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Abstract 

Previous research show that, 
chip-multiprocessors have better speedup for 
floating-point-operation-intensive benchmark 
programs but worse for inte-
ger-operation-intensive application programs 
when compared with superscalar architectures. 
In this paper, we propose a novel microprocessor, 
combining the advantages of superscalar and 
chip-multiprocessor architectures, to provide the 
best performance regardless of workload types. 
Our architecture has two execution modes: one 
for multithreads and one for single thread. The 
new CPU can issue and execute sixteen instruc-
tions during each cycle regardless of the execu-
tion mode. In the first mode, the system behaves 
like a conventional chip-multiprocessor. On the 
other hand, we integrated separate four process-
ing elements into a single logical superscalar 
processor in the second mode. When executing a 
program, the architecture keeps switching be-
tween two execution modes according to the 
feature of the subsequent codes to be run. 

Keywords: Chip-Multiprocessor, Superscalar 
Processor, Multithreaded Architecture, Specula-
tive Execution, Instruction-Level Parallelism. 

摘要 

單晶片多處理機雖然對大多數的測試程

式都能提供相當不錯的執行效能，但是對於部

分的整數型程式則無法提供如超純量架構一

樣好的效能。本論文提出一種整合以上兩種架

構之優點的新架構，不論是何種型態的測試程

式均能有較好之效能。 

在此新的架構中，每個處理單元均提供兩

種執行模式：一種適合多引線平行處理，一種

則適合單引線處理。在單引線模式下，我們整

合四個處理單元為一個大的超純量架構。程式

執行時會依其程式碼的特性，在兩種模式間切

換。此架構不論在哪種執行模式下，最多均可

於每個週期發行或執行 16 個指令。 

關鍵詞：單晶片多處理機、超純量、多引線、

冒險性執行、指令間平行度。 

1. Introduction 

Superscalar architectures, which are capa-
ble of issuing multiple instructions at the same 
cycle, have become the norm for today’s 
high-performance microprocessors [1-4]. Al-
though many researches still focus on boosting 
the speedup of superscalar architecture, various 
innovative microprocessor architectures have 
been proposed to exploit thread-level parallelism 
[6]. One interesting design is 
chip-multiprocessor (CMP) architecture that 
runs multiple threads on different processing 
elements at the same chip [5, 7-10].  

 Chip-multiprocessors have the following 
three advantages. (1) For the same chip size, 
chip-multiprocessors can provide higher issue 
rate compared with superscalar processors. Ac-
cording to previous research results, a 
chip-multiprocessor with eight 2-issue supersca-
lar processing elements occupies the same die 
area as a 12-issue superscalar processor [11]. (2) 
Hardware design is simple because each proc-
essing element needs lower issue rate. Conse-
quently, system clock can be faster and the dura-
tion of design validation phase can be shortened. 
(3) Communication in the processing elements’ 
localized interconnect is faster because of de-
centralized network implementation.  

There are two approaches to execute an ap-
plication in parallel [12]. First, the programmer 
writes a parallel program with explicit instruc-
tions telling hardware when and how to execute 
the program in parallel. Second, the programmer 
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writes a sequential program and the compiler 
transforms it to a parallel one. The first approach 
is apparently difficult for most programmers 
while the second approach is simpler and it al-
lows existing legacy codes to be able to be exe-
cuted in the CMP architecture. Therefore, many 
chip-multiprocessors adopt the second approach 
for higher acceptability. 

 To run a sequential code in parallel in a 
CMP, loop iterations are spawned to multiple 
processing elements in a round-robin fashion. A 
processing element executes an iteration at a 
time. Because there are no explicit synchroniza-
tion codes in the application code, speculative 
executions have been proposed to enforce de-
pendences between iterations. The speculative 
execution approach assumes that data values are 
available when they are accessed by any itera-
tion. During the course of execution, the hard-
ware monitors whether any violation of data 
dependence occurs because a speculative itera-
tion prematurely accesses a memory location. 
This will result in the squashing and then the 
restarting of the violating iteration along with its 
successors. Various schemes, including value 
predictions and data predictions, have been pro-
posed to decrease the number of the data de-
pendence violations [13-16]. 

Many research results have showed that the 
CMP architecture can provide superior system 
performance [5, 7-10]. However, it cannot com-
pete against the superscalar processor with the 
same issue rate when running inte-
ger-operation-intensive applications [5]. This is 
because one single processing element issues a 
larger fraction of all the instructions in the inte-
ger application, with all other processing ele-
ments usually having no contribution on system 
performance during the course of execution. 

 A general-purpose microprocessor has to 
execute both integer applications and float-
ing-point applications. It should provide excel-
lent performances regardless of the workload 
type. Unfortunately, the CMP cannot meet the 
requirement. Therefore, we will propose an im-
proved CMP to provide excellent performances 
for both types of workloads in this paper. The 
new processor supports two execution modes. 
One is the multithreaded mode that behaves like 
a conventional CMP. The other is the integrated 
superscalar mode that integrates all processing 
elements to behave like a conventional super-
scalar. When an application is executed, our 
CMP switches between two execution modes 
whenever reaching a loop entry point or a loop 
exit point. Because the improved CMP takes 
both the advantages of the conventional CMP 
and the conventional superscalar, it has the best 

system performance for both integer and float-
ing-point applications.  

The rest of the paper is organized as follows. 
Section 2 introduces the base CMP architecture 
and Section 3 describes how to implement the 
proposed microprocessor. Section 4 analyzes the 
performance gain and Section 5 concludes the 
paper. 

2. CMP architecture supporting two 
execution modes 

2.1 Conventional CMP microarchitecture 

The chip-multiprocessor architecture we 
proposed is extended from the work of Krishnan 
and colleagues [5]. Their processor includes four 
processing elements and each of them is 4-issue 
superscalar architecture. Consequently, this 
processor is capable of issuing up to 16 instruc-
tions during every single cycle. They perform a 
compilation step on the sequential executable 
file without recompiling the program. As a result, 
legacy codes can be operated. In addition, they 
developed a binary annotator that identifies units 
of work for each thread and the register-level 
dependences between theses threads. The entry 
and exit points of each loop are marked. During 
the course of execution, when a loop entry point 
is reached, four threads are spawned to the four 
processing elements respectively to begin execu-
tion of successive iterations speculatively. Each 
processing element uses a special register to 
identify it is nonspeculative or speculative. At 
any time, only the processing element executing 
the first unfinished iteration is nonspeculative. 
When the first unfinished iteration is completed, 
the immediate successor processing element 
changes its status from speculative to nonspecu-
lative. To enforce register dependences between 
threads and enable consumer threads to acquire 
correct values from the producer thread, a spe-
cial hardware called synchronizing scoreboard 
has been designed. In addition, a modified 
cache-coherence protocol is proposed to enforce 
memory dependences. These two kinds of hard-
ware also detect data dependence violations to 
squash and restart the execution of the corre-
sponding thread. The fewer the dependence vio-
lations occur, the higher the system performance.  

Although this processor outperforms su-
perscalar processors for float-
ing-point-operation-intensive benchmark pro-
grams, it cannot provide good system perform-
ance for all integer-operation-intensive pro-
grams. 

2.2. Combining both advantages of CMPs and 
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superscalars 

Since the CMP is suitable for floating-point 
applications and the superscalar is suitable for 
integer applications, our proposed CMP is de-
signed to possess both the advantages of these 
two kinds of processors.  

Our architecture provides two execution 
modes in a conventional CMP system: the 
speculative multithreading and the integrated 
superscalar modes. The proposed CMP acts like 
a conventional CMP in the speculative multi-
threading mode. On the other hand, it acts like a 
conventional superscalar in the integrated su-
perscalar mode by integrating all processing 
elements (e.g., four processing elements) to be a 
conventional superscalar processor. In short, we 
will enhance the CMP to aggregate multiple 
processing elements (e.g. 4-issue each) into a 
wide superscalar (e.g., 16-issue aggregate).  

The speculative multithreading mode is al-
ready available in the conventional CMP archi-
tecture, however, how to aggregate four separate 
processing elements into a wide-superscalar 
processor is a big challenge because each proc-
essing element in the CMP has its own program 
counter, fetch unit, decoding circuit, instruction 
window, functional units, reorder buffer, etc. 
There are two alternative ways to integrate a 
logical superscalar processor. 

Figure 1. Two different approaches to integrate a 
logical superscalar processor. 

The first approach is to let processing ele-
ments take turns to execute the codes sequen-
tially as shown in Figure 1-(a). In other words, 
the first processing element will first execute the 
program until its instruction window or reorder 
buffer (RB) is full. Then, the second processing 
element will fetch the instructions immediately 
following the last instruction that the first proc-
essing element has fetched. To sum up, these 
four processing elements form a circular list. 

When an instruction window or reorder buffer is 
full, the following processing element continues 
to execute the subsequent codes. 

The disadvantage of the first approach is 
that the maximum parallelism degree of the mi-
croprocessor is still four though these four proc-
essing elements may execute instructions con-
currently. It is because the four processing ele-
ments are all 4-issue superscalar architecture, 
they take turns to fetch instructions to execute in 
different cycles. Consequently, four instructions 
are fetched at every single cycle in the whole 
system. The slight advantage of this approach is 
that the numbers of instruction window entries 
and functional units are logically increased. 

The second approach is to let all the four 
processing elements fetch, issue and execute in 
every cycle as shown in Figure 1-(b). That is, 
four 4-issue superscalar processing elements will 
work together to make up a single logical super-
scalar processor with maximal parallelism de-
gree of sixteen. To implement the approach, 
several requirements must be satisfied. First, we 
have to supply four instructions for each proc-
essing elements per cycle where these instruc-
tions are in the same dynamic trace. Second, a 
low-cost data communication approach is crucial 
for the processor. Third, data dependences be-
tween different processing elements must be 
enforced. Finally, precise interrupt across four 
processing elements have to be handled correctly. 
We will describe how to combine separate proc-
essing elements for each major stage of super-
scalar processing in the next section. 

3. Implementing the integrated su-
perscalar mode 

3.1 Instruction fetch 

We have to supply four instructions for 
each of the four processing elements at every 
cycle and the 16 instructions must be predicted 
to execute sequentially. The problem is that 
these instructions may be noncontiguous and 
they are across multiple basic blocks. Fortu-
nately, the trace cache fetch mechanism provides 
a good solution [17]. It consists of a trace cache 
and a core fetch unit. The core fetch unit can 
fetch instructions up to the first predicted taken 
branch in each cycle by using the combination of 
an accurate multiple branch predictor, an inter-
leaved branch target buffer, a return address 
stack, and a two-way interleaved instruction 
cache. The core fetch unit can only fetch con-
tiguous sequences of instructions, i.e., it cannot 
fetch past a taken branch in the same cycle that 
the branch is fetched. The trace cache provides 
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this additional capability. It is a special instruc-
tion cache where each line stores a trace of the 
dynamic instruction stream. A trace is a se-
quence of multiple instructions and several basic 
blocks starting at any point in the dynamic in-
struction stream. 

We apply the trace cache fetch mechanism 
in our architecture for the integrated superscalar 
execution mode. The fetch mechanism can fetch 
up to 16 instructions in a dynamic instruction 
stream per cycle. The fetched 16 instructions are 
divided into four ordered partitions where each 
partition is comprised of four contiguous in-
structions. The four instruction partitions will be 
dispatched to the four processing elements in 
order, respectively. 

3.2 Data communications 

Because sixteen contiguous instructions in a 
dynamic instruction stream are dispatched to 
four processing elements per cycle, data com-
munications between different processing ele-
ments are frequent because of data dependences. 
In a conventional CMP, each processing element 
has its own local register file. To support the 
integrated superscalar mode, the four local reg-
ister files must have the same data values at any 
time. In addition, we will use the bank-based 
register file proposed by NAN and colleagues 
[18] to replace the conventional register file in 
our chip-multiprocessor architecture.  

The configuration of a bank-based register 
file is similar to that of a general register file, 
except that it is partitioned into three banks as 
shown in Figure 2. Every bank has the same 
number of register entries and the same register 
identifiers. That is, for each logical register iden-
tifier there is one corresponding register in each 
bank. To identify the bank of each register to be 
allocated for renaming, an in-order bank index 
table (IBIT) and a recently-updated bank index 
table (RBIT) are maintained. The IBIT is con-
sistent with the sequential architectural state 
defined by program sequence, which is updated 
when an instruction completes in order. However, 
the superscalar processor allows out-of-order 
completion. To enforce in-order completion, a 
reorder buffer must be included but the field of 
register result is not required because register 
results are written directly to the bank-based 
register file. On the other hand, an entry of the 
RBIT is incremented by one whenever an in-
struction is issued. If an interrupt occurs, the 
RBIT contents will be replaced with the IBIT 
contents.  

We use Figure 2 to illustrate functions of 
the bank-based register file. According to the 
IBIT, the sequential states of logical registers R0, 
R1 and RN-1 are stores in the Bank 0, respectively, 
while R2 in the Bank 1. On the other hand, ac-
cording to the RBIT, logical registers R0, R1, R2 
or RN-1 have been currently renamed to physical 
registers R0 in the Bank 1, R1 in the Bank 0, R2 
in the Bank 2 or RN-1 in the Bank 0. For instance, 
if a subsequent instruction requires to read logi-
cal register R1, the content of the R0 in the bank 
1 will be supplied. In addition, when an instruc-
tion with destination register R1 is issued, the 
entry corresponding R1 in the RBIT is incre-
mented by one. That is, the RBIT value for R1 
will be changed from 0 to 1. It means that the 
new result of R1 will write to the next register 
bank for solving output dependence. On the 
other hand, the entry corresponding to R1 in the 
IBIT will not incremented by one until the new 
result of R1 is produced and the corresponding 
entry in the reorder buffer is at the head. In the 
following, we will describe how to use the 
bank-based register file and the simplified reor-
der buffer to enforce data dependences. 

Figure 2. A bank-based register file 

3.3 How to enforce data dependences 

When an instruction is issued, the RBIT en-
try corresponding to the destination register is 
incremented by one. Moreover, a reorder buffer 
entry is allocated and the tag of that entry be-
comes the new name of the destination register 
until the result has produced. Meanwhile, the tag 
will be recorded in the register mapping table to 
indicate that the result is not available now. If 
the source operands of the subsequent instruc-
tions depend on the result and the result is not 
available when they are issued, the tag will be 
recorded in the instruction window. When the 
result comes out, it will directly write to the reg-
ister file as well as the source operands with the 
same tag in the instruction window.    

………….  RN-1 R2 R1 R0 Bank 0 
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However, the above register renaming 
scheme cannot be directly applied to the inte-
grated superscalar execution mode in our archi-
tecture. The first problem is how to maintain the 
program sequence by four independent reorder 
buffers. The second problem is how to perform 
register renaming. We explain how to handle the 
latter problem at first. Because we want to use 
the tag of reorder buffer to rename registers, the 
tag of each entry must be unique in the system. 
We add two bits in the most significant bits of 
the conventional reorder buffer tag. The addi-
tional bits are set to the identifier of the process-
ing element the reorder buffer resides. Further-
more, a register mapping is maintained. In the 
following we will illustrate how to maintain 
program sequence. 

3.4 Maintenance of program sequence 

Four reorder buffers are linked and form a 
single logical reorder buffer as shown in Figure 
3, where RBi indicates the reorder buffer in the 
processing element i. Because at most four in-
structions are allocated to each reorder buffer per 
cycle and we aim to simplify the hardware de-
sign, the number of the reorder buffer entries in a 
processing element is designed to be multiple of 
four. We here define a reorder buffer slice as 
every four contiguous reorder buffer entries, 
beginning from the first physical entry. For ex-
ample, I1, I2, I3 and I4 form a reorder buffer slice. 
In addition, the four reorder buffer slices with 
the same physical order are together called a 
reorder buffer block. For instance, the sixteen 
instructions, from I17 to I32, are in the same reor-
der buffer block. The reorder buffer slices be-
longing to the same reorder buffer block are or-
dered according to their own processing ele-
ments’ identifiers. We define that the sixteen 
reorder buffer entries in the same reorder buffer 
block are ordered from the first entry in the first 
processing element to the fourth entry in the 
fourth processing element. In every cycle, six-
teen fetched instructions are allocated sequen-
tially to the reorder buffer entries in the same 
reorder buffer block. If less than sixteen instruc-
tions are fetched in a cycle, no-op instructions 
are automatically filled by hardware.  

On the other hand, to enforce in-order com-
pletion, we add directed ordering links between 
every two consecutive reorder buffer slices as 
shown in Figure 3, resulting a circular list that 
keeps the feature of the conventional reorder 
buffer. Initially, all ordering links are OFF ex-
cept that the one connecting to the first instruc-
tion in all four reorder buffers is ON. As Figure 
3 shows, only the ordering link connecting to the 
instruction I1 is ON, others are all OFF. An or-

dering link will be turned ON only when the 
head pointer points to the fourth entry in the 
corresponding reorder buffer slice and the com-
pletion field of the pointed entry has been set. 
The ordering link will be turned OFF again 
when the fourth entry in the reorder buffer slice 
is allocated for another new instruction. Order-
ing links together with the head pointer indicate 
whether the instruction in the first entry of a re-
order buffer slice can commit or not. That is, if 
an instruction is not in the first entry of a reorder 
buffer slice, it cannot commit. Otherwise, the 
instruction can commit only when the corre-
sponding ordering link is ON and the local head 
pointer points to it.  

Figure 3. An integrated reorder buffer 

3.5. Overview of our CMP architecture 

Our CMP microprocessor as shown in Fig-
ure 4 is basically a conventional 
chip-multiprocessor where there are four 
4-issue-superscalar processing elements. It has 
two execution modes. The multithreaded execu-
tion mode behaves like the CMP proposed by 
the Krishnan and colleagues, including all their 
architectural features: register-level communica-
tion with the synchronizing scoreboard, mem-
ory-level dependences handling with the mem-
ory disambiguation table, etc. However, 
bank-based register files are adopted instead. On 
the other hand, all the four processing elements 
are integrated to be a logical superscalar proces-
sor when in the integrated superscalar mode. The 
processor is initially in the integrated superscalar 
execution mode. When loop entry points are 
reached, the processor switches to the multi-
threaded mode. When exit points of loops are 
reached, the system switches back to the inte-
grated superscalar mode again. 

We have two kinds of instruction fetch and 
dispatch units and they are both responsible for 
fetching, decoding, and dispatching instructions. 
There is only one global instruction fetch and 
dispatch unit (GIFDU) in the processor. It adopts 
the trace cache fetch mechanism to fetch up to 
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16 instructions per cycle because it is for the 
integrated superscalar mode. On the other hand, 
there is one local instruction fetch and dispatch 
unit (LIFDU) for each processing element. 
LIFDUs are for the multithreaded mode and 
each of them can fetch up to four instructions per 
cycle. The GIFDU and LIFDUs are enabled ex-
clusively according to the current execution 
mode.  

Figure 4. Our chip-multiprocessor with two 
execution modes 

The GIFDU is also responsible for register 
renaming in the integrated superscalar mode. It 
contains a global head pointer, a global tail 
pointer, a register mapping table, an IBIT and an 
RBIT. The global head pointer and the global tail 
pointer together indicate if there are enough re-
order buffer entries for further instruction fetch. 
Both of these two pointers maintain the status of 
the reorder buffer in the first processing element. 
It is because a reorder buffer block will be allo-
cated in every cycle and the first fetched instruc-
tions must be allocated in the first processing 
element in our microprocessor. In addition, the 
global tail pointer is used to associate each 
fetched instruction with a unique reorder buffer 
tag. Finally, the IBIT is for precise interrupt 
handling and the RBIT is used to indicate which 
register bank will be accessed for each logical 
register when decoding an instruction. The reg-
ister mapping table maintains the relationship 
between logical registers and physical registers. 

In the integrated superscalar mode, the 
RBIT in each processing element is updated ac-
cording to the contents of the RBIT from the 
GIFDU. Meanwhile, every consecutive four in-
structions are dispatched to different processing 
elements and local reorder buffer and instruction 
window entries are allocated. Instruction oper-
ands are read from the local register file if they 
are available. When the required operands are 
available, instructions are forward to functional 
units. After being produced by functional units, 
results together with its destination register tag 
are broadcast to all the instruction windows, 
reorder buffers, and register files. Pending in-

structions read the newly available operand val-
ues to release data dependences. Four 
bank-based register files are keep consistent 
during the integrated superscalar mode. 

When switching to the multithreaded exe-
cution mode, the GIFDU is disabled and all 
LIFDUs are enabled. The LIFDU is responsible 
for instruction fetching, decoding, and dispatch-
ing. In addition, bank-based register files are 
operated independently and results from func-
tional units do not broadcast to other processing 
element. All the specific CMP architectural fea-
tures are enabled, including register-level data 
communication, detection of dependence viola-
tions. Consequently, four processing elements 
behave like a conventional CMP.  

On the other hand, when switching back to 
the integrated superscalar mode, the GIFDU is 
enabled and all LIFDU are disabled. Four 
bank-based register files are made consistent 
with the contents of the register file in the non-
speculative processing element. The sup-
porting hardware for register renaming in the 
GIFDU is reset. Results are broadcasted across 
processing elements. 

4. Performance Analysis 

We construct the following evaluation 
model to analyze the performance of our micro-
processor. Assume that the ratio of execution 
time in parallel mode is equal to p. In addition, 
assume that the instructions per cycle (IPC) in 
the sequential mode equals IPCseq and the IPC in 
the parallel mode equals IPCpar. Consequently, 
the effective IPC of a system, IPCeffect, can be 
derived by the following equation:  

(I)  IPCeffect = (1 - p ) * IPCseq + p * IPCpar  

We will analyze our system performance 
based on the simulation data reported by Krish-
nan et al. since our microprocessor is extended 
from their architecture. The IPC is shown in Ta-
ble 1, where the 4x4-issue indicates a 
chip-multiprocessor with four four-issue super-
scalar processing elements, the n-issue repre-
sents an n-issue superscalar microprocessor. 
Therefore, for a chip-multiprocessor system, the 
IPCeffect equals the value of the 4x4-issue and the 
IPCseq equals the 4-issue value in Table 1. Next, 
we have to derive the p value indirectly from the 
figure of the fraction of instructions issued by 
each of the four processors in the CMP because 
it is not illustrated in [5]. In the following, we 
describe how to obtain the p value. We use Fi to 
denote the fraction of instruction issued by the 
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processing element i. According to the data re-
ported in [5], the F1 value is the largest and the 
values of F2, F3 and F4 are almost the same. 
Moreover, to estimate the upper bound of per-
formance improvements by our processor, we 
want the value of p to be larger as much as pos-
sible because our architecture can only improve 
the performance of the sequential part of exe-
cuting application programs. Consequently, we 
assume that four processing elements are all 
busy in the parallel mode while only the proc-
essing element 1 is executing instructions when 
in the sequential mode. Let Fthree be the average 
of F2, F3 and F4. Then, we can have the value of 
p from the following equation. 

Fthree 
(II)      p = ——————— 

                  F1 

The p value derived from the above equa-
tion is listed in the first row of Table 2. 

 
TABLE 1 

The IPC values for SPEC95 applications under 
different processors. 

TABLE 2 
The p value and the IPCpar for the SPEC95 ap-

plications 

Now that we have the data of the IPCeffect 
and the IPCseq in Table 1 and the p value in Table 
2, the IPCpar can be acquired according to the 
equation (I) and illustrate it in the second row of 
the Table 2. 

Now we compare our processor under dif-
ferent overhead ratios with the 
chip-multiprocessor and the superscalar archi-
tectures as shown in Figure 5, where Ours stands 
for our microprocessor. We set the IPCseq and the 

IPCpar to be the IPCs of the 16-issue superscalar 
architecture and the 4x4 CMP, respectively, as 
shown in Table 1 when calculating the IPCeffect 
of the Ours architecture. Our microprocessor 
provides the best performance for almost all the 
benchmark programs as shown in Figure 5. In 
particular, our processor can boost the perform-
ance of the benchmark program compress sig-
nificantly: the IPC is from about 2.4 to about 3.1. 
In other words, our processor can outperform the 
conventional CMP up to 29.17%. 

 

1
1.5

2
2.5

3
3.5

4
4.5

5

compress ijpeg mpeg eqntott

Benchmark Program
IP

C

Ours
4x4 CMP
16-issue

 

Figure 5. Performance comparison between our 
CMP, the conventional 4x4 CMP, and the 

16-issue superscalar microprocessors. 

5. Concluding Remarks 

The chip-multiprocessor architecture pro-
vides a promising design methodology for the 
next-generation high-performance microproces-
sor by exploiting both instruction-level parallel-
ism and thread-level parallelism. However, the 
conventional CMP cannot outperform the su-
perscalar when executing inte-
ger-operation-intensive applications. In this pa-
per we have introduced an improved CMP ar-
chitecture providing superior performance for 
both integer and floating-point applications. 

 Our CMP supports the multithreaded and 
the integrated superscalar execution modes. Both 
execution modes provide the issue rate of sixteen, 
respectively. The multithreaded mode behaves 
like a conventional CMP while the integrated 
superscalar mode integrates all processing ele-
ments into a single logic superscalar. The pro-
posed CMP is initially in the integrated super-
scalar mode. Whenever a loop entry point is 
reached, the processor switches to the multi-
threaded mode. The processor switches back to 
the integrated superscalar mode again whenever 
a loop exit point is reached. 

 The hardware supporting for the multi-
threaded mode is the same as that proposed by 
Krishnan and colleagues. On the other hand, the 
supporting for the integrated superscalar mode is 
not so apparent and it is the main concern in this 
paper. We have proposed that adding the GIFDU 

 Compress ijpeg mpeg eqntott 

4 x 4-issue CMP 2.36 4.32 3.55 3.29 

Four-issue  

superscalar 
2.26 2.66 2.87 2.53 

Sixteen-issue 

superscalar 
3.07 3.26 3.63 3.17 

 compress ijpeg mpeg eqntott 

p value 0.06 0.5 0.57 0.65 

IPCpar 3.96 5.98 4.07 3.70 
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to fetch, decode and dispatch instructions for the 
integrated superscalar mode. The GIFDU sup-
plies sixteen instructions per cycle by using the 
trace cache fetch mechanism. In addition, we 
have adopted bank-based register files with 
modified reorder buffers for localized data 
communications, register renaming and precise 
interrupt handling. According to the perform-
ance analysis, our CMP outperforms the super-
scalar and the conventional CMP for all the 
benchmark programs regardless of the workload 
type. In particular, our processor can outperform 
the conventional CMP up to 29.17%. 
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