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Abstract 
Document clustering is the process of 

applying clustering technique for document 
management [4][5]. Similar documents are 
grouped together so that both managing and 
searching the documents is efficient. However, 
since traditional document clustering algorithms 
do not take the structure information of 
documents into consideration, the clustering 
results can not reflect the characteristics of the 
documents fully. As the result, we represent each 
document as a tree structure and propose a 
level-wise clustering algorithm to solve this 
issue. The clustering process applies the level 
property of the tree and run level by level by the 
concept generalization operation. In order to 
store the clustering results and search interesting 
clusters efficiently, a multistage graph called 
Level-wise Document Clustering Graph 
(LDC-Graph) is proposed. Based on LDC-Graph, 
three search strategies are provided to meet the 
different requirements for uses. Finally, the 
experimental results show that the similarity 
search is efficient and the accuracy of the search 
is acceptable 
Keywords: document clustering, structured 
document, clustering, tree structure 
 

1. Introduction 
Since more and more digital documents 

interchange on Internet, how to manage these 
documents becomes a very important issue. In 
recent years, many document clustering methods 
have been thus proposed to manage massive 
documents [9][14][18]. In general, these 
algorithms only represent each document by a 
flat feature vector consisting of significant 
keywords, and do not take the inherent structure 
behind the document into consideration. This 
way seems rather simple and efficient, but may 
cause the following two drawbacks: 
(1). Inaccuracy: Traditional document clustering 

algorithms use a finite set of features to 

represent documents. However, it is difficult 
to select representative features [8]. 

(2). Inflexibility: When users are only interested 
in parts of a document, traditional document 
clustering algorithms can not return these 
ones, since they treat whole document as a 
unit. 

 
In order to overcome the drawbacks, in this 

paper we will propose a document clustering 
algorithm by taking the structure information of 
documents into consideration. With the structure 
information, each document can be decomposed 
of several logical components and represented as 
a tree-like structure, where the upper component 
represents a higher concept that covering all the 
concepts beneath it. Figure 1 exemplifies a 
document made up of several components, such 
as title, abstract, chapters, sections, and 
paragraphs. 
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Figure 1: An example of structured document 

 
We first represent each document as a tree 

structure of feature vector in XML (eXtend 
Markup Language) [22] instead of a flat feature 
vector. Then a novel algorithm called level-wise 
clustering algorithm is proposed to cluster all 
nodes in the document trees by a level-wise 
approach. The key idea is to subdivide the 
document trees into several clustering 
populations according to the number of levels in 
the tree structure. The clustering process will 
start from the bottom document level to the top 
document level with the same similarity measure. 
Moreover, for concept generalization, the 
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clustering information of lower document level 
will simultaneously reflect to the higher 
document level. To store the clustering results 
and search interesting clusters efficiently, a 
multistage graph called Level-wise Document 
Clustering Graph (LDC-Graph) is proposed. 
After clustering, three search strategies based on 
the multistage graph are proposed so that user 
can get not only general search results but also 
specific search results. 
 

2. Background and Related Work 
2.1 Document Clustering 

Document clustering manages massive 
documents by grouping similar documents into 
the same cluster. It has been extensively used for 
efficiently finding the nearest neighbors of 
documents and browsing a collection of 
documents in many areas, such as text mining, 
information retrieval, etc. [2][13][10][15]. The 
most common steps of document clustering are 
shown in Figure 2. 
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Figure 2: The flowchart of document clustering 

 
In the encoding phase, the common 

approach is to represent each document by a 
finite set of keywords [12][16]. The selected 
keywords are treated as descriptive features and 
represented by a vector. This way is so-called 
vector space model method [3], and the popular 
weighting scheme for the vectors is based on the 
term frequency (TF) or the term frequency 
combined with the inverse document frequency 
(TF-IDF) [1][4]. A document can be thus 
represented as )*,...,*,*( 2211 nnidf idftfidftfidftfd = , 
where 

itf  is the frequency of the i-th term in the 
document, and 

iidf  is the inverse document 
frequency of the i-th term in the document and it 
can be calculated by )log( dfn where n is the 
number of documents and df is the number of 
documents that contains the term. 

In the clustering phase, similar documents 
are then grouped together according to a 
similarity function and the cosine function is the 
most commonly used in the vector space model. 

It can by calculated by the following formula: 

21

21
21 ),cosine(

dd
ddddSimilarity •
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where d1 and d2 are the vectors of two 
documents, •  is the vector dot product, and 

1d  and 
2d  are the lengths of the vector d1 and 

d2, respectively. If the cosine value is larger than 
the user-specified similarity threshold, two 
documents are considered as similar to each 
other. 

In the labeling phase, the generated clusters 
are labeled according to a criterion function. The 
common labeling method is to treat the most 
frequent keywords or the cluster centers in the 
cluster as the label. The cluster center can be 
computed by averaging all data vectors in the 
cluster. 

In the searching phase, according to a 
user-specified vector and a similarity threshold 
in the query, similarity search will find the 
interesting clusters by a similarity function. 
Moreover, the clustering performance is usually 
evaluated by comparing the searching results 
with the correct answers. 
 
2.2 BIRCH 

BIRCH (Balance Iterative Reducing and 
Clustering using Hierarchies) is a hierarchical 
clustering algorithm introduced in [20]. The 
authors employed the concepts of Clustering 
Feature and CF tree to implement the clustering. 
Clustering feature in BIRCH is a triple 
summarizing the information about a cluster. CF 
tree is a balance tree with two parameters, 
branching factor B and threshold T, to store the 
clustering features. Each non-leaf node in CF 
tree will contain at most B entries recording the 
cluster feature of subclusters and pointing to 
these subclusters. When new data objects are 
inserted, the closest cluster is searched from the 
root of CF tree descending to the leaf nodes by 
the similarity function and threshold T. 
 

3. Level-wise Clustering Algorithm 
In order to take structure information of 

documents into consideration, each document 
can be decomposed of several logical 
components and represented by a depth-fixed 
tree structure called a document tree according 
to a prior-known document structure. Based on 
the representation, we then propose a novel 
algorithm called level-wise clustering algorithm 
to cluster the nodes in the document trees by a 
level-wise approach. The key idea is to 
subdivide the document trees into several 
clustering populations according to the number 
of levels in the tree structure. The clustering 
process will start from the bottom document 
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level to the top document level with the same 
similarity measure. Moreover, for concept 
generalization, the clustering information of 
lower document level will simultaneously reflect 
to the higher document level by roll-up 
operation. After level-wise clustering, each level 
will have its own clusters and the results will be 
stored in a Level-wise Document Clustering 
Graph (LDC-Graph). For detail, we will follow 
the sequential steps, document encoding phase, 
clustering phase and concept generalization 
phase, to describe the proposed level-wise 
clustering algorithm. 
 

Algorithm 1: Level-wise Clustering 
Algorithm 

Denotation: 
D: is the depth of the document tree. 
L0~LD-1: denote the document levels of document tree descending 
from the top level of document tree. 
S0~SD-1: denote the stages of LDC-Graph 
Input: N document trees with the same depth D, similarity 
threshold T0~TD-1 for clustering the document nodes in the 
document level L0~LD-1 respectively. 
Output: LDC-Graph which holds the clustering results of every 
document level. 
Step 1: Group the document nodes in the document trees with the 

same document levels. 
Step 2: For i=LD-1down to L0 do 

Step 2.1: Run single-level clustering algorithm for 
document nodes in document level i with the 
threshold Ti. 

Step 2.2: Store the clustering result in the stage Si of 
LDC-Graph. 

Step 2.3: If i<>L0 then 
          Run roll-up operation to set the value of 

document nodes in the document level Li-1 

 
Algorithm 2: Single-level Clustering 

Algorithm 
Input: N document nodes in the same document level, similarity 
threshold T for clustering. 
Output: The set of LDC-Nodes for representing the clusters of N 
document nodes. 
Step 1: Extract a document node from N document nodes and 
place it into a cluster of its own. The cluster is represented by the 
LDC-Node. 
Step 2: For each document node, find the most similar cluster by 

the similarity measure. 
Step 3: If the similarity measure> T then 

Place the document node into the LDC-Node of 
most similar cluster and the LDC-Node is updated.

      Else 
        Place the document node into a LDC-Node of its own. 
Step 4: Return the set of the LDC-Nodes. 
 

 
3.1 Document Encoding Phase: Document 

Tree and Similarity Measure 
All documents are represented as document 

trees for document representation. A document 
tree is a tree structure where the depth of the tree 
is the same. Each node in the document tree is 
called document node which contains a vector 
consisting of the features of its corresponding 
component in the document. The level where a 

document node belongs is called document level. 
The document levels are labeled as L0, L1, …, 
LD-1 from the top level to bottom level, where D 
is the depth of a tree and the node in Li-1 is the 
parent node of Li. Notice that in a document tree 
only the value of vectors of leaf nodes need to be 
assigned values by feature extracting since the 
values of the vectors in the internal nodes can be 
generated from the sub-tree it holds. The detail 
will be described in the concept generalization 
phase. 
Example 1: Given a book shown in the left part 
of Figure 3, we take TF-IDF as weighting 
schema for feature extracting. The corresponding 
document tree is shown in the right part of 
Figure 3. 
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Figure 3: An example of a document tree 
  

For clustering purpose, the cosine function, 
the most common similarity measure for 
document clustering [14][19], can be used to 
measure the similarity between two document 
nodes is defined as follow: 

BA

BA
BA VV

VVVVSimilarity •
== ),cosine( , 

where VA and VB are the vectors of document 
nodes A and B, respectively. The larger the value 
is the more similar two vectors are. 
 
3.2 Clustering Phase: Level-wise Document 

Clustering Graph (LDC-Graph) 
The clustering process will start from the 

bottom document level to the top document level 
with the same similarity measure. After 
level-wise clustering, each level will have its 
own clusters and the results will be stored in a 
Level-wise Document Clustering Graph 
(LDC-Graph). 
Definition 1: Level-wise Document Clustering 
Graph (LDC-Graph) 

LDC-Graph is a multistage graph 
comprising of several stages. The vertex 
represents a cluster, denoted as an LDC-Node = 
(CF, DDL), where CF (Cluster Feature) is used 
to store the summarized information of a cluster 
and DDL (Drill-Down List) is a list containing 
several entries. Each of which is represented as 
the form (CFi, Pointeri), where Pointeri is the 
i-th pointer connecting to the i-th related 
LDC-Node and CFi is the CF of the subcluster 
connected by this pointer.   
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Definition 2: Cluster Feature (CF) 
Cluster Feature (CF) of a cluster is defined 

as a triple: CF = (N, VS , CS), where N is the 
number of nodes in the cluster, VS  is the sum 
of feature vectors for the N nodes, i.e. ∑=

N

i iV
1

v  , 

and CS is the cluster center or the average of the 
vector sum, i.e. |/||/|

1
NVSNVN

i i =∑ =

v . When 

combining two clusters CF1 = (N1, 1VS , CS1) 
and CF2 =(N2, 2VS , CS2) into one new cluster, 
the new cluster feature CFnew can be calculated 
by  (N1+N2, 1VS + 2VS , |( 1VS + 2VS )/(N1+N2)| ). 
  
Example 2: Assume there are two document 
trees DT1 and DT2. After level-wise clustering, 
the results are shown in Figure 4(a). Then, the 
corresponding LDC-Graph is shown in Figure 
4(b). The DDL of LDC-node C01 will contain 
three entries which point to the LDC-node C11, 
C12 and C13, respectively. 

A

A0 A1

B

B0 B1

Cluster C12 Cluster C13Cluster C11

Cluster C01

Document Level L 0

Document Level L1

DT1 DT2

 
Figure 4(a): The clusters for two document trees 

DT1 and DT2. 
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B0 B1
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LDC-node C01

Stage:S0

Stage:S1

 
Figure 4(b): The corresponding LDC-Graph for 

Figure 4(a) 
  
Example 3: Assume the cluster C is represented 
by the LDC-Node NC = (CFC, DLLC), where CFC 
= (4, <8, 8, 16>, 4.899) and DLLC = <(CF1, 
Pointer1), (CF2, Pointer2)>. When a new 
document node A with the vector V = <7, 2, 4> 
is inserted to the cluster C and its child nodes are 
belonging to the clusters 3 and 4 respectively, 
then the updated CFC = (5, <15, 10, 20>, 5.385) 
and DLLC = <(CF1, Pointer1), (CF2, Pointer2), 
(CF3, Pointer3), (CF4, Pointer4)>. 
 
3.3 Concept Generalization Phase: Roll-up 

Operation 
The concept generalization phase is used to 

generate the values of document nodes in the 
upper document level from the clustering results 
of document nodes in the lower document level. 
It will make the value of document nodes in the 
upper level more objective and representative by 

generalizing the detailed information in the 
lower level. Therefore, we define a roll-up 
operation for the non-leaf document nodes by 
averaging the cluster centers of the clusters 
which the lower document nodes belong to.  
Example 4: Assume a document node A 
contains three child nodes A1, A2 and A3, where 
A1 and A2 belong to cluster CA and A3 belongs to 
cluster CB. If the cluster center of CA is <3, 3, 2> 
and the cluster center of CB is <3, 2, 4>, then 
after running roll-up operation the vector of the 
document node A will be: Average (<3, 3, 2>, <3, 
3, 2>, <3, 2, 4>) = <3, 8/3, 8/3>  
 

4. Similarity Search by LDC-Graph 
Similarity search for document clustering is 

to find the interesting clusters for fulfilling user 
requirements. An interesting cluster is defined as 
a cluster which has higher similarity value than 
the user-specified threshold in the query. By the 
LDC-Graph, the similarity search opposite to the 
clustering process starts from the top stage (top 
document level) to the bottom stage (bottom 
document level). Since the clusters in the upper 
stage contain more general information than the 
clusters in the lower stage, the search from the 
top stage finds the general clustering result first 
and gets the specific clustering result when 
descending to the lower stage. The key operation 
for descending search is called drill-down 
operation. That is, the drill-down operation can 
return a set of LDC-Nodes in the next lower 
stage which are pointed by the present DDL. In 
the following, we propose three search strategies 
including single stage search, top-down search 
and heuristic search. 

 
4.1 Single Stage Search Strategy 

The single stage search strategy is used to 
find interesting clusters in a specific level. The 
algorithm of single stage search strategy is 

described as follows. 
 

Algorithm 3: Similarity Search 
Algorithm for Single Stage of the 

LDC-Graph 
Denotation: 
ClusterSet: a set of LDC-Nodes. 
Input: The query vector Q whose dimension is the same as 
the vector of each document node, the desired destination 
stage SDES and search threshold S. 
Output: The set of similar clusters. 
Step 1: ClusterSet=φ  
Step 2: For each LDC-Node N in the stage SDES of an 
LDC-Graph. 
 Step 2.1: Compute the similarity LDC-Node N with 
query Q. 
 Step 2.2: If the similarity ≥  S then 
            ClusterSet=ClusterSet ∪  N 
Step 3: Return ClusterSet. 
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4.2 Top-down Search Strategy 
The top-down search strategy is used to find 

interesting clusters by the drill-down operation. 
If the cluster is considered as similar one with 
the query, the drill-down operation will be 
executed to get the specific clusters of the next 
lower stage. With executing the drill-down 
operation repeatedly, users can get the similar 
clusters in the specified stage they want. The 
algorithm of top-down search strategy is 
described as follows. 

Algorithm 4: Top-down Search 
Strategy 

Denotation: 
D: is the number of the stages in an LDC-Graph. 
S0~SD-1: denote the stages of an LDC-Graph from the top stage 
to the lowest stage. 
ResultSet, DataSet: the sets of LDC-Nodes. 
Input: The query vector Q whose dimension is the same as the 
vector of each document node, search threshold S and the 
destination stage SDES where S0≤ SDES≤ SD-1. 
Output: The set of similar clusters represented by LDC-Nodes
Step 1: Let DataSet be the set of LDC-Nodes in the stage S0. 
Step 2: ResultSet=φ .  

For each LDC-Node N ∈  DataSet,  
If the similarity measure with Q ≥ S then 

ResultSet=ResultSet ∪  N. 
Step 3: If the stage of the node in ResultSet< SDES then 

DataSet=φ . 
For each LDC-Node N ∈  ResultSet 

  DataSet=DataSet ∪  LDC-Nodes returned 
by drill-down operation. 

  Go to Step 2. 
Step 4: Return ResultSet. 
 
4.3 Heuristic Search Strategy 

Each cluster returned by the top-down 
search strategy belonged to some user-specified 
stage of the LDC-Graph. However, if the 
clusters in the higher stage are similar enough to 
the query, the clusters may be the desirable ones. 
It is thus not necessary to execute the drill-down 
operation. Based on this idea, we define a full 
similarity measure to evaluate the degree and 
propose a corresponding heuristic search strategy. 
Figure 5 illustrates the concept of full similarity. 
 
 

 
Figure 5: The concept of full similarity 

 
Definition 3: Full Similarity 

Assume that the similarity threshold for 

clustering is T and the similarity threshold for 
searching in the query is S, where S < T. Since 
similarity function is cosine function, the 
threshold can be represented as the form of the 
angle. The angle of T is denoted as TT

1cos−=θ  
and the angle of S is denoted as SS

1cos −=θ . 
When the angle between the input and the 
cluster is lower than 

TS θθ − , we say the cluster 
is full similar to the query. The full similarity can 
be formally defined by the following formula. 

( )( )22 11T*S                         

                         
)(    Similarity Full

TS

SinSinCosCos
Cos

TSTS

TS

−−+=

+=
−>

θθθθ
θθ

 

  
The algorithm of heuristic search strategy is 

described as follows. 
Algorithm 5: Heuristic Search Strategy
Denotation: 
D: is the number of the stage in an LDC-Graph. 
S0~SD-1: denotes the stage of an LDC-Graph from the top stage 
to the lowest stage. 
ResultSet, DataSet, FullSimilaritySet: the sets of LDC-Nodes.
Input: The query vector Q whose dimension is the same as the 
vector of each document node, search threshold S and the 
destination stage SDES where S0≤ SDES≤ SD-1. 
Output: The set of similar clusters represented by LDC-Nodes
Step 1: Let DataSet be the set of LDC-Nodes in the stage S0

and FullSimilaritySet=φ . 

Step 2: ResultSet=φ .  

For each LDC-Node N ∈ DataSet,  
If N is full similar with Q then  

FullSimilaritySet=FullSimilaritySet ∪  N. 
Else if the similarity measure with Q≥ S then  

ResultSet=ResultSet ∪  N. 
Step 3: If the stage of the node in ResultSet< SDES then 

DataSet=φ . 
For each LDC-Node N ∈  ResultSet 

  DataSet=DataSet ∪  LDC-Nodes returned 
by drill-down operation. 

  Go to Step 2. 
Step 4: Return ResultSet ∪  FullSimilaritySet. 
 

5. Discussion 
As mentioned above, there are four salient 

features in our proposed level-wise clustering 
algorithm: 

(1). Complete: Each structured document is 
represented as tree structure, so the inherent 
structure can be hold and the characteristic 
of structured document can be retained. This 
way may reduce the loss of information and 
since the document content can be 
represented more completely in a limited 
number of features. 

(2). Representative: All features which used to 
represent the document node are generated 
from the base feature by concept 
generalization. The concept generalization 
phase makes document representation more 

Query Range 
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objective and representative, and based on 
this representation manner, the clustering 
result is also more representative than other 
document clustering algorithms. 

(3). Flexible: The level-wise clustering 
algorithm executes clustering based on the 
tree structure of each document. Each node 
of the tree stores the features extracted from 
one part of the document. Based on the 
inputs and clustering structure, we can get 
more flexible application than traditional 
algorithm. For example, we can find the 
documents with the similar hierarchical 
structure. 

(4). Efficient: Since the LDC-Graph structure 
can effectively store the information of 
clusters, we can enhance the performance 
either search or clustering. 

 
6. Experiments 

All experiments are run on AMD Athlon 
1.13GHz processor with 512MB DDR RAM. All 
programs are implemented in Borland C++ 
Builder 6 under Windows XP operating system. 
 
6.1 Synthetic Data Generation 

We use synthetic data generated by a 
synthetic system for evaluating the performance 
of our proposed algorithms. The synthetic 
generator controlled by the following four 
parameters is developed: the dimension of the 
vector of each document node, the depth of the 
document tree, the upper bound and lower bound 
branching factor for each document node, and 
the number of the document trees. The value of 
each entry in the vector is then randomly 
assigned in the range of [0, 1]. For reality, two 
transformation functions, 2)1(1)( xxf −−=  

and 211)( xxf −−= , are used to amplifies and 
diminishes the assigned value. Moreover, an 
additional parameter called vector tendency need 
to be given for deciding the number of the 
entries in the vector should be amplified even if 
the entries are selected randomly. Other entries 
without amplifying are diminished by the 
diminution function. 
 
6.2 Experimental Design 

To evaluate the performance, we will 
compare the clustering quality and the searching 
time of a traditional document clustering 
algorithm (i.e. single level clustering algorithm) 
with our proposed level-wise clustering 
algorithm associated with top-down search 
strategy. In the traditional document clustering 
algorithm, each leaf node of document trees is 
considered as the input, and the clustering result 
is required without any concept generalization. 
The cluster quality can be evaluated by the 

F-measure [11] and can be calculated by the 
following formula: 

RP
RPF

+
=

**2 , 

where P and R are precision and recall, 
respectively. The range of F-measure is [0,1]. 
The higher the F-measure is the better the 
clustering result is. 
 
6.3 Experimental Results 

By synthetic data generator, 500 document 
trees are generated. The related parameters is 
that the dimension of the vector is 15, the depth 
of the document tree is 3, the range of the 
branching factor for each document node is [5, 
10], and the vector tendency is 3. The clustering 
thresholds for level-wise clustering algorithm 
and the traditional document clustering 
algorithm are both set by 0.92. After clustering, 
there are 101, 104 and 2529 clusters generated 
from 500, 3664 and 27456 document nodes in 
the document level L0, L1 and L2, respectively. 
Then, 30 queries generated randomly are used to 
compare the performance of two clustering 
algorithms. Figures 6 and 7 show the F-measure 
and the execution time for each query with the 
search threshold is set by 0.85. 
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Figure 7: The executing time when similarity 
search 

 
Since the concept generalization in the 

level-wise clustering algorithm will results in 
little information loss, the similarity search by 
drill-down operation in the LDC-Graph will 
decrease the accuracy. However, as shown in 
Figure 6, the differences of the F-measures are 
small in most cases. Moreover, for most cases 
illustrated in Figure 7, the searching time of 
level-wise clustering algorithm is far less than 
the ones of the traditional document clustering 
algorithm. 
 

7. Concluding Remarks 
In this paper, a level-wise clustering 

algorithm on structured documents has been 
proposed. The level-wise clustering algorithm 
represents each document as a tree structure and 
clusters the nodes of the trees according to the 
level of the tree. Besides, a multistage graph and 
cluster features are used to store the clustering 
results. Finally, three search strategies are 
proposed to utilize the multistage graph to get 
the similarity search efficiently. Our 
experimental results show that the level-wise 
clustering algorithm speeds up the searching 
time of each query without losing much 
information. Moreover, with three search 
strategies, users can not only get the general 
search results but also get the specific search 
results. In the future, experiments with real data 
will be implemented to analyze the performance 
and check if the proposed algorithm can really 
meet the needs of different users. 
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