

Design of Message Authentication Code with AES and

SHA-1 on FPGA
Kuo-Hsien Yeh, Yin-Zhen Liang

Institute of Applied Information, Leader University, Tainan City, 709, Taiwan
E-mail: khyeh@mail.leader.edu.tw

TEL: 886-6-2558291
FAX: 886-6-2550870

Abstract
Combining AES 128-bit and SHA-1, we

construct a Message Authentication Code and

implement it on Altera FPGA chip. We use the

math of finite-field in AES algorithm to reduce

the complexity of AES module. Implementation

of our architecture needs 17153 logic cell

elements on an FPGA chip. The performance

achieves 12.4 MHz in frequency. Moreover, the

proposed design architecture does not require

any memory bits.

Key words： Message Authentication Code

(MAC)，Advanced Encryption Standard (AES)，

Secure Hash Algorithm (SHA-1) ， Field

Programmable Gate Array (FPGA)

1. Introduction

Authentication, which certifies data

integrity and data origin, is becoming an

important technique because the transfer of

valuable information needed for electronic funds

transfer, business contracts, etc. must be made

across computer networks. Data integrity

ensures that the data has not been modified or

destroyed during transferring. Data origin

authentication is the verification that the source

of data received is as claimed.

In general, Message Authentication Code

(MAC) can be achieved in three ways,

Cipher-MAC, Hash-MAC (HMAC) and

Hash-Cipher-MACs [1,2]. Cipher-MAC uses a

cipher with some encryption techniques to

process a message and takes the final result as

the corresponding MAC. HMACs are based on

cryptographic hash functions. HMACs have two

functionally distinct parameters, a message input

and a secret key known only to the message

originator and intended receiver.

Hash-Cipher-MAC combines a hash function

and a cipher to construct MAC [1,2]. In this

paper, we are interested in the efficient

Hash-Cipher-MACs which are secure based on

the properties of hash functions H(�) and block

ciphers Ek (�). Ek (H(X)) of Hash-Cipher-MACs

is referred to develop a constructing MAC in

FPGA based on Rijndael’s AES 128-bit of the

U.S. National Institute of Standards and

Technology (NIST) [3] and SHA-1 of Federal

Information Processing Standards Publications

180-1 (FIPS PUB 108-1) of NIST [4].

2. Algorithms

2.1 MAC generation

The generation of our proposed MAC will

be computed with a given message M as:

MAC = Ek(Partial-SHA-1(M)) where

Partial-SHA-1 extracts the left-most 128 bits of

SHA-1. In the meantime, the input key is used as

the key of AES. Therefore, the output of AES is

MAC. The architecture is shown in Figure 1. In

verification of MAC, the receiver can verify the

MAC when he gets Message M and MAC. The

receiver decrypts the MAC to get the

Partial-SHA-1 value and checks the correctness

by computing Partial-SHA-1(M).

2.2 AES
In AES algorithm [3], the process of

encryption consists of the following steps: An

initial key addition transformation. The requisite

number of rounds, with each round composed of

four different transformations, byte substitution,

row shifting, column mixing and key addition. A

final round is composed of three transformations,

byte substitution, row shifting and key addition.

Figure 2 shows the AES algorithm encryption

structure. The transformations are described in

[3].

For avoiding the use of look-up table and

the decrease of security, a finite field inverse

module is designed. It describes this algorithm

based on standard basis for computing

multiplicative inverse in GF(28) [5,6]. For a

finite field GF(2m) element A, the inversion of A,

A-1, can be calculated by a series of power of A.

(1)

This implies that the inverse of A can be

expressed as

(2)

Considering the AES algorithm, A254 can

be represented by the multiplications of the

square property of A and A2 [5,6]. Let us use A2,

the block diagram of A-1 circuit is as shown in

Figure 3. It has six multipliers; it is clear that it

needs a large number of multipliers.

This algorithm can implement the ByteSub

transformation in AES easily. The improved

structure, which is proposed by [5], uses the

square property of A3 and A4. A254 can be

represented as

 (3)

The improved inverse circuit can be drawn

and shown in Figure 4.

As shown in Figure 4, the number of

multiplier in this improved finite field inverse

circuit is reduced from 6 multipliers to 3 [5].

The improved finite field inverse circuit in

the ByteSub transformation differs from [8]. The

method of [8] had to save 256-byte memory and

considerable amount of operations.

2.3 SHA-1
For a message of length less than 264 bits,

SHA-1 produces a 160-bit condensed

representation of the message called a message

digest. The message digest is used during

generation of a signature for the message [4,7].

There are three execution steps in SHA-1

algorithm [4]: message padding, functions and

constants used, and computing the message

digest. To process Mi, we proceed as follows:

1. Divide Mi into 16 words W0, W1, … , W15,

where W0 is the left-most word.

2. For t = 16 to 79 let Wt = S1(Wt-3 ⊕ Wt-8

⊕Wt-14 ⊕ Wt-16). (Sn is shift-left n bits)

3. Let A = H0, B = H1, C = H2, D = H3, E =

H4.

4. For t = 0 to 79 do

TEMP = S5(A) + ft (B,C,D) + E + Wt + Kt;

E = D; D = C; C = S30(B); B = A;

.32))4()3(()8)3(2)3((
81 AAAA254A-22 A-A •••===

A = TEMP;

5. Let H0 = H0 + A, H1 = H1 + B, H2 = H2 + C,

H3 = H3 + D, H4 = H4 + E.
Figure 5 shows the integral process of SHA-1.

In general, message schedule W0, W1, … ,

W79 is implemented as an array of eighty 32-bit

words. However, we reduce the utility rate of the

registers, so that we use the alternate method for

computing a SHA-1 message digest [4]. It uses

an array of sixteen 32-bit words, W0, W1, … ,

W15, and it saves sixty-four 32-bit words of

storage registers. They are designed separately in

Alera FPGA chip device EP20K600EBC652,

and we obtain a result, which the method of

sixteen 32-bit words is less than the number of

registers of eighty 32-bit words. The method of

sixteen 32-bit words is a great register-saver.

Table 1 shows the comparison of logic cell

elements in Alera FPGA chip device

EP20K600EBC652.

3. Design of MAC with AES and
SHA-1 on FPGA

Implementation of our architecture needs

17153 logic cell elements and 388 pins on a

FPGA chip. The proposed design uses 128 bits

I/O and achieves 12.4 MHz in frequency.

Moreover, our proposed design does not need

memory bits. Table 2 illustrates the results of the

integral architecture.

To test and verify our proposed MAC, we

make a test to prove it. If the attacker grabs the

data and modifies the source data, a receiver will

obtain falsified data. We assume that a sender

transforms a data, which is

“00112233445566778899aabbccddeeff” in

hexadecimal format. The MAC generation

produces a correct value, which is

“4EBC7A40BEBE5F78C91A592C527A4E9F”

in hexadecimal format, and a receiver obtains it

to decrypt the MAC. Unfortunately, an attacker

not only grabs a data in the middle but also

modifies it while a sender and a receiver are

transforming each other. The receiver will obtain

a falsified MAC, which is

“4EBC7A40BEBE4078C91A592C527A4E9F”

in hexadecimal format, and he decrypts it.

At last the receiver contrasts message digest, and

he will detect his MAC, which is falsified. The

integral diagram is shown in Figure 6. The result

of simulation is shown in Figure 7.

4. Conclusions

Our proposed MAC, which combines AES

128-bit and SHA-1, utilizes the math of

finite-field to improve AES algorithm and the

alternate method for computing in SHA-1. The

multiplication and inverse operations can reduce

the complexity of AES module. Moreover, our

proposed design does not require any memory

bits.

There are two plans in our future work.

First, in MAC hardware implementation, we

may use full custom design to implement the

MAC chip and improve the performance.

Second, due to the continuous progress on

System On Chip (SOC), MAC, AES, and SHA-1

modules will be applied Intellectual Property

(IP).

5. References

[1] Yi-Shiung Yeh and Chan-Chi Wang,

“Construct Message Authentication

Code with One-Way Hash Functions

and Block Ciphers”, IEICE

Transactions on Fundamentals of

Electronics, Communications and

Computer Sciences, Feb. 1999,

pp.390-393.

[2] Ming-Hua Lee, “Construct Message

Authentication Code with SHA-1

and AES”, National Chiao Tung

University in partial Fulfillment of

the Requirements for the Degree of

Master, Hsinchu, Taiwan, June 2000.

[3] “Announcing the Advanced

Encryption Standard (AES)”,

Federal Information Processing

Standards Publication 197,

November 26, 2001.

[4] “Secure Hash Standard”, Federal

Information Processing Standards

Publication 180-1, April 17, 1995.

[5] Jeng-Yang Hwang, “The Design,

Implementation and Application of

Advanced Encryption Standard

Algorithm”, I-Shou University in

partial Fulfillment of the

Requirements for the Degree of

Master, Kaohsiung, Taiwan, June

2000.

[6] M.H. Jing, Y.H. Chen, Y.T. Chang,

and C.H. Hsu, “The design of a fast

inverse module in AES”, Info-tech

and Info-net, 2001. Proceedings.

ICII 2001 - Beijing. 2001

International Conferences, Vol.3,

pp.298–303, 2001.

[7] A. J. Menezes, P.C.V. Oorschot, and

S.A. Vanstone, “Handbook of

Applied Cryptography”, CRC Press,

1997.

[8] 王立洋, “CPLD Implementation of

RijndaelCipher”,

http://www.ccisa.org.tw/文章收錄/

文件

/AES/CPLD%20Implementation%2

0of%20Rijndael%20Cipher王.ppt,

November, 2000.

Figure 1. The integral architecture of MAC

K ey 128-bit
Plain Text
 128-bit

SH A -1

Partial SH A -1

A ES-128

M A C

160 bits

128 bits

U ser
inputs

Figure 2. The AES algorithm encryption structure

Figure 3. The finite field inverse circuit using square property

Figure 4. The improved finite field inverse circuit

A3

A8

A32

A2

A4

A A3

A4 A7

A24

A224

A6

A254

A30

Figure 5. The integral process of SHA-1

Figure 6. The integral diagram

f1，K，W [0… 19]
 20 steps

f2，K，W [20… 39]
 20 steps

f3，K，W [40… 59]
 20 steps

f4，K，W [60… 79]
 20 steps

+ ++ + +

160

32

160

512

CVqYq

CVq+1

A

A

A

A

B

B

B

B

C

C

C

C

D

D

D

D

E

E

E

E

MessageMAC

SHA-1

Message
Digest

Encryption
(AES)

Decryption
(AES)

SHA-1

Message
Digest

Message
Digest

MessageMAC

contrast

Secret Key

Secret Key

Deliver
Sender Receiver

Figure 7. The result of simulation of falsified MAC

Table 1. The comparison of logic cell elements

Table 2. The results of the integral architecture

