao-Chin Wu
國立彰化師範大學資訊工程學系

Department of Computer Science and Information Engineering
National Changhua University of Education, Changhua, Taiwan

E-mail: ccwu@cc.ncue.edu.tw

Abstract

Previous research show that,
chip-multiprocessors have better speedup for
floating-point-operation-intensive benchmark
programs but worse for inte-
ger-operation-intensive application programs
when compared with superscalar architectures.
In this paper, we propose a novel microprocessor,
combining the advantages of superscalar and
chip-multiprocessor architectures, to provide the
best performance regardless of workload types.
Our architecture has two execution modes: one
for multithreads and one for single thread. The
new CPU can issue and execute sixteen instruc-
tions during each cycle regardless of the execu-
tion mode. In the first mode, the system behaves
like a conventional chip-multiprocessor. On the
other hand, we integrated separate four process-
ing elements into a single logical superscalar
processor in the second mode. When executing a
program, the architecture keeps switching be-
tween two execution modes according to the
feature of the subsequent codes to be run.

Keywords: Chip-Multiprocessor, Superscalar
Processor, Multithreaded Architecture, Specula-
tive Execution, Instruction-Level Parallelism.

摘要

單晶片多處理機雖然對大多數的測試程

式都能提供相當不錯的執行效能，但是對於部

分的整數型程式則無法提供如超純量架構一

樣好的效能。本論文提出一種整合以上兩種架

構之優點的新架構，不論是何種型態的測試程

式均能有較好之效能。

在此新的架構中，每個處理單元均提供兩

種執行模式：一種適合多引線平行處理，一種

則適合單引線處理。在單引線模式下，我們整

合四個處理單元為一個大的超純量架構。程式

執行時會依其程式碼的特性，在兩種模式間切

換。此架構不論在哪種執行模式下，最多均可

於每個週期發行或執行 16 個指令。

關鍵詞：單晶片多處理機、超純量、多引線、

冒險性執行、指令間平行度。

1. Introduction

Superscalar architectures, which are capa-
ble of issuing multiple instructions at the same
cycle, have become the norm for today’s
high-performance microprocessors [1-4]. Al-
though many researches still focus on boosting
the speedup of superscalar architecture, various
innovative microprocessor architectures have
been proposed to exploit thread-level parallelism
[6]. One interesting design is
chip-multiprocessor (CMP) architecture that
runs multiple threads on different processing
elements at the same chip [5, 7-10].

 Chip-multiprocessors have the following
three advantages. (1) For the same chip size,
chip-multiprocessors can provide higher issue
rate compared with superscalar processors. Ac-
cording to previous research results, a
chip-multiprocessor with eight 2-issue supersca-
lar processing elements occupies the same die
area as a 12-issue superscalar processor [11]. (2)
Hardware design is simple because each proc-
essing element needs lower issue rate. Conse-
quently, system clock can be faster and the dura-
tion of design validation phase can be shortened.
(3) Communication in the processing elements’
localized interconnect is faster because of de-
centralized network implementation.

There are two approaches to execute an ap-
plication in parallel [12]. First, the programmer
writes a parallel program with explicit instruc-
tions telling hardware when and how to execute
the program in parallel. Second, the programmer

- 2 -

writes a sequential program and the compiler
transforms it to a parallel one. The first approach
is apparently difficult for most programmers
while the second approach is simpler and it al-
lows existing legacy codes to be able to be exe-
cuted in the CMP architecture. Therefore, many
chip-multiprocessors adopt the second approach
for higher acceptability.

 To run a sequential code in parallel in a
CMP, loop iterations are spawned to multiple
processing elements in a round-robin fashion. A
processing element executes an iteration at a
time. Because there are no explicit synchroniza-
tion codes in the application code, speculative
executions have been proposed to enforce de-
pendences between iterations. The speculative
execution approach assumes that data values are
available when they are accessed by any itera-
tion. During the course of execution, the hard-
ware monitors whether any violation of data
dependence occurs because a speculative itera-
tion prematurely accesses a memory location.
This will result in the squashing and then the
restarting of the violating iteration along with its
successors. Various schemes, including value
predictions and data predictions, have been pro-
posed to decrease the number of the data de-
pendence violations [13-16].

Many research results have showed that the
CMP architecture can provide superior system
performance [5, 7-10]. However, it cannot com-
pete against the superscalar processor with the
same issue rate when running inte-
ger-operation-intensive applications [5]. This is
because one single processing element issues a
larger fraction of all the instructions in the inte-
ger application, with all other processing ele-
ments usually having no contribution on system
performance during the course of execution.

 A general-purpose microprocessor has to
execute both integer applications and float-
ing-point applications. It should provide excel-
lent performances regardless of the workload
type. Unfortunately, the CMP cannot meet the
requirement. Therefore, we will propose an im-
proved CMP to provide excellent performances
for both types of workloads in this paper. The
new processor supports two execution modes.
One is the multithreaded mode that behaves like
a conventional CMP. The other is the integrated
superscalar mode that integrates all processing
elements to behave like a conventional super-
scalar. When an application is executed, our
CMP switches between two execution modes
whenever reaching a loop entry point or a loop
exit point. Because the improved CMP takes
both the advantages of the conventional CMP
and the conventional superscalar, it has the best

system performance for both integer and float-
ing-point applications.

The rest of the paper is organized as follows.
Section 2 introduces the base CMP architecture
and Section 3 describes how to implement the
proposed microprocessor. Section 4 analyzes the
performance gain and Section 5 concludes the
paper.

2. CMP architecture supporting two
execution modes

2.1 Conventional CMP microarchitecture

The chip-multiprocessor architecture we
proposed is extended from the work of Krishnan
and colleagues [5]. Their processor includes four
processing elements and each of them is 4-issue
superscalar architecture. Consequently, this
processor is capable of issuing up to 16 instruc-
tions during every single cycle. They perform a
compilation step on the sequential executable
file without recompiling the program. As a result,
legacy codes can be operated. In addition, they
developed a binary annotator that identifies units
of work for each thread and the register-level
dependences between theses threads. The entry
and exit points of each loop are marked. During
the course of execution, when a loop entry point
is reached, four threads are spawned to the four
processing elements respectively to begin execu-
tion of successive iterations speculatively. Each
processing element uses a special register to
identify it is nonspeculative or speculative. At
any time, only the processing element executing
the first unfinished iteration is nonspeculative.
When the first unfinished iteration is completed,
the immediate successor processing element
changes its status from speculative to nonspecu-
lative. To enforce register dependences between
threads and enable consumer threads to acquire
correct values from the producer thread, a spe-
cial hardware called synchronizing scoreboard
has been designed. In addition, a modified
cache-coherence protocol is proposed to enforce
memory dependences. These two kinds of hard-
ware also detect data dependence violations to
squash and restart the execution of the corre-
sponding thread. The fewer the dependence vio-
lations occur, the higher the system performance.

Although this processor outperforms su-
perscalar processors for float-
ing-point-operation-intensive benchmark pro-
grams, it cannot provide good system perform-
ance for all integer-operation-intensive pro-
grams.

2.2. Combining both advantages of CMPs and

- 3 -

superscalars

Since the CMP is suitable for floating-point
applications and the superscalar is suitable for
integer applications, our proposed CMP is de-
signed to possess both the advantages of these
two kinds of processors.

Our architecture provides two execution
modes in a conventional CMP system: the
speculative multithreading and the integrated
superscalar modes. The proposed CMP acts like
a conventional CMP in the speculative multi-
threading mode. On the other hand, it acts like a
conventional superscalar in the integrated su-
perscalar mode by integrating all processing
elements (e.g., four processing elements) to be a
conventional superscalar processor. In short, we
will enhance the CMP to aggregate multiple
processing elements (e.g. 4-issue each) into a
wide superscalar (e.g., 16-issue aggregate).

The speculative multithreading mode is al-
ready available in the conventional CMP archi-
tecture, however, how to aggregate four separate
processing elements into a wide-superscalar
processor is a big challenge because each proc-
essing element in the CMP has its own program
counter, fetch unit, decoding circuit, instruction
window, functional units, reorder buffer, etc.
There are two alternative ways to integrate a
logical superscalar processor.

Figure 1. Two different approaches to integrate a
logical superscalar processor.

The first approach is to let processing ele-
ments take turns to execute the codes sequen-
tially as shown in Figure 1-(a). In other words,
the first processing element will first execute the
program until its instruction window or reorder
buffer (RB) is full. Then, the second processing
element will fetch the instructions immediately
following the last instruction that the first proc-
essing element has fetched. To sum up, these
four processing elements form a circular list.

When an instruction window or reorder buffer is
full, the following processing element continues
to execute the subsequent codes.

The disadvantage of the first approach is
that the maximum parallelism degree of the mi-
croprocessor is still four though these four proc-
essing elements may execute instructions con-
currently. It is because the four processing ele-
ments are all 4-issue superscalar architecture,
they take turns to fetch instructions to execute in
different cycles. Consequently, four instructions
are fetched at every single cycle in the whole
system. The slight advantage of this approach is
that the numbers of instruction window entries
and functional units are logically increased.

The second approach is to let all the four
processing elements fetch, issue and execute in
every cycle as shown in Figure 1-(b). That is,
four 4-issue superscalar processing elements will
work together to make up a single logical super-
scalar processor with maximal parallelism de-
gree of sixteen. To implement the approach,
several requirements must be satisfied. First, we
have to supply four instructions for each proc-
essing elements per cycle where these instruc-
tions are in the same dynamic trace. Second, a
low-cost data communication approach is crucial
for the processor. Third, data dependences be-
tween different processing elements must be
enforced. Finally, precise interrupt across four
processing elements have to be handled correctly.
We will describe how to combine separate proc-
essing elements for each major stage of super-
scalar processing in the next section.

3. Implementing the integrated su-
perscalar mode

3.1 Instruction fetch

We have to supply four instructions for
each of the four processing elements at every
cycle and the 16 instructions must be predicted
to execute sequentially. The problem is that
these instructions may be noncontiguous and
they are across multiple basic blocks. Fortu-
nately, the trace cache fetch mechanism provides
a good solution [17]. It consists of a trace cache
and a core fetch unit. The core fetch unit can
fetch instructions up to the first predicted taken
branch in each cycle by using the combination of
an accurate multiple branch predictor, an inter-
leaved branch target buffer, a return address
stack, and a two-way interleaved instruction
cache. The core fetch unit can only fetch con-
tiguous sequences of instructions, i.e., it cannot
fetch past a taken branch in the same cycle that
the branch is fetched. The trace cache provides

I1
I2
I3
I4
I5
I6
I7
I8
…
…
In

In+1
In+2
In+3
In+4
In+5
In+6
In+7
In+8
…
…
I2n

I2n+1
I2n+2
I2n+3
I2n+4
I2n+5
I2n+6
I2n+7
I2n+8
…
…
I3n

I3n+1
I3n+2
I3n+3
I3n+4
I3n+5
I3n+6
I3n+7
I3n+8
…
…
I4n

RB0 RB1 RB2 RB3

I1
I2
I3
I4
I17
I18
I19
I20
…
…

I4n-3

I5
I6
I7
I8
I21
I22
I23
I24
…
…

I4n-2

I9
I10
I11
I12
I25
I26
I27
I28
…
…

I4n-1

I13
I14
I15
I16
I29
I30
I31
I32
…
…
I4n

RB0 RB1 RB2 RB3

(a) The first approach (b) The second approach

Instructions allocated in the first cycle

Instructions allocated in the second cycle

RBi : Reorder buffer in the processing element i

- 4 -

this additional capability. It is a special instruc-
tion cache where each line stores a trace of the
dynamic instruction stream. A trace is a se-
quence of multiple instructions and several basic
blocks starting at any point in the dynamic in-
struction stream.

We apply the trace cache fetch mechanism
in our architecture for the integrated superscalar
execution mode. The fetch mechanism can fetch
up to 16 instructions in a dynamic instruction
stream per cycle. The fetched 16 instructions are
divided into four ordered partitions where each
partition is comprised of four contiguous in-
structions. The four instruction partitions will be
dispatched to the four processing elements in
order, respectively.

3.2 Data communications

Because sixteen contiguous instructions in a
dynamic instruction stream are dispatched to
four processing elements per cycle, data com-
munications between different processing ele-
ments are frequent because of data dependences.
In a conventional CMP, each processing element
has its own local register file. To support the
integrated superscalar mode, the four local reg-
ister files must have the same data values at any
time. In addition, we will use the bank-based
register file proposed by NAN and colleagues
[18] to replace the conventional register file in
our chip-multiprocessor architecture.

The configuration of a bank-based register
file is similar to that of a general register file,
except that it is partitioned into three banks as
shown in Figure 2. Every bank has the same
number of register entries and the same register
identifiers. That is, for each logical register iden-
tifier there is one corresponding register in each
bank. To identify the bank of each register to be
allocated for renaming, an in-order bank index
table (IBIT) and a recently-updated bank index
table (RBIT) are maintained. The IBIT is con-
sistent with the sequential architectural state
defined by program sequence, which is updated
when an instruction completes in order. However,
the superscalar processor allows out-of-order
completion. To enforce in-order completion, a
reorder buffer must be included but the field of
register result is not required because register
results are written directly to the bank-based
register file. On the other hand, an entry of the
RBIT is incremented by one whenever an in-
struction is issued. If an interrupt occurs, the
RBIT contents will be replaced with the IBIT
contents.

We use Figure 2 to illustrate functions of
the bank-based register file. According to the
IBIT, the sequential states of logical registers R0,
R1 and RN-1 are stores in the Bank 0, respectively,
while R2 in the Bank 1. On the other hand, ac-
cording to the RBIT, logical registers R0, R1, R2
or RN-1 have been currently renamed to physical
registers R0 in the Bank 1, R1 in the Bank 0, R2
in the Bank 2 or RN-1 in the Bank 0. For instance,
if a subsequent instruction requires to read logi-
cal register R1, the content of the R0 in the bank
1 will be supplied. In addition, when an instruc-
tion with destination register R1 is issued, the
entry corresponding R1 in the RBIT is incre-
mented by one. That is, the RBIT value for R1
will be changed from 0 to 1. It means that the
new result of R1 will write to the next register
bank for solving output dependence. On the
other hand, the entry corresponding to R1 in the
IBIT will not incremented by one until the new
result of R1 is produced and the corresponding
entry in the reorder buffer is at the head. In the
following, we will describe how to use the
bank-based register file and the simplified reor-
der buffer to enforce data dependences.

Figure 2. A bank-based register file

3.3 How to enforce data dependences

When an instruction is issued, the RBIT en-
try corresponding to the destination register is
incremented by one. Moreover, a reorder buffer
entry is allocated and the tag of that entry be-
comes the new name of the destination register
until the result has produced. Meanwhile, the tag
will be recorded in the register mapping table to
indicate that the result is not available now. If
the source operands of the subsequent instruc-
tions depend on the result and the result is not
available when they are issued, the tag will be
recorded in the instruction window. When the
result comes out, it will directly write to the reg-
ister file as well as the source operands with the
same tag in the instruction window.

…………. RN-1 R2 R1 R0 Bank 0

…………. RN-1 R2 R1 R0 Bank 1

…………. RN-1 R2 R1 R0 Bank 2

0 IBIT 0 1 …………… 0

0 RBIT 1 2 …………… 0

Register File

- 5 -

However, the above register renaming
scheme cannot be directly applied to the inte-
grated superscalar execution mode in our archi-
tecture. The first problem is how to maintain the
program sequence by four independent reorder
buffers. The second problem is how to perform
register renaming. We explain how to handle the
latter problem at first. Because we want to use
the tag of reorder buffer to rename registers, the
tag of each entry must be unique in the system.
We add two bits in the most significant bits of
the conventional reorder buffer tag. The addi-
tional bits are set to the identifier of the process-
ing element the reorder buffer resides. Further-
more, a register mapping is maintained. In the
following we will illustrate how to maintain
program sequence.

3.4 Maintenance of program sequence

Four reorder buffers are linked and form a
single logical reorder buffer as shown in Figure
3, where RBi indicates the reorder buffer in the
processing element i. Because at most four in-
structions are allocated to each reorder buffer per
cycle and we aim to simplify the hardware de-
sign, the number of the reorder buffer entries in a
processing element is designed to be multiple of
four. We here define a reorder buffer slice as
every four contiguous reorder buffer entries,
beginning from the first physical entry. For ex-
ample, I1, I2, I3 and I4 form a reorder buffer slice.
In addition, the four reorder buffer slices with
the same physical order are together called a
reorder buffer block. For instance, the sixteen
instructions, from I17 to I32, are in the same reor-
der buffer block. The reorder buffer slices be-
longing to the same reorder buffer block are or-
dered according to their own processing ele-
ments’ identifiers. We define that the sixteen
reorder buffer entries in the same reorder buffer
block are ordered from the first entry in the first
processing element to the fourth entry in the
fourth processing element. In every cycle, six-
teen fetched instructions are allocated sequen-
tially to the reorder buffer entries in the same
reorder buffer block. If less than sixteen instruc-
tions are fetched in a cycle, no-op instructions
are automatically filled by hardware.

On the other hand, to enforce in-order com-
pletion, we add directed ordering links between
every two consecutive reorder buffer slices as
shown in Figure 3, resulting a circular list that
keeps the feature of the conventional reorder
buffer. Initially, all ordering links are OFF ex-
cept that the one connecting to the first instruc-
tion in all four reorder buffers is ON. As Figure
3 shows, only the ordering link connecting to the
instruction I1 is ON, others are all OFF. An or-

dering link will be turned ON only when the
head pointer points to the fourth entry in the
corresponding reorder buffer slice and the com-
pletion field of the pointed entry has been set.
The ordering link will be turned OFF again
when the fourth entry in the reorder buffer slice
is allocated for another new instruction. Order-
ing links together with the head pointer indicate
whether the instruction in the first entry of a re-
order buffer slice can commit or not. That is, if
an instruction is not in the first entry of a reorder
buffer slice, it cannot commit. Otherwise, the
instruction can commit only when the corre-
sponding ordering link is ON and the local head
pointer points to it.

Figure 3. An integrated reorder buffer

3.5. Overview of our CMP architecture

Our CMP microprocessor as shown in Fig-
ure 4 is basically a conventional
chip-multiprocessor where there are four
4-issue-superscalar processing elements. It has
two execution modes. The multithreaded execu-
tion mode behaves like the CMP proposed by
the Krishnan and colleagues, including all their
architectural features: register-level communica-
tion with the synchronizing scoreboard, mem-
ory-level dependences handling with the mem-
ory disambiguation table, etc. However,
bank-based register files are adopted instead. On
the other hand, all the four processing elements
are integrated to be a logical superscalar proces-
sor when in the integrated superscalar mode. The
processor is initially in the integrated superscalar
execution mode. When loop entry points are
reached, the processor switches to the multi-
threaded mode. When exit points of loops are
reached, the system switches back to the inte-
grated superscalar mode again.

We have two kinds of instruction fetch and
dispatch units and they are both responsible for
fetching, decoding, and dispatching instructions.
There is only one global instruction fetch and
dispatch unit (GIFDU) in the processor. It adopts
the trace cache fetch mechanism to fetch up to

Reorder buffer slice Reorder buffer block

Ordering link with status ON Ordering link with status OFF

Local head pointer Local tail pointer

��
��
��

�������������
�������������
�������������
�������������

I1
I2
I3
I4
I17
I18
I19
I20
：
：
：
：

I5
I6
I7
I8
I21
I22
I23
I24
：
：
：
：

I9
I10
I11
I12
I25
I26
I27
I28
：
：
：
：

I13
I14
I15
I16
I29
I30
I31
I32
：
：
：
：

RB0 RB1 RB2 RB3 �����
�����

������
������

- 6 -

16 instructions per cycle because it is for the
integrated superscalar mode. On the other hand,
there is one local instruction fetch and dispatch
unit (LIFDU) for each processing element.
LIFDUs are for the multithreaded mode and
each of them can fetch up to four instructions per
cycle. The GIFDU and LIFDUs are enabled ex-
clusively according to the current execution
mode.

Figure 4. Our chip-multiprocessor with two
execution modes

The GIFDU is also responsible for register
renaming in the integrated superscalar mode. It
contains a global head pointer, a global tail
pointer, a register mapping table, an IBIT and an
RBIT. The global head pointer and the global tail
pointer together indicate if there are enough re-
order buffer entries for further instruction fetch.
Both of these two pointers maintain the status of
the reorder buffer in the first processing element.
It is because a reorder buffer block will be allo-
cated in every cycle and the first fetched instruc-
tions must be allocated in the first processing
element in our microprocessor. In addition, the
global tail pointer is used to associate each
fetched instruction with a unique reorder buffer
tag. Finally, the IBIT is for precise interrupt
handling and the RBIT is used to indicate which
register bank will be accessed for each logical
register when decoding an instruction. The reg-
ister mapping table maintains the relationship
between logical registers and physical registers.

In the integrated superscalar mode, the
RBIT in each processing element is updated ac-
cording to the contents of the RBIT from the
GIFDU. Meanwhile, every consecutive four in-
structions are dispatched to different processing
elements and local reorder buffer and instruction
window entries are allocated. Instruction oper-
ands are read from the local register file if they
are available. When the required operands are
available, instructions are forward to functional
units. After being produced by functional units,
results together with its destination register tag
are broadcast to all the instruction windows,
reorder buffers, and register files. Pending in-

structions read the newly available operand val-
ues to release data dependences. Four
bank-based register files are keep consistent
during the integrated superscalar mode.

When switching to the multithreaded exe-
cution mode, the GIFDU is disabled and all
LIFDUs are enabled. The LIFDU is responsible
for instruction fetching, decoding, and dispatch-
ing. In addition, bank-based register files are
operated independently and results from func-
tional units do not broadcast to other processing
element. All the specific CMP architectural fea-
tures are enabled, including register-level data
communication, detection of dependence viola-
tions. Consequently, four processing elements
behave like a conventional CMP.

On the other hand, when switching back to
the integrated superscalar mode, the GIFDU is
enabled and all LIFDU are disabled. Four
bank-based register files are made consistent
with the contents of the register file in the non-
speculative processing element. The sup-
porting hardware for register renaming in the
GIFDU is reset. Results are broadcasted across
processing elements.

4. Performance Analysis

We construct the following evaluation
model to analyze the performance of our micro-
processor. Assume that the ratio of execution
time in parallel mode is equal to p. In addition,
assume that the instructions per cycle (IPC) in
the sequential mode equals IPCseq and the IPC in
the parallel mode equals IPCpar. Consequently,
the effective IPC of a system, IPCeffect, can be
derived by the following equation:

(I) IPCeffect = (1 - p) * IPCseq + p * IPCpar

We will analyze our system performance
based on the simulation data reported by Krish-
nan et al. since our microprocessor is extended
from their architecture. The IPC is shown in Ta-
ble 1, where the 4x4-issue indicates a
chip-multiprocessor with four four-issue super-
scalar processing elements, the n-issue repre-
sents an n-issue superscalar microprocessor.
Therefore, for a chip-multiprocessor system, the
IPCeffect equals the value of the 4x4-issue and the
IPCseq equals the 4-issue value in Table 1. Next,
we have to derive the p value indirectly from the
figure of the fraction of instructions issued by
each of the four processors in the CMP because
it is not illustrated in [5]. In the following, we
describe how to obtain the p value. We use Fi to
denote the fraction of instruction issued by the

Global Instruction Fetch and Dispatch Unit

Local Instruction Fetch and Dispatch Unit

Register ID
Calculation

Unit

Recorder
Buffer

Instruction Window

Function
Unit

Function
Unit

Function
Unit

LIFDU

RICU

RB

IW

FU

RF

FU FU

Register File

LIFDU

RICU

RB

IW

FU

RF

FU FU

LIFDU

RICU

RB

IW

FU

RF

FU FU

4 instr. 4 4 4

- 7 -

processing element i. According to the data re-
ported in [5], the F1 value is the largest and the
values of F2, F3 and F4 are almost the same.
Moreover, to estimate the upper bound of per-
formance improvements by our processor, we
want the value of p to be larger as much as pos-
sible because our architecture can only improve
the performance of the sequential part of exe-
cuting application programs. Consequently, we
assume that four processing elements are all
busy in the parallel mode while only the proc-
essing element 1 is executing instructions when
in the sequential mode. Let Fthree be the average
of F2, F3 and F4. Then, we can have the value of
p from the following equation.

Fthree
(II) p = ———————

 F1

The p value derived from the above equa-
tion is listed in the first row of Table 2.

TABLE 1

The IPC values for SPEC95 applications under
different processors.

TABLE 2
The p value and the IPCpar for the SPEC95 ap-

plications

Now that we have the data of the IPCeffect
and the IPCseq in Table 1 and the p value in Table
2, the IPCpar can be acquired according to the
equation (I) and illustrate it in the second row of
the Table 2.

Now we compare our processor under dif-
ferent overhead ratios with the
chip-multiprocessor and the superscalar archi-
tectures as shown in Figure 5, where Ours stands
for our microprocessor. We set the IPCseq and the

IPCpar to be the IPCs of the 16-issue superscalar
architecture and the 4x4 CMP, respectively, as
shown in Table 1 when calculating the IPCeffect
of the Ours architecture. Our microprocessor
provides the best performance for almost all the
benchmark programs as shown in Figure 5. In
particular, our processor can boost the perform-
ance of the benchmark program compress sig-
nificantly: the IPC is from about 2.4 to about 3.1.
In other words, our processor can outperform the
conventional CMP up to 29.17%.

1
1.5

2
2.5

3
3.5

4
4.5

5

compress ijpeg mpeg eqntott

Benchmark Program
IP

C

Ours
4x4 CMP
16-issue

Figure 5. Performance comparison between our
CMP, the conventional 4x4 CMP, and the

16-issue superscalar microprocessors.

5. Concluding Remarks

The chip-multiprocessor architecture pro-
vides a promising design methodology for the
next-generation high-performance microproces-
sor by exploiting both instruction-level parallel-
ism and thread-level parallelism. However, the
conventional CMP cannot outperform the su-
perscalar when executing inte-
ger-operation-intensive applications. In this pa-
per we have introduced an improved CMP ar-
chitecture providing superior performance for
both integer and floating-point applications.

 Our CMP supports the multithreaded and
the integrated superscalar execution modes. Both
execution modes provide the issue rate of sixteen,
respectively. The multithreaded mode behaves
like a conventional CMP while the integrated
superscalar mode integrates all processing ele-
ments into a single logic superscalar. The pro-
posed CMP is initially in the integrated super-
scalar mode. Whenever a loop entry point is
reached, the processor switches to the multi-
threaded mode. The processor switches back to
the integrated superscalar mode again whenever
a loop exit point is reached.

 The hardware supporting for the multi-
threaded mode is the same as that proposed by
Krishnan and colleagues. On the other hand, the
supporting for the integrated superscalar mode is
not so apparent and it is the main concern in this
paper. We have proposed that adding the GIFDU

 Compress ijpeg mpeg eqntott

4 x 4-issue CMP 2.36 4.32 3.55 3.29

Four-issue

superscalar
2.26 2.66 2.87 2.53

Sixteen-issue

superscalar
3.07 3.26 3.63 3.17

 compress ijpeg mpeg eqntott

p value 0.06 0.5 0.57 0.65

IPCpar 3.96 5.98 4.07 3.70

- 8 -

to fetch, decode and dispatch instructions for the
integrated superscalar mode. The GIFDU sup-
plies sixteen instructions per cycle by using the
trace cache fetch mechanism. In addition, we
have adopted bank-based register files with
modified reorder buffers for localized data
communications, register renaming and precise
interrupt handling. According to the perform-
ance analysis, our CMP outperforms the super-
scalar and the conventional CMP for all the
benchmark programs regardless of the workload
type. In particular, our processor can outperform
the conventional CMP up to 29.17%.

Acknowledgements

This research was supported by the Na-
tional Science Council of the Republic of China
under the contract: NSC-90-2213-E-018-007.

References

 [1] H. Sharangpani and H. Arora, “Itanium
Processor Microarchitecture,” IEEE Micro, vol.
20, no. 5, pp. 24-43, 2000.

[2] S. D. Naffziger, G. Colon-Bonet, T.
Fischer, R. Riedlinger, T. J. Sullivan and T.
Grutkowski, “The Implementation of the Ita-
nium 2 Microprocessor,” IEEE Journal of
Solid-State Circuits, Vol. 37, no. 11, pp.
1148-1160, Nov. 2002.

[3] G. Lauterbach, D. Greenley, S. Ahmed, M.
Boffey, J. Chamdani, Si-En Chang, D. Chen, Yu
Fang, K. Holdbrook, M. Hsieh, B. Keish, R.
Melanson, C. Narasimhaiah, J. Petolino, Tung
Pham, Le Quach, Kit Tam, Duong Tong, Liuxi
Yang and Kui Yau, “UltraSPARC-III: A 3rd
Generation 64 B SPARC Microprocessor,” 2000
IEEE International Solid-State Circuits Confer-
ence, pp. 410-411, 2000.

[4] A. Jain, W. Anderson, T. Benninghoff, D.
Berucci, M. Braganza, J. Burnetie, T. Chang, J.
Eble, R. Faber, O. Gowda, J. Grodstein, G. Hess,
K J. owaleski, A. Kumar, B. Miller, R. Mueller,
P. Paul, J. Pickholtz, S. Russell, M. Shen, T.
Truex, A. Vardharajan, D. Xanthopoulos, T. Zou,
“A 1.2 GHz Alpha microprocessor with 44.8
GB/s chip pin bandwidth,” 2001 IEEE Interna-
tional Solid-State Circuits Conference, pp.
240-241, 2001.

[5] Venkata Krishnan and Josep Torrellas, “A
Chip-Multiprocessor Architecture with Specula-
tive Multithreading,” IEEE Transactions on
Computers, Vol. 48, No. 9, September, 1999, pp.
866-880.

[6] T. Ungerer, B. Robic and J. Silc., “Multi-
threaded Processors,” The Computer Journal,

Vol.45, No.3, pp. 320-348, 2002.

[7] L. Codrescu, D.S. Wills, and J. Meindl,
“Architecture of the Atlas Chip-Multiprocessor:
Dynamically Parallelizing Irregular Applica-
tions,” IEEE Transactions on Computers, Vol. 50,
No.1, pp. 67-82, January 2001.

[8] Lance Hammond, Benedict A. Hubbert,
Michael Siu, Manohar K. Prabhu, Michael Chen,
and Kunle Olukotun, “The Stanford Hydra
CMP”, IEEE Micro, Vol. 20, No. 2, pp. 71-84,
March/April 2000.

[9] Jenn-Yuan Tsai, Jian Huang, Christoffer
Amlo, David J. Lilja, and Pen-Chung Yew, “The
Superthreaded Processor Architecture,” IEEE
Transactions on Computers, Vol. 48, No. 9, pp.
881-902, September, 1999.

[10] J. Smith and S. Vajapeyam, “Trace Proc-
essors: Moving to Fourth Generation Microar-
chitectures,” Computer, vol. 30, no. 9, pp. 68-74,
Sept. 1997.

[11] L. Hammond, B. Nayfeh and K. Olukotun,
“A Single-Chip Multiprocessor,” Computer, vol.
30, no. 9, pp. 79-85, Sept. 1997.

[12] J. L. Hennessy and D. A. Patterson, Com-
puter Architecture: A Quantitative Approach,
Third Edition, Morgan Kaufmann Publishers,
2003.

[13] Sang-Jeong Lee, Pen-Chung Yew, “On
table bandwidth and its update delay for value
prediction on wide-issue ILP processors,” IEEE
Transactions on Computers, Vol.50 no.8, pp. 847
-852, Aug 2001.

[14] Burtscher, M., Zorn, B.G., “Hybrid
load-value predictors,” IEEE Transactions on
Computers, Vol.51, no.7, pp. 759 -774, Jul 2001.

[15] L. Hammond, M. Willey, and K. Olukotun,
“Data Speculation Support for a Chip
Multiprocessor,” Proc. Eight Int’l Conf.
Architecture Support for Programming
Languages and Operating Systems (ASPLOS),
Oct. 1998. [16] K. Olukotun, L. Hammond and Mark
Willey, “Improving the Performance of Specula-
tively Parallel Applications on the Hydra CMP,”
Proc. Int’l Conf. Supercomputing (ICS), 1999.

[17] E. Rotenberg, S. Bennett, J. E.
Smith, ”Trace Cache: A Low Latency Approach
to High Bandwidth Instruction Fetching,” MI-
CRO-29, pp.24-34, 1996.

[18] Nam, I.-C. Park, and C.-M. Kyung, “Fast
Precise Interrupt Handling without Associative
Searching in Multiple Out-Of-Order Issue Proc-
essors,” IEICE Trans. Inf. & Syst., Vol. E82-D,
No. 3 March 1999, pp. 645-6.

