
逢 甲 大 學
資 訊 工 程 學 系 專 題 報 告

基本 3D 繪圖引擎使用

Z 排序演算法
Basic 3D Graphics Engine
Using the Z-Sort Algorithm

學 生： 沈令闓（四丙）

指導老師： 林國貴

中華民國九十二年十二月

Contents

Abstract …………………………………………………………………….5

Chapter 1 Introduction .. 6

1.1 Motivation.. 6

1.2 Objectives .. 7

Chapter 2 Engine Structure ... 8

2.1 Introduction.. 8

2.2 Tools used for this project.. 10

2.3 Main program steps ... 11

Chapter 3 Fundamentals and principles .. 14

3.1 Introduction.. 14

3.2 How to read .ASC files.. 15

3.3 .ASC file structure and organization ... 16

3.4 Why choose .ASC files? .. 17

Chapter 4 Rendering.. 19

4.1 Introduction.. 19

4.2 XFORMS subroutine ... 19

4.3 DRAWPOLY subroutine.. 22

Chapter 5 Visible Surface Determination ... 25

5.1 Introduction.. 25

5.2 Sorting.. 26

5.3 Projection ... 27

5.4 Painter's algorithm or Z-Sort ... 31

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 3

Chapter 6 Engine testing and results... 35

6.1 Testing the Engine ... 35

6.2 Result Evaluation... 44

Conclusion... 46

Bibliography.. 48

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 4

Figure Contents

Figure 1 Architectural flowchart of engine structure.................................... 8

Figure 2 3D Engine file structure.. 9

Figure 3 Flowchart of DRAWPOLY procedure.. 23

Figure 4 Using Visible Surface Determination ... 25

Figure 5 Left handed system. VRP = Vertex Reference Point.................... 28

Figure 6 Right handed system. VRP = Vector Reference Point.................. 29

Figure 7 Orthographic projection from back-face culling 29

Figure 8 Easy and Difficult cases for the Painter's algorithm..................... 31

Figure 9 THING.ASC Polyhedron in wireframe .. 37

Figure 10 THING.ASC Polyhedron in solid render.................................... 38

Figure 11 BALL.ASC Sphere in wireframe ... 41

Figure 12 BALL.ASC Sphere in solid render... 41

Figure 13 TORUS.ASC in wireframe... 42

Figure 14 TORUS.ASC in solid render .. 42

Figure 15 DUCK.ASC Duck in wireframe... 43

Figure 16 DUCK.ASC Duck in solid render .. 43

Figure 17 FACE.ASC Face in wireframe ... 44

Figure 18 FACE.ASC Face in solid render... 44

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 5

Abstract

 The object of this project is to create and test a simple graphics engine.

What this engine does is read a 3D ASCII model description file, and given

the provided information render the model onto the screen, and also

provide simple transformation options. At the heart of this graphics engine

is the Z-Sort algorithm, which takes care of the order in which the polygons

and drawing lines appear on the screen. During the making of this engine

there are a lot of computer graphics fundamentals and techniques that we

can learn from here. So, basically this engine demonstrates the usage of a

few of these basic principles.

My project is divided into six parts:

Chapter 1 Discuss my motivation and goals for this project

Chapter 2 Introduce the overall architecture and structure of the graphics

engine.

Chapter 3 Discuss the .ASC (ASCII 3D model description) file and its

underlying composition.

Chapter 4 Discuss vertex and matrix operations required for polygon

transformation.

Chapter 5 Discuss Visible Surface Determination.

Chapter 6 Testing the engine and various results.

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 6

Chapter 1 Introduction

1.1 Motivation

 Like every other kid of my age, I believe, I have always been

fascinated by the power of computers ever since I played with one in my

middle-school years. This was the beginning of the nineties, and it was a

time of color displays, graphical user interfaces and, best of all,

state-of-the-art computer games. It was the computer game that drew my

interest into the computer graphics area.

 Today, we see the effect of computer graphics (or CG) everywhere.

Whether it is on television, or the movies, or simply browsing the internet,

we can see how far CG has advanced over these years, and how much we

have left to go.

 Perhaps the most important new movement in graphics is the

increasing concern for modeling objects, not just for creating their pictures.

Furthermore, interest is growing in describing the time-varying geometry

and behavior of 3D objects. Thus graphics is increasingly concerned with

simulation, animation, and a “back to physics” movement in both modeling

and rendering in order to create objects that look and behave as realistically

as possible.

 As the tools and capabilities available become more and more

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 7

sophisticated and complex, we need to be able to apply them effectively.

Rendering is no longer the bottleneck. The only future limit is imagination.

1.2 Objectives

 My main objective is to learn the fundamental techniques used for

rendering a 3D image onto the screen. The techniques I have used in this

report are very simple compared to modern methods. They will also be

inefficient for large models, as will be demonstrated below, but for the

examples I use, they will be enough.

 I believe computer graphics has progressed extremely fast these last

years, and will continue to do so. This has become one of the most exciting

fields in the computer industry. I think in the near future, digital

entertainment and science will propel the way we visualize objects on the

screen to the next level.

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 8

Chapter 2 Engine Structure

2.1 Introduction

Basically, my engine relies upon the Z-Sort algorithm to draw a model onto

the screen. Below is an architectural and file structure view of the engine.

從 ASC 檔案讀近vertex list
(3DS.C)

向量/矩陣處理
(XFORMS.C)

開啟繪圖模式
(DOSFUNC.C)

轉成物件/作 allocation,
collection (OBJECTS.C)

需要作排序?

否

排序所有surface
(ZSORT.C)是

把 vertex 轉成 scanline 及
平面 (DRAWPOLY.C)

Figure 1 Architectural flowchart of engine structure

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 9

OBJECTS.C 主程式

ZSORT.C

DRAWPOLY.C

XFORMS.C

DOSFUNC.C

XFORMS.H

ZSORT.H

DOSFUNC.H

DRAWPOLY.H

3DS.C 3DS.H

Figure 2 3D Engine file structure

As we can see, from a file-point-of-view, that the engine can be

theoretically divided into five components, with each component

taking care of a specific part of the rendering process. Here’s a brief

summary of each component:

OBJECTS.C: This is basically the main part of the engine. It handles

management of objects, as well as the allocation and deallocation of

resources used by said resources.

DRAWPOLY.C: This is where the almost everything is drawn. It

depends on having the edges initialized and sorted, and it takes care

by pushing the priority surfaces to the front.

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 10

XFORMS.C: This is where most of the vector math and projections

are here. All data taken from a model file must undergo position and

normal calculations.

ZSORT.C: This depth-sorting function determines which surfaces

or vertices need to be displayed. The algorithm uses radix sort to put

the surfaces in order, and depending on the situation it puts the

surfaces that need to be displayed on the front.

DOSFUNC.C: Maintains some OS dependent functions. Since this

engine runs on DOS, this is necessary. Because I have used neither

DirectX nor OpenGL, the graphics calls must go through this

procedure.

2.2 Tools used for this project

Here is a summary of the tools I have used for this project:

Engine API: The basic skeleton structure of the engine, including the

math functions was referenced from the Zed3D engine by Sebastien

Loisel.

3D models: All of the 3D models I have used come from the internet.

There are websites that provide 3D models of any kind free for

download, such as http://www.3dcafe.com

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 11

Discreet 3D STUDIO MAX: I have only used this modeling program

to convert from the .MAX binary format to the older .ASC ASCII

format. Other than that, I have not used any of this programs’

functions.

Microsoft Visual C++ 6.0: I used this to write my engine, which is

pure C code.

Zortech C++ compiler: I used this compiler because my graphics

engine runs primarily on DOS and needed several privileged DOS

system calls which the Visual C++ compiler could not provide.

2.3 Main program steps

The main program simply does the following:

1) Initialize memory

2) Allocate structure

3) Read data from file

4) Save data into structure

5) Loop until all data is stored into structure

6) Shutdown

Here are some of the more important data structures used for the main
routine:

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 12

void main(void)
 {
 o=read_3ds_file(“INPUTFILE",1);

 if(!o)
 {
 puts("Error reading file");
 return;
 }
 A=B=C=0;
 for(a=0;a<o->pts_data->numpoints;a++)
 {
 A+=realtofloat(o->pts_data->vertex[a].location[0]);
 B+=realtofloat(o->pts_data->vertex[a].location[1]);
 C+=realtofloat(o->pts_data->vertex[a].location[2]);
 }
 A/=o->pts_data->numpoints;
 B/=o->pts_data->numpoints;
 C/=o->pts_data->numpoints;
 for(a=0;a<o->pts_data->numpoints;a++)
 {
 o->pts_data->vertex[a].location[0]-=floattoreal(A);
 o->pts_data->vertex[a].location[1]-=floattoreal(B);
 o->pts_data->vertex[a].location[2]-=floattoreal(C);
 }

 /* 分配空間給記憶體 pipeline */
 pip=alloc_pipeline(300,700,2100);
 if(!pip)
 {
 puts("Memory allocation error");
 return;
 }

 initmatrix(camera.m,
 1,0,0,
 0,1,0,
 0,0,1);
 initvector(camera.v,0,0,3000);

 /* 分配空間給 buffer */
 buf=init256();
 if(!buf)
 {
 totxt();
 puts("Memory allocation error");
 return;
 }

 /* 一開始 polycount 設為 0 */
 polycount=0;
 time0=clock();

 do

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 13

 {
 reset_pipeline(pip); /* 記憶體 pipeline 清楚 */
 cull_object(o,pip,&camera); /* 設 camera 成投影物件 */
 sort_pipeline(pip); /* 把記憶體上物件作排序動作 */
 memset(buf->buffer,1,buf->width*buf->height);

 for(a=pip->fptr-1;a>=0;a--)
 {
 f=pip->fbase+pip->index1[a];

 pol.edgetable=edg;
 pol.color=realtofloat(mul(f->normal[2],floattoreal(30)))+70;
 for(b=0;b<3;b++)
 {
 p=&pip->pbase[f->index[b]];
 edg[b].x1=realtofloat(p->scr_X)*500.0;
 edg[b].y1=realtofloat(p->scr_Y)*500.0;
 }
 pol.numedges=3;
 if(drawing)
 drawpolygon(&pol,buf);
 }

 blit(buf);
 mat_orthonormalize(camera.m);
 polycount+=o->face_data->numfaces;
 }
 while(!do_rotation(camera.m));

 time1=clock();

 /* 放出使用的記憶體 */
 free256(buf);

 total_time=(time1-time0)/CLK_TCK;

 printf("Total time elapsed: %f seconds\nTotal # of polygon blitted:

%li\nPolygons per second: %f\n\n",
 total_time,polycount,polycount/total_time);
 }

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 14

Chapter 3 Fundamentals and
principles

3.1 Introduction

My engine uses the ASC export files as input. ASC files are ASCII

description files for 3D models, and are used by the 3D Studio program.

This is the first step in the engine process. I have used the 3D STUDIO

ASCII file format for the 3D models.

In case you were wondering, why didn’t I choose a more popular

format like 3D STUDIO MAX or MAYA? Well below are the reasons:

- ASCII file format is easier to understand than binary format.

- It’s easier to learn the method by which triangles and polygons are

generated.

- It’s easier to write function that can read ASCII format.

But it also has disadvantages as well, with speed and security being

two of them.

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 15

3.2 How to read .ASC files

 The ASC file format requires several key fields:

 - Name object

 - Vertices

 - Faces

 - Vertex list

 - Position

 3DS.C and 3DS.H take care of all model input. The underlying code

shows how to read the vertex list and put it into a data structure. The data

structure contains an index to the pointer array, the number of points and

the vector normal.

struct face_struct
 {
 long *index; /* index 指到 pointer array */
 long numpoints;
 vector normal;
 REAL D; /* Ax+By+Cz=D */
 };

Below is the code for reading the vertex list. The resulting data is put

into pts_data->vertex[i]->location[j]

if(read_line(s,f))
 {
 free_object(o);
 return 0;
 }

 if(print_progress)
 {
 printf("Now reading file %s, %li vertices and %li faces.\n",
 filename,x,y);
 }

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 16

 for(a=0;a<x;a++)
 {
 if(read_line(s,f))
 {
 free_object(o);
 return 0;
 }
 if(memcmp(s,"Vertex",6))
 {
 a--;
 continue;
 }
 b=atol(s+7);
 if(print_progress)
 {
 if(!(a&127))
 {
 printf("Vertex #%li\n",b);
 }
 }
 if(a!=b)
 {
 if(print_progress)
 puts("Vertex discrepancy");
 free_object(o);
 return 0;
 }
 for(c=0;s[c]!='X';c++) {}
 A=strtod(s+c+2,0);
 for(;s[c]!='Y';c++) {}
 B=strtod(s+c+2,0);
 for(;s[c]!='Z';c++) {}
 C=strtod(s+c+2,0);

 o->pts_data->vertex[b].location[0]=floattoreal(A);
 o->pts_data->vertex[b].location[1]=floattoreal(B);
 o->pts_data->vertex[b].location[2]=floattoreal(C);
 }

3.3 .ASC file structure and organization

 The file contents themselves are pretty straightforward. Here’s a

section of a 3D model called DUCK.ASC.

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 17

Ambient light color: Red=0.3 Green=0.3 Blue=0.3

Named object: "Object03"
Tri-mesh, Vertices: 270 Faces: 516
Vertex list:
Vertex 0: X: -28.091742 Y: -1166.367065 Z: -1902.944458
Vertex 1: X: 50.858582 Y: -1058.602417 Z: -1908.559204
Vertex 2: X: 103.18132 Y: -911.628906 Z: -1914.481323
Vertex 3: X: 122.565582 Y: -743.09613 Z: -1918.81897
Vertex 4: X: 106.673386 Y: -573.352966 Z: -1920.545776
Vertex 5: X: 57.421661 Y: -422.955139 Z: -1919.865356
Vertex 6: X: -19.249247 Y: -310.11795 Z: -1917.99231
Vertex 7: X: -114.091805 Y: -248.4814 Z: -1916.476685
Vertex 8: X: -124.147148 Y: -1222.063599 Z: -1899.620728
Vertex 9: X: 96.618271 Y: -1527.198608 Z: -1750.835693
Vertex 10: X: 244.996277 Y: -1328.9198 Z: -1767.286499

Description:

Ambient light color: Here is the RGB values for ambient lighting. My

engine does not read this value. It only assigns generic lighting.

Background color: Here is the RGB values for the background color. My

engine does not read this value.

Named object: The object name. Can be any string value.

Tri-mesh: Indicates model type.

Vertices: The total number of vertices for this model

Faces: The total number of triangle faces for this model

Vertex list: Below is the list of X, Y, and Z coordinates relative to the

center of the screen.

3.4 Why choose .ASC files?

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 18

The primary reason I chose ASC files is obviously because its

contents can be easily read by a user.

Today, many software packages prefer using the binary format over

ASCII due to several reasons.

1) Binary format is faster than ASC format, especially when dealing

with textures.

2) Binary format is much smaller than an equivalent ASC format.

The number of vertex required for ASC format is great because there must

specify X, Y, Z for every vertex. Binary format need only store the

difference.

3) Binary format is the standard format used by many popular

graphics APIs today, such as DirectX and OpenGL.

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 19

Chapter 4 Rendering

4.1 Introduction

Rendering is the phase where we do the actual drawing. There is a

general tendency to download this particular task to a slave graphics

processor and leave the CPU to do better things. However, it will always be

useful for everyone to have a general understanding of how things work.

And also likely is the fact that we're going to need software renderers for a

while more. And one last fact is that people have to write the software for the

slave processor.

We will first study the drawing of a point, which will be used to draw

other primitives. Then we will study lines and polygons. Curved surfaces can

also be supported but will not be discussed. The curved primitive that tend to

be faster in drawing are conics and polynomials. However, some other forms

of curved primitives definitions are often preferred, mainly splines.

4.2 XFORMS subroutine

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 20

 XFORMS calculates all the vector and matrix mathematics. It contains

the basic linear algebra operations (add, substract, multiply) for vectors and

matrices, and it also adds normalization and orthonormalization. The

following functions:

 Matrix addition

void mat_add(matrix r, matrix a, matrix b)
 {
 int x,y;

 for(x=0;x<3;x++)
 for(y=0;y<3;y++)
 r[x][y]=add(a[x][y],b[x][y]);
 }

Matrix substraction
oid mat_sub(matrix r, matrix a, matrix b)
 {
 int x,y;

 for(x=0;x<3;x++)
 for(y=0;y<3;y++)
 r[x][y]=sub(a[x][y],b[x][y]);
 }

 Matrix multiplication
void mat_mul(matrix r, matrix a, matrix b)
 {
 int x,y,z;

 for(x=0;x<3;x++)
 for(y=0;y<3;y++)
 {
 r[y][x]=floattoreal(0.0);
 for(z=0;z<3;z++)
 r[y][x]=add(r[y][x],mul(a[z][x],b[y][z]));
 }
 }

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 21

 Vector addition
oid vec_add(vector r, vector a, vector b)
 {
 int x;

 for(x=0;x<3;x++)
 r[x]=add(a[x],b[x]);
 }

 Vector substraction
void vec_sub(vector r, vector a, vector b)
 {
 int x;

 for(x=0;x<3;x++)
 r[x]=sub(a[x],b[x]);
 }

 Vector multiplication
REAL vec_dot(vector a, vector b)
 {
 /* a * b = a[0]*b[0]+a[1]*b[1]+a[2]*b[2] */
 REAL dot;
 int x;

 dot=floattoreal(0.0);
 for(x=0;x<3;x++)
 dot=add(dot,mul(a[x],b[x]));
 return dot;
 }

 Vector normalization
void vec_normalize(vector a)
 {
 REAL length;
 int x;

#ifdef use_fixed
 do {
#endif
 length=floattoreal(0.0);

 for(x=0;x<3;x++)
 length=add(length,mul(a[x],a[x]));

 length=SQRT(length); /* 取根號 */
#ifdef use_fixed

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 22

 if(length<=floattoreal(0.001))
 vec_mul_scl(a,a,floattoreal(1000));
 } while(length<=floattoreal(0.001));
#endif

 /* second divide each component of the vector by the length of the
 vector */
 for(x=0;x<3;x++)
 a[x]=div(a[x],length);
 }

 Matrix orthonormalization:
void mat_orthonormalize(matrix a)
 {
 vector temp;
 /* 第一個向量作 normalize */
 vec_normalize(a[0]);

 /* 使第二與第一項兩相正交 */
 vec_mul_scl(temp,
 a[0],
 vec_dot(a[1],a[0])
);
 vec_sub(a[1],
 a[1],
 temp
);

 /* 第二個向量作 normalize */
 vec_normalize(a[1]);

 /* 第三項兩 = 第一 * 第二 */
 vec_crs(a[2],a[0],a[1]);

 }

4.3 DRAWPOLY subroutine

The DRAWPOLY subroutine draws all the sorted edges onto the

screen.

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 23

Figure 3 Flowchart of DRAWPOLY procedure

void drawpolygon(polygon *poly, outbuffer *out)
 {
 long scanline,delta,mode,a;

 init_edges(poly,out);
 sort_edges(poly,out);

 if(poly->inactive.next)
 {
 /* 把 polygon scanline 轉成第一個 scanline */
 scanline=poly->inactive.next->y1;

 /* 計算 scanline 的 delta 值 */
 delta=mulwidth(scanline+out->maxy);
 poly->active.next=0;

 /* 作回圈動作一直到結束為止 */

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 24

 update_lists(poly,scanline);
 while(poly->active.next)
 {
 update_intercept(poly);
 draw_spans(poly,out,delta);

 /* go to next scanline */
 scanline++;
 delta+=out->width;
 update_lists(poly,scanline);
 }
 }
 }

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 25

Chapter 5 Visible Surface
Determination

5.1 Introduction

One of the problems we have yet to address, when several objects

project to the same area on screen, how do you decide which gets displayed.

Intuitively, the closest object should be the one to be displayed.

Unfortunately, this definition is very hard to handle. We will usually say that

the object to be displayed will be the one with the smallest z value in eye

space, which is a bit easier to work with. A corollary of this is that objects

with the largest 1/z value get displayed; this latter observation has

applications which will be explained later.

Figure 4 Using Visible Surface Determination

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 26

Visible surface determination can be done in a number of ways; each

has its advantages, disadvantages and applications. Hidden line removal is

used when wire frames are generated. This might be useful for a vector

display, but will not be covered in here. When dealing with filled primitives,

there are several classes of visible surface determination. There is also the

question of object precision, device precision, and more, these topics will not

be discussed here.

Perhaps the most intuitive visible surface determination algorithm is

the so-called "painter's algorithm", which works the same way a painter

does. Namely, it draws objects that are further away first, and then draws

objects that are closer. The advantage of this is it's simple. The disadvantages

are that it writes several times to some areas of the display device, and also

that some objects cannot be ordered correctly.

The painter's algorithm can be generalized into the depth-sorting

algorithm, which sort the primitives from back to front and then draw. The

depth sorting algorithm also resolves cases that painter's algorithm does not.

5.2 Sorting

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 27

With the painter's algorithm, one has to assign a z-value to all

primitives. Then, the primitives are sorted according these values of z, and

the resulting image is drawn back-to-front. Several sorting algorithms can be

used for this purpose, and even though basic algorithms are not the subject of

this document, we will discuss two simple sorting schemes now.

As can be seen, the algorithm is exceedingly simple. For small values

of n (say, n<10), this algorithm can be used and will be close to optimal.

However, if the list is very badly ordered initially, the sort could take up to

n2 iterations before finishing.

Small improvements can be made to the algorithm. For one thing,

instead of always scanning in the same direction (from the first element to

the last), one alternates directions, sorting an already close to sorted list is

very efficient. The loop will execute roughly n times (actually, it would

execute k times n, where k is some small constant). In the worse case though,

it still executes in n2 iterations.

5.3 Projection

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 28

 The projection technique I introduce here is back-face culling.

Back-face culling exploits the observation that a face in a closed polyhedron

always has two sides. One faces inside, and can never be seen by an observer

outside the polyhedron (rather obviously since the polyhedron is closed), the

other faces outside and can be seen. However, if it is determined that the side

facing the eye is the inside of the face, that face will assuredly not be seen,

because it is impossible to see a face from the inside.

Figure 5 Back-face culling from a left-handed system. VRP = Vertex Reference Point
 Vector N = sum of three different vector in different coordinates of reference

The side that faces the eye can be determined easily with dot product.

Take a vector V from the eye to any point within the polygon (for example,

from the eye to a vertex). Let A be the normal of the polygon, assuming that

A points outwards of the polyhedron. Then, compute V•A. If it is positive,

the inside of the face is towards the camera, do not display or transform the

face. If it is negative, the face is facing the camera and might be seen (though

this is not guaranteed).

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 29

Figure 6 Back-face culling from a right-handed system. VRP = Vector Reference Point

Back-face culling is generally not sufficient for visible surface

determination. It is merely used to remove faces that assuredly cannot be

seen. However, it will do nothing for faces that are only obscured by faces

that are closer. Also, back-face removal assumes that the objects are closed

polyhedra, and that faces are opaque. If this is not the case, back-face culling

can not be applied.

Figure 7 Orthographic projection from back-face culling

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 30

Note that if the only thing displayed is a convex object, back-face

culling is sufficient for visible surface determination (it will only leave the

faces that are actually visible).

void cull_object(object *o, pipeline *p, affine *xform)
 {
 long a,b,c,x,y,z;
 face *f,*g;
 pipe_point *pt;
 vector u;
 REAL D;

 pt=p->pbase+p->pptr;

 xform_pointcollection(o->pts_data,xform,pt);

 for(a=0;a<o->pts_data->numpoints;a++)
 {
 pt[a].point.clipping=
 o->pts_data->vertex[a].clipping;
 }
 f=o->face_data->face;
 for(a=0;a<o->face_data->numfaces;a++,f++)
 {
 /* backface cull. dot product of vector from eye to a point in
 face with normal vector of face */
 mat_mul_vec(u,xform->m,f->normal);
 D=vec_dot(u, pt[*f->index].point.location);
 if(D>=floattoreal(0.0))
 {
 /* clip */
 for(b=0;b<f->numpoints;b++)
 pt[f->index[b]].point.clipping--;
 }
 else
 {
 /* output face to pipeline */
 g=p->fbase+p->fptr;

 g->index=p->ibase+p->iptr;
 g->numpoints=f->numpoints;
 copyvector(g->normal,u);
 g->D=D;

 for(b=0;b<f->numpoints;b++)
 g->index[b]=f->index[b]+p->pptr;

 /* update pointers */
 p->iptr+=f->numpoints;
 p->fptr++;

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 31

 }
 }

 /* now all faces are properly output and culled. we need only do
 vertices now */

 p->pptr+=o->pts_data->numpoints;
 }

5.4 Painter's algorithm or Z-Sort

As was previously mentioned, painter's algorithm assigns a z value to

each primitive, then sorts them, then draws them from back to front. Objects

that lie behind are then written over by objects that lie in front of them. Note

that, no matter the scheme used to select the z value for an object, primitives

that have overlap in z may be incorrectly ordered. But there is worse.

Figure 8 Easy and Difficult cases for the Painter's algorithm

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 32

In this case, it is necessary to cut one triangle into two parts and sort

the parts individually. Here is the pipeline sort procedure:

long *sort_pipeline(pipeline *p)
 {
 long a,b,c;
 REAL A,B;
 face *f;
 pipe_point *pt;

 f=p->fbase;
 pt=p->pbase;
 for(a=0;a<p->fptr;a++,f++)
 {
 A=pt[f->index[0]].point.location[2];
 B=A;
 for(b=1;b<f->numpoints;b++)
 {
 c=f->index[b];
 if(pt[c].point.location[2]<A)
 A=pt[c].point.location[2];
 else if(pt[c].point.location[2]>B)
 B=pt[c].point.location[2];
 }

 p->index1[a]=a;
 p->minZ[a]=realtofixed(A);
 p->maxZ[a]=realtofixed(B);
 }

 bytesort(p->maxZ,p->index1,p->index2,p->fptr,0);
 bytesort(p->maxZ,p->index2,p->index1,p->fptr,1);
 bytesort(p->maxZ,p->index1,p->index2,p->fptr,2);
 bytesort(p->maxZ,p->index2,p->index1,p->fptr,3);

 return p->index1;
 }

Another sort that I have used is the byte_sort

#define getbyte(x,bitshift) (((x)>>(bitshift))&0xff)

void bytesort(long *data, long *indexin, long *indexout, long itemcount,
 int bytenumber)
 {
 long count[257];
 long a,b,c;

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 33

 for(a=0;a<=256;a++)
 count[a]=0;

 bytenumber*=8;

 for(a=0;a<itemcount;a++)
 {
 b=getbyte(data[indexin[a]],bytenumber);
 count[b+1]++;
 }

 for(a=1;a<256;a++)
 count[a]+=count[a-1];

 for(a=0;a<itemcount;a++)
 {
 b=getbyte(data[indexin[a]],bytenumber);
 indexout[count[b]]=indexin[a];
 count[b]++;
 }
 }

A way of handling all cases is as follows. Assign a z value to all

polygons equal to the vertex belonging to the polygon that has the largest z

coordinate value in eye space. Then sort as per painter's algorithm. Before

actually drawing, we need to do a post sort stage to make sure the ordering is

correct for polygons that have z overlap.

Assuming we sorted in increasing values of z, it means that we need

only to compare the last polygon with the consecutive previous polygons for

which the furthest point is in the last polygon's z span. Once the last polygon

is processed, we will not touch it anymore (unless the last polygon is moved

to some other position in the list). Thus, we just consider the list to be one

element shorter and recurse the algorithm.

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 34

Once a polygon has been moved in the list, mark it so that it is not

moved again. If one of the above steps would say that a polygon that has

already been moved in the list should be moved again, then you will have to

use the last resort, clipping. Cutting up the triangle into pieces (clipping) will

be described later.

Of course, one needs not to perform all these tests if they are deemed

to be more expensive than clipping. For instance, the only tests one could do

is test for overlap in z, then x and y on screen, then check for step 2 and if it is

still unresolved, simply clip the polygons and put the pieces where they

belong.

When polygon ordering can not be resolved, pick one of the two

polygons for clipping plane and clip the other polygon with it. Then, insert

the two pieces at the appropriate positions in the list.

A very nice way of doing all these tests is as follows. Calculate

bounding boxes for z value in 3d, and u,v in 2d (screen space, after

perspective transform) of the polygon. Then, sort the bounding boxes in x, u

and v. This can be done in linear time using the radix sort algorithm (or by

exploiting coherence in a comparison sort algorithm). Then, only the

polygons for which the bounding boxes overlap in all three axes need to be

checked further.

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 35

Chapter 6 Engine testing and
results

6.1 Testing the Engine

I tested my engine against different 3D models of various sizes. They
are listed below:

Here is the sample result of executing program:

My test machine:

CPU: AMD Athlon XP 2500+

Memory: 512 MB

OS: Windows XP

(To save space unnecessary space, I will only include the file
contents for the first two model files)

Model file Number of triangles Number of vertices

THING.ASC 48 26

BALL.ASC 68 34

TORUS 192 96

DUCK.ASC 516 270

FACE.ASC 1234 656

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 36

THING.ASC Contents:
Ambient light color: Red=0.078431 Green=0.078431 Blue=0.078431
Solid background color: Red=0 Green=0.001172 Blue=0.013162

Named object: "Light01"
Direct light
Position: X:56.75436 Y:-174.99263 Z:189.181213
Light color: Red=1 Green=1 Blue=1

Named object: "Camera01"
Camera (48.235291mm)
Position: X:421.18631 Y:-136.981934 Z:304.881714
Target: X:40.672749 Y:58.539715 Z:78.467651
Bank angle: 0 degrees
Near 0 Far 1000

Named object: "B"
Tri-mesh, Vertices: 26 Faces: 48
Mapped
Vertex list:
Vertex 0: X:-4.13834 Y:24.238838 Z:101.093712 U:0.479308

V:1.005469
Vertex 1: X:63.257465 Y:24.238838 Z:101.093704 U:0.816287

V:1.005468
Vertex 2: X:63.257462 Y:91.634834 Z:101.093704 U:0.816287

V:1.005468
Vertex 3: X:-4.138344 Y:91.634834 Z:101.093712 U:0.479308

V:1.005469
Vertex 4: X:-4.13834 Y:24.238842 Z:33.697807 U:0.479308

V:0.668489
Vertex 5: X:63.257465 Y:24.238842 Z:33.697807 U:0.816287

V:0.668489
Vertex 6: X:63.257462 Y:91.634644 Z:33.697811 U:0.816287

V:0.668489
Vertex 7: X:-4.138344 Y:91.634644 Z:33.697811 U:0.479308

V:0.668489
Vertex 8: X:29.559563 Y:57.936741 Z:134.791611 U:0.647798

V:1.173958
Vertex 9: X:29.559563 Y:-9.459057 Z:67.395805 U:0.647798

V:0.836979
Vertex 10: X:96.955368 Y:57.936745 Z:67.395805 U:0.984777

V:0.836979
Vertex 11: X:29.559563 Y:57.936749 Z:-0.000187 U:0.647798

V:0.499999
Vertex 12: X:29.559563 Y:125.332542 Z:67.395805 U:0.647798

V:0.836979
Vertex 13: X:-37.836243 Y:57.936745 Z:67.395805 U:0.310819

V:0.836979
Vertex 14: X:-37.836243 Y:57.936741 Z:134.791611 U:0.310819

V:1.173958
Vertex 15: X:29.559563 Y:125.332733 Z:134.791611 U:0.647798

V:1.173958
Vertex 16: X:29.559563 Y:125.332741 Z:-0.000184 U:0.647798

V:0.499999

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 37

Vertex 17: X:96.955368 Y:57.936749 Z:-0.000187 U:0.984777
V:0.499999

Vertex 18: X:29.559563 Y:-9.459054 Z:-0.000189 U:0.647798
V:0.499999

Vertex 19: X:-37.836243 Y:-9.459057 Z:67.395805 U:0.310819
V:0.836979

Vertex 20: X:-37.836243 Y:57.936749 Z:-0.000187 U:0.310819
V:0.499999

Vertex 21: X:96.955368 Y:-9.459057 Z:67.395805 U:0.984777
V:0.836979

Vertex 22: X:96.955368 Y:57.936741 Z:134.791611 U:0.984777
V:1.173958

Vertex 23: X:29.559563 Y:-9.459059 Z:134.791611 U:0.647798
V:1.173958

Vertex 24: X:96.955368 Y:125.332542 Z:67.395805 U:0.984777
V:0.836979

Vertex 25: X:-37.836243 Y:125.332542 Z:67.395805 U:0.310819
V:0.836979

Execution Results:

Figure 9 THING.ASC Polyhedron in wireframe

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 38

Figure 10 THING.ASC Polyhedron in solid render

BALL.ASC Contents

Ambient light color: Red=0.039216 Green=0.039216 Blue=0.039216

Named object: "Object01"
Tri-mesh, Vertices: 114 Faces: 224
Vertex list:
Vertex 0: X: 30.198587 Y: -82.96994 Z: 46.947147
Vertex 1: X: 63.860344 Y: -63.565693 Z: 43.373512
Vertex 2: X: 58.771538 Y: -58.101368 Z: 56.303982
Vertex 3: X: 48.9828 Y: -55.461559 Z: 67.2659
Vertex 4: X: 35.984379 Y: -56.048138 Z: 74.590424
Vertex 5: X: 21.755157 Y: -59.771812 Z: 77.162453
Vertex 6: X: 8.461412 Y: -66.065674 Z: 74.590424
Vertex 7: X: -1.873004 Y: -73.971558 Z: 67.2659
Vertex 8: X: -7.67477 Y: -82.285843 Z: 56.303982
Vertex 9: X: -8.060626 Y: -89.742767 Z: 43.373512
Vertex 10: X: -2.971826 Y: -95.207085 Z: 30.443045
Vertex 11: X: 6.816903 Y: -97.846901 Z: 19.481121
Vertex 12: X: 19.815331 Y: -97.260323 Z: 12.156591
Vertex 13: X: 34.044556 Y: -93.536659 Z: 9.584563
Vertex 14: X: 47.338303 Y: -87.242783 Z: 12.156595
Vertex 15: X: 57.672726 Y: -79.336906 Z: 19.481125
Vertex 16: X: 63.474483 Y: -71.022606 Z: 30.443056
Vertex 17: X: 87.799927 Y: -34.484135 Z: 33.196644
Vertex 18: X: 78.397057 Y: -24.387398 Z: 57.089039
Vertex 19: X: 60.309826 Y: -19.509659 Z: 77.344025
Vertex 20: X: 36.29187 Y: -20.593519 Z: 90.877975
Vertex 21: X: 9.999701 Y: -27.473963 Z: 95.630478
Vertex 22: X: -14.563936 Y: -39.103516 Z: 90.877975
Vertex 23: X: -33.659439 Y: -53.71167 Z: 77.344025
Vertex 24: X: -44.379715 Y: -69.074478 Z: 57.089043

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 39

Vertex 25: X: -45.092686 Y: -82.853081 Z: 33.196655
Vertex 26: X: -35.689804 Y: -92.949821 Z: 9.304267
Vertex 27: X: -17.602591 Y: -97.827553 Z: -10.950727
Vertex 28: X: 6.415371 Y: -96.743706 Z: -24.484695
Vertex 29: X: 32.70755 Y: -89.863251 Z: -29.237181
Vertex 30: X: 57.271191 Y: -78.233696 Z: -24.484688
Vertex 31: X: 76.366707 Y: -63.625534 Z: -10.950726
Vertex 32: X: 87.086975 Y: -48.262718 Z: 9.304283
Vertex 33: X: 98.372787 Y: -0.152683 Z: 17.965897
Vertex 34: X: 86.087326 Y: 13.039344 Z: 49.182812
Vertex 35: X: 62.455227 Y: 19.412415 Z: 75.64724
Vertex 36: X: 31.074257 Y: 17.996286 Z: 93.330193
Vertex 37: X: -3.278118 Y: 9.006544 Z: 99.539627
Vertex 38: X: -35.372059 Y: -6.188192 Z: 93.330193
Vertex 39: X: -60.321537 Y: -25.274664 Z: 75.647232
Vertex 40: X: -74.328255 Y: -45.347137 Z: 49.182816
Vertex 41: X: -75.259789 Y: -63.349754 Z: 17.965902
Vertex 42: X: -62.974339 Y: -76.541786 Z: -13.251005
Vertex 43: X: -39.342247 Y: -82.914856 Z: -39.715431
Vertex 44: X: -7.961272 Y: -81.498726 Z: -57.398399
Vertex 45: X: 26.391113 Y: -72.508987 Z: -63.607838
Vertex 46: X: 58.485062 Y: -57.31424 Z: -57.398399
Vertex 47: X: 83.434555 Y: -38.227757 Z: -39.715424
Vertex 48: X: 97.441254 Y: -18.155277 Z: -13.250981
Vertex 49: X: 93.969269 Y: 34.202015 Z: 0.000001
Vertex 50: X: 80.671585 Y: 48.480961 Z: 33.788944
Vertex 51: X: 55.092388 Y: 55.379124 Z: 62.43383
Vertex 52: X: 21.125866 Y: 53.846313 Z: 81.57373
Vertex 53: X: -16.056873 Y: 44.115891 Z: 88.294769
Vertex 54: X: -50.795101 Y: 27.669224 Z: 81.573723
Vertex 55: X: -77.800232 Y: 7.010176 Z: 62.433826
Vertex 56: X: -92.960983 Y: -14.716108 Z: 33.788944
Vertex 57: X: -93.969276 Y: -34.202 Z: 0.000008
Vertex 58: X: -80.6716 Y: -48.480949 Z: -33.788933
Vertex 59: X: -55.092407 Y: -55.379108 Z: -62.433815
Vertex 60: X: -21.125885 Y: -53.846306 Z: -81.57373
Vertex 61: X: 16.05687 Y: -44.115887 Z: -88.294769
Vertex 62: X: 50.795109 Y: -27.66921 Z: -81.573723
Vertex 63: X: 77.800247 Y: -7.01015 Z: -62.433811
Vertex 64: X: 92.960991 Y: 14.716146 Z: -33.788906
Vertex 65: X: 75.259773 Y: 63.349762 Z: -17.965897
Vertex 66: X: 62.974312 Y: 76.541794 Z: 13.251019
Vertex 67: X: 39.342216 Y: 82.914856 Z: 39.715435
Vertex 68: X: 7.961252 Y: 81.498726 Z: 57.398396
Vertex 69: X: -26.391119 Y: 72.508995 Z: 63.607826
Vertex 70: X: -58.48505 Y: 57.314255 Z: 57.398396
Vertex 71: X: -83.43454 Y: 38.227783 Z: 39.715431
Vertex 72: X: -97.441246 Y: 18.155312 Z: 13.251015
Vertex 73: X: -98.372787 Y: 0.152702 Z: -17.965889
Vertex 74: X: -86.087334 Y: -13.039324 Z: -49.1828
Vertex 75: X: -62.455242 Y: -19.412399 Z: -75.647217
Vertex 76: X: -31.074274 Y: -17.996273 Z: -93.330193
Vertex 77: X: 3.278112 Y: -9.006536 Z: -99.539627
Vertex 78: X: 35.372055 Y: 6.188209 Z: -93.330185

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 40

Vertex 79: X: 60.321552 Y: 25.274691 Z: -75.647217
Vertex 80: X: 74.328247 Y: 45.347172 Z: -49.182774
Vertex 81: X: 45.092678 Y: 82.853081 Z: -33.19664
Vertex 82: X: 35.689804 Y: 92.949821 Z: -9.304252
Vertex 83: X: 17.602575 Y: 97.82756 Z: 10.950741
Vertex 84: X: -6.415382 Y: 96.743698 Z: 24.484695
Vertex 85: X: -32.70755 Y: 89.863251 Z: 29.237181
Vertex 86: X: -57.271191 Y: 78.233711 Z: 24.48469
Vertex 87: X: -76.366692 Y: 63.625546 Z: 10.950739
Vertex 88: X: -87.086967 Y: 48.262741 Z: -9.304249
Vertex 89: X: -87.799942 Y: 34.484142 Z: -33.19664
Vertex 90: X: -78.397064 Y: 24.387402 Z: -57.089027
Vertex 91: X: -60.309841 Y: 19.509663 Z: -77.344025
Vertex 92: X: -36.291882 Y: 20.593513 Z: -90.877975
Vertex 93: X: -9.999702 Y: 27.473961 Z: -95.630478
Vertex 94: X: 14.563941 Y: 39.103516 Z: -90.877975
Vertex 95: X: 33.659458 Y: 53.711678 Z: -77.344017
Vertex 96: X: 44.379719 Y: 69.074493 Z: -57.089008
Vertex 97: X: 8.060633 Y: 89.742775 Z: -43.373508
Vertex 98: X: 2.97183 Y: 95.207085 Z: -30.443031
Vertex 99: X: -6.816909 Y: 97.846893 Z: -19.48111
Vertex 100: X: -19.815334 Y: 97.260315 Z: -12.156584
Vertex 101: X: -34.044556 Y: 93.536644 Z: -9.584553
Vertex 102: X: -47.338299 Y: 87.242775 Z: -12.156585
Vertex 103: X: -57.672718 Y: 79.336906 Z: -19.481112
Vertex 104: X: -63.474487 Y: 71.022614 Z: -30.443035
Vertex 105: X: -63.860344 Y: 63.565681 Z: -43.373497
Vertex 106: X: -58.771542 Y: 58.101364 Z: -56.30397
Vertex 107: X: -48.982807 Y: 55.461552 Z: -67.265892
Vertex 108: X: -35.984379 Y: 56.04813 Z: -74.590424
Vertex 109: X: -21.755156 Y: 59.771801 Z: -77.162453
Vertex 110: X: -8.461406 Y: 66.065674 Z: -74.590424
Vertex 111: X: 1.873016 Y: 73.971558 Z: -67.265892
Vertex 112: X: 7.67478 Y: 82.285851 Z: -56.303959
Vertex 113: X: -30.198587 Y: 82.96994 Z: -46.947147

Execution results:

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 41

Figure 11 BALL.ASC Sphere in wireframe

Figure 12 BALL.ASC Sphere in solid render

Execution results of TORUS.ASC:

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 42

Figure 13 TORUS.ASC in wireframe

Figure 14 TORUS.ASC in solid render

Execution results of DUCK.ASC:

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 43

Figure 15 DUCK.ASC Duck in wireframe

Figure 16 DUCK.ASC Duck in solid render

Execution results of FACE.ASC:

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 44

Figure 17 FACE.ASC Face in wireframe

Figure 18 FACE.ASC Face in solid render

6.2 Result Evaluation

 I wanted to test the performance of z-sort algorithm versus more

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 45

modern algorithms by comparing the run time of each model, and seeing

which runs the fastest. Unfortunately I could not find more complex

models than these, because the ASC format is very old, and very few

packages support it. Most formats I have seen are the .3DS and .MAX

formats.

 As far as the rendering goes, Z-Sort does a decent job of rendering the

surfaces as long as the models are not too complex. The highest polygon

model I have used is only 1234 faces big, and since I have tested it on a

modern computer with a fast processor, any attempt to differentiate the

performance is negligible. To notice a performance decrease would require

a model in the 100,000s of faces, which I could not find unfortunately.

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 46

Conclusion

 With this research project I have understood the principles behind the

rendering of an image onto the screen.

 The Z-sorting algorithm is a very simple algorithm compared to more

modern implementations, and also very inefficient. As we have

demonstrated earlier, it is not suitable for any large-scale and polygon

intensive models, but it handles simple models fairly fast.

 The Z-buffer algorithm is currently the most used method and also the

most efficient. Nearly all 3-D accelerators on the market support

z-buffering, making z-buffers the most common type of depth buffer today.

However ubiquitous, z-buffer tend to have the following drawbacks:

Due to the mathematics involved, the generated z values in a z-buffer

tend not to be distributed evenly across the z-buffer range (typically 0.0 to

1.0, inclusive). Specifically, the ration between the far and near clipping

planes strongly affects how unevenly z values are distributed. Using a

far-plane distance to near-plane distance ratio of 100, 90% of the depth

buffer range is spent on the first 10% of the scene depth range. Typical

applications for entertainment or visual simulations with exterior scenes

often require far plane/near plane ratios of anywhere between 1000 to

10000. At a ratio of 1000, 98% of the range is spent on the 1st 2% of the

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 47

depth range, and the distribution gets worse with higher ratios. This can

cause hidden surface artifacts in distant objects, especially when using

16-bit depth buffers (the most commonly supported bit-depth).

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

 48

Bibliography

[1] Alan Watt, Fabio Policarpo. 3D Games Real-time Rendering and

Software Technology. ACM Press, 2001.

[2] James D. Foley, Andries van Dam, Steven K. Feiner, John F.

Hughes. Computer Graphics Principles and Practice.

Addison-Wesley, 1997.

[3] LaMothe, A. Tricks Of The Windows Game Programming Gurus,

2nd Ed. Sams Publishing, 2002.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

Introduction to Algorithms. McGraw-Hill, 1998.

[5] S. D. Conte, Carl de Boor. Elementary Numerical Analysis.

McGraw-Hill, 1980.

[6] Ming Chieh Lin, Efficient Collision Detection for animation and

robotics, PhD Thesis at University of California at Berkeley, 1993.

[7] Barsky, B., Computer Graphics and Geometric Modeling Using

Beta-splines, Springer-Verlag, New York, 1988.

基本3D繪圖引擎使用Z排序演算法

逢甲大學 e-Paper (92學年度)

