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中文摘要 

這篇論文針對農業中技術勞動力短缺的問題，提出了一個創新的 AI驅動自動化

系統。該系統將先進的視覺目標識別技術與四軸機械框架整合，提供基於圖像

的植物護理評估的端對端解決方案。這包括了肥料施用、自動灌溉、產品成熟

度識別（以便銷售）、以及成長週期追蹤和未來發展分析等關鍵任務的自動化。

系統利用約 926張不同狀態的 Catharanthus roseus 植物圖像數據集，設計了圖像

分類、目標檢測和分割的自動識別過程，專注於葉片狀況和花朵計數。綜合實

驗顯示，系統的高效能表現為：葉片分割的平均準確率約為 95%，葉片枯萎分

析的整體準確率為 96.20%，葉片下垂分類的準確率為 97.59%，花朵計數任務

的 F1分數為 85.37%。這一創新旨在革新作物管理實踐，提高操作效率，並通

過解決勞動力短缺問題和提升植物護理效率，促進農業生產力的提升及「農業

4.0」的出現。 

關鍵字：分割、四軸機械系統、目標檢測、深度學習、圖像分類、農業 
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Abstract 
Addressing the significant skilled labor shortage in agriculture, this paper proposes an 

innovative AI-driven automation system that integrates advanced visual object 

recognition with a four-axis mechanical framework to provide an end-to-end solution 

for image-based plant care assessment. This includes the automation of essential tasks 

such as fertilization, watering, identification of product maturity for sale, and growth 

cycle tracking and analysis for future development. Utilizing a dataset of 

approximately 926 images of Catharanthus roseus plants in various states, the system 

designs automated recognition processes for image classification, object detection, 

and segmentation, focusing on leaf conditions and flower counting. Comprehensive 

experiments demonstrate the system's high efficacy, with an average accuracy of 

approximately 95% for leaf segmentation, 96.20% overall accuracy in leaf withering 

analysis, 97.59% accuracy in leaf drooping classification, and an F1-score of 85.37% 

for the flower counting task. This innovation aims to revolutionize crop management 

practices, enhance operational efficiency, and contribute to the advancement of 

agriculture by addressing labor shortages and improving plant care efficiency, 

ultimately promoting agricultural productivity and the emergence of Agriculture 4.0. 

Keyword：Agricultural, Deep Learning, Segmentation, Object 

Detection, Image Classification, Four-Axis Mechanical System 
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1. Introduction 

 
The agricultural sector faces a significant challenge 

marked by a scarcity of skilled labor, prompting the explo- 

ration of innovative solutions to sustain and enhance pro- 

ductivity. In response to this pressing issue, this study in- 

troduces an advanced AI-driven automation system specif- 

ically tailored for agricultural applications. This system 

aims to revolutionize traditional crop management prac- 

tices by leveraging cutting-edge technologies, particularly in 

the domain of flower cultivation. Figure 1 illustrates the 

demographic composition of the agricultural workforce, 

revealing a pronounced trend towards an aging popula- 

tion [1], with 63% of the laborers being above 50 years 

old. This underscores the pressing need for modernization 

and automation to mitigate labor shortages. 

AI Pal [2], a Taiwanese startup, aims to enhance agri- 

cultural productivity by leveraging drones and AI. Their 

cloud-based platform provides services including drone 

surveying, image analysis, and agricultural management 

advice. This technology swiftly identifies field stressors, 

 

 

 

Figure 1: Agricultural population age distribution pie chart 

 

 
diseases, and pests, facilitating informed decision-making 

on irrigation, fertilization, and pest control. AI Pal’s part- 

nerships with local governments in Taiwan have yielded 

significant improvements in various agricultural  fields, such 

as rice paddies, pineapple orchards, and mango or- chards, 

aiming to reduce crop losses and increase efficiency. By 

pioneering smart agriculture technologies, AI Pal has 

successfully contributed to the transformation and mod- 

ernization of Taiwan’s agricultural sector. 

Inspired by recent technological advancements, this pa- 

per proposes utilizing deep learning models to introduce an 

automation system for real-time plant care assessments, 

advancing towards Agricultural 4.0. The system is de- 

 September 7, 2024 
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signed to identify common plant defects, such as yellow- ing 

leaves, discrepancies in flower quantity, and instances of leaf 

curling or drooping, using visual-based identifica- tion 

techniques. These techniques are integrated into a four-axis 

mechanical slide rail system that enables auto- matic 

watering and fertilization for precision agriculture. In brief, 

this hardware system is controlled by an Arduino Uno and a 

CNC shield, enabling bidirectional communi- cation 

between hardware devices and software automation for 

accurate plant health diagnostics and efficient irriga- tion. 

While the proposed system initially targets flower cul- 

tivation, its potential extends beyond this domain, laying 

the groundwork for future research in expanding recogni- 

tion systems to accommodate various plant species and 

agricultural practices. By offering a scalable and sustain- 

able solution to labor shortages in agriculture, this work 

aims to significantly enhance operational efficiency while 

mitigating labor constraints, fostering a paradigm shift to- 

wards increased agricultural productivity. 

In short, the main findings of our study are highlighted 

as follows: 

1. Compilation of a varied dataset, consisting 926 images 

of Catharanthus roseus plants. 

2. Introduction of a comprehensive end-to-end recogni- 

tion process, incorporating image classification, ob- 

ject detection, segmentation algorithms, and quantifi- 

cation of flowers. 

3. Development and utilization of a four-axis mechani- 

cal slide rail system for capturing images, along with 

watering and fertilization actions. 

4. Seamless integration of automated recognition tech- 

nologies to activate the hardware components 

promptly. 

5. Extensive experimental work and thorough analysis 

conducted to assess the performance and effectiveness 

of the developed system. 

In the subsequent sections, the paper provides a compre- 

hensive overview of the research, presenting a thorough re- 

view of relevant literature in Section 2. Following this, the 

proposed methodology is elaborated in Section 3, and the 

experimental setup is detailed in Section 4. Key findings 

and empirical evidence are discussed in Section 5. Through 

this structured approach, the paper aims to offer a cohe- 

sive understanding of the study and its implications within 

the broader context of agricultural innovation, concluding 

in Section 6. 

 
2. Literature Review 

Despite significant advancements in image processing 

techniques over the past few decades, the development of 

automated plant monitoring and analysis research remains 

constrained, primarily due to the lack of a dataset 

for ex- perimental evaluation. Section 2.1 offers a 

concise review of previous studies dedicated to 

automated plant analysis, emphasizing their major 

research outcomes. Furthermore, a research gap is 

identified in Section 2.2, underscoring the necessity 

for the proposed system. 

2.1. Automated plant recognition system 

Precision agriculture has been embraced by 

research groups worldwide, aiming to leverage 

cutting-edge tech- nologies to enhance the accuracy 

and efficiency of agricul- tural practices. This 

section highlights and discusses the applications 

and innovations of significant works, under- 

scoring the importance of precision agriculture 

technolo- gies in promoting a more informed and 

precise approach to managing plant health and 

water usage. Some related works published 

previously are reviewed in this section, and a brief 

summary of these papers is provided in Ta- ble 

1. 

A recent study conducted by Toğaçar et al. by 

[3], whereby they focus on the classification of 

flower species, employing a hybrid approach that 

combines feature selec- tion techniques with CNN 

models. This work capitalizes on an openly 

accessible dataset that contains a substantial 

collection of 4242 flower images. These images 

were parti- tioned into two parts, where the 

training and test sets are with the data distribution 

of 80% and 20%, respectively. To discern the 

most influential features for classification, the 

study incorporated feature selection techniques 

such as the genetic algorithm (GA) [8] and the 

tabu search al- gorithm [9] . Subsequently, a 

Support Vector Machine (SVM) classifier [10] 

was deployed to categorize the flower images into 

five distinct classes. The outcome was nothing short 

of remarkable, boasting an impressive overall 

accu- racy rate of 98.91%. This was achieved by 

meticulously selecting the top 2500 features to 

ensure optimal feature selection. Nonetheless, 

there appears to be a lack of suf- ficient detail 

regarding the plant, particularly concerning 

aspects such as stem structure or leaf 

characteristics. The focus primarily revolves 

around the identification of flower species. 

On a related note, [4] proposes an innovative 

hybrid method centered on CNN architecture for 

precise clas- sification of flower species. This 

strategy harnesses the capabilities of two pre-

trained CNN models, specifically VGG-16 [11] and 

AlexNet [12], originally trained on the ImageNet 

dataset [13], to streamline the process of feature 

extraction and selection, resulting in improved 

classifica- tion accuracy. The research utilizes two 

distinct datasets: Flower17, comprising 1360 

images representing 17 diverse flower species, and 

Flower102, which encompasses a more extensive 

collection of 8189 images spanning 102 distinct 
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flower categories. Notably, the study reveals that 

by opti- mizing feature selection using specific 

feature layers from AlexNet for Flower17 and 

selective feature layers from both AlexNet and 

VGG-16 for Flower102, classification ac- curacy 

achieves impressive results of 96.39% and 82.68%, 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Summary of the existing methods proposed for the automated recognition plant monitoring task 

 
No. Ref. Task Target Images Labels Model Accuracy 

1 [3] Classification Flower 4242 5 Multiple 98.91% 

2 [4] Classification Flower 9549 119 AlexNet & VGG-16 96.39% 

3 [5] Object Detection Flower & Fruit 2415 3 FaceNet 97.70% 

4 [6] Semantic Segmentation Leaf & Stem 5460 6 PSegNet 94.52% 

5 [7] Classification Crop species & Diseases 54,306 38 AlexNet & GoogLeNet 99.35% 
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respectively, highlighting the effectiveness of the proposed 

methodology. However, since this paper primarily concen- 

trates on the technical intricacies of feature selection and 

classification, it lacks real-world implications to evaluate the 

effectiveness of the proposed method. 

On the other hand, [7] utilized CNN model was effec- 

tively employed to accurately identify a wide range of 

26 distinct crop diseases solely from individual leaf im- 

ages. This innovative solution holds substantial poten- tial 

for advancing crop management practices and ensuring 

global food security. To achieve this, the study harnessed 

a publicly available dataset known as the PlantVillage 

dataset [14], comprising an extensive collection of 54,306 

images portraying both diseased and healthy plant leaves. 

The CNN was meticulously trained using pre-trained CNN 

models, specifically AlexNet [12] and GoogLeNet [15], en- 

abling it not only to classify diverse crop species but also to 

accurately determine disease statuses across a wide spec- 

trum of 38 categories. These encompassed 14 crop species 

and 26 specific diseases. Remarkably, the model demon- 

strated exceptional performance, achieving an impressive 

accuracy rate exceeding 99%. This accomplishment un- 

derscores the significant promise of deep learning in ad- 

dressing critical agricultural challenges. However, it is 

highlighted that there is a significant drop in accuracy to 

31.4% when tested on real-world images compared to the 

impressive 99.35% reported.  This emphasizes the need for 

a more diverse training dataset to improve generalization 

accuracy. Additionally, the model’s limitation to classify- 

ing single upward-facing plant leaves restricts its applica- 

bility, as diseases may manifest on different plant parts or 

from varied angles. 

In a higher-dimensional context, the study in [6] delved 

into 3D point cloud segmentation, introducing an innova- 

tive approach called PSegNet, enabling simultaneous se- 

mantic and instance segmentation in the 3D space. This 

novel method capitalizes on a 3D dataset acquired through 

laser scanning, which was initially established by Conn et al. 

[16, 17]. Notably, the dataset encompasses three dif- ferent 

crops—tomato, tobacco, and sorghum—capturing their 

growth status in various environmental conditions. 

Impressively, the  research  yielded  commendable  results 

in semantic segmentation, with quantitative performance 

metrics exceeding 85% for the entire test dataset. Remark- 

ably, the segmentation results exhibited a higher level of 

accuracy for leaves compared to stems. This study repre- 

sents a significant advancement in enhancing the precision 

of plant point cloud segmentation, holding promising im- 

plications for diverse applications in agriculture and envi- 

ronmental sciences. 

A more recent study conducted in [5] introduces an in- 

novative approach for detecting fruits and flowers in a 

strawberry field, employing the Faster R-CNN architec- 

ture [18] with backbone model of ResNet-50 [19]. Specif- 

ically, they harness the FaceNet model [20] to learn fea- 

ture embeddings, enabling the clustering of strawberry 

objects. This study employs two distinct clustering tech- 

niques, namely Density-Based Spatial Clustering of Ap- 

plications with Noise (DBSCAN) [21] and threshold clus- 

tering, to categorize strawberry objects into three groups: 

flowers, unripe fruits, and ripe fruits. Remarkably, the 

overall accuracy achieved with DBSCAN is 99.26%, while 

threshold clustering yields an accuracy of 97.70%, demon- 

strating the efficiency of both clustering methods in accu- 

rately detecting fruits and flowers in the strawberry field. 

While the study relies solely on an object detection sys- 

tem, it may struggle to accurately identify diseases or de- 

fects within plants. Object detection systems are limited 

in their ability to precisely delineate subtle abnormalities. 

In contrast, the semantic segmentation method can offer a 

more detailed classification up to the pixel level, enabling 

finer-grained identification of affected regions within plant 

images. 

 
2.2. Research Gap 

Despite the high accuracy of plant classification or de- 

tection demonstrated by the studies mentioned above, au- 

tomation in plant monitoring and management remains an 

area ripe for further research and development. Although 

existing research has shown promising results in identify- 

ing common plant defects, crop species, and disease deter- 

mination, there are still significant gaps in the implementa- 

tion of automated watering and fertilization systems. In- 

tegrating these systems with plant health diagnostics is 

essential for achieving precision agriculture. Furthermore, 

there is a clear need for ongoing research efforts aimed 

at refining automated plant care systems to enhance their 

feasibility and applicability in real-world agricultural set- 

tings. 
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3. Proposed Method 

The main objective of this work is to develop a sustain- 

able plant monitoring and irrigation system that assesses 

growth conditions to determine their suitability for sale. 

Initially, a software algorithm is implemented to monitor 

if the leaves of the plants exhibit a yellowish color, in- 

dicating the need to increase the frequency of watering 

and apply fertilizers. In cases where leaves show signs of 

drooping, this suggests either a lack of water or ex- cessive 

exposure to sunlight, necessitating adjustments in watering 

quantity or advising farmers to reduce the du- ration of plant 

exposure to sunlight. Consequently, hard- ware devices are 

constructed for watering and fertilizing purposes. When the 

number of flowers reaches a prede- termined threshold, 

farmers are notified that the plant is ready for sale. Figure 2 

depicts the overview flowchart of the proposed pipeline, 

which consists of seven main steps: 

(a) machine platform construction, (b) data collection, (c) 

leaf detection, (d) machine control, (e) flower detection, 

(f) determination of plant readiness for sale, (g) interac- 

tive platform design and data analysis. The following sub- 

sections will elucidate each step with detailed procedures. 

3.1. Machine Platform Construction 

The hardware machine utilized is a customized four-axis 

mechanical slider with dimensions of 48 cm 46 cm 44 

cm.  To control the motion of the rail system precisely, three 

stepper motors are used to navigate movement along the 

XYZ axes. A lightweight camera is mounted on the rotatable 

Z-axis at a tilted angle (45°) facing downward, facilitating 

360° capture of plant images. At the bottom of the Z-axis, 

a stepper motor is installed to manage the rotation. For 

watering or fertilizing purposes, a spray noz- zle is 

positioned on the Z-axis. Considering the impact of weight 

and torque, the use of a high-torque stepper motor is 

considered essential. This four-axis mechanical slider 

system is governed by an Arduino Uno paired with a CNC 

Shield. MATLAB software acts as the image recognition 

tool, ensuring seamless bi-directional communication with 

the Arduino Uno. Additionally, the designed machine plat- 

form encompasses functionalities such as transmitting co- 

ordinate information, sending arrival signals, performing 

image recognition, and managing the spray nozzle switch, 

thus achieving a fully automated control system for plant 

growth assessment and care. Figure 3 presents an exploded 

view of the constructed machine for enhanced visualiza- tion. 

3.2. Data Collection 

All images evaluated in this experiment were self- 

collected data. To capture a wide range of images for each 

plant, two cameras were used: one mounted on the 

rotating Z-axis of the hardware mechanism, strategically 

positioned at a 45°, and another tilted 90° above the plant 

head, capturing photos of the plant from different orienta- 

tions by rotating on the axis (a). Two Logitech C922 Pro 

Table 2: Specification and configuration of the camera to collect the 
experimental data 

 

   Feature  Description  

Model  Logitech C922 Pro Stream 

Resolution 1920 1080 

Frame/ second 30fps 

Camera mega pixel 3 

Focus type Autofocus 

Diagonal field of view 78° 

  Digital zoom 1.2x  

 

 
Stream webcams with detailed specifications are tabulated 

in Table 2. The experimental environment is enclosed with 

a white background, and constant lighting conditions are 

maintained using ILL-DP2454-4CR in conjunction with 

LED light panels. 

To ensure a sufficient amount of experimental data could 

be collected, Catharanthus roseus was chosen for its ease of 

growth and low maintenance requirements. With minimal 

care, such as consistently moist soil and balanced fertiliza- 

tion, this plant can produce showy and vibrant red flowers. 

In total, 15 plants were utilized to address diverse variables 

influencing plant growth and encompass different growth 

stages, resulting in 926 images for the experimental data. 

Notably, the captured features include discoloration, curl- 

ing, and drooping of leaves, the presence or absence of 

flowers, and the plant’s transition from seedling to flower- 

ing. 

3.3. Leaf Detection 

After acquiring the image data, the leaf regions in the 

images will be identified for analysis of drooping and with- 

ering conditions. To achieve this, two specialized deep 

learning  techniques  are  utilized:  semantic  segmentation 

is applied to identify withering conditions, while object 

classification is employed to detect drooping conditions. 

A more detailed explanation of the methods, along with their 

respective intuition and insights, is provided below. 

• Withering determination: 

In brief, determining plant withering conditions in- 

volves two main steps: leaf localization  and  color pixel 

thresholding. For leaf localization, the deep learning 

technique known as semantic segmentation, 

specifically the  DeepLabV3+  [22]  algorithm  with the 

ResNet-18 [19] CNN architecture, will be used. 

DeepLabV3+ employs an encoder-decoder architec- 

ture, where the encoder handles information at differ- 

ent grid scales through dilated convolutions, and the 

decoder focuses on refining segmentation results to 

highlight object boundaries. The inclusion of Atrous 

Spatial Pyramid Pooling (ASPP) allows the algorithm 

to gather multi-scale contextual information while 

preserving spatial accuracy, facilitating precise pixel- 

level classification for detailed leaf geometry analysis. 
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Figure 2: The proposed plant monitoring and irrigation system encompasses seven main steps: (a) machine platform construction, (b) data 
collection, (c) leaf detection, (d) machine control, (e) flower detection, (f) determination of plant readiness for sale, and (g) interactive platform 
design and data analysis. 

 
 

 
Figure 3: The exploded view of the hardware mechanism system 

 

 
The process begins with pixel annotation of the im- 

ages, categorizing them into two groups: background 

and leaf. This task is accomplished using the Image 

Labeler application in MATLAB 2022b software, with 

an annotation example shown in Figure 4 (a), where 

leaf pixels are marked in blue and background pix- 

els in orange. After training the DeepLabV3+ model 

for leaf segmentation, the model efficiently identifies 

target regions for the next stage, which involves color 

thresholding to determine withering. 

The following analysis focuses solely on the yellow 

channel of the pixels. Thresholds for the red, green, 

and blue channels are set to above 130 for red and 

green, and below 145 for blue, under uniform lighting 

conditions, to single out yellow pixels. Subsequently, 

the proportion of yellow pixels is calculated to assess 

withering. A plant is considered to be in a withering 

condition if the yellow proportion exceeds 20% of the 

total image area; it is deemed healthy if the propor- 

tion is below 20%. Figure 4 (b) offers a visual rep- 

resentation of the results following the application of 

leaf segmentation and color thresholding techniques. 

The purple regions indicate the identified yellow seg- 

ments. 

 
• Drooping determination: 

To identify curled or drooping leaves in plants, an im- 

age classification approach employing transfer learn- 

ing is implemented. The pre-trained ResNet-18 model 

is selected as the CNN architecture, and the model is 

fine-tuned with images illustrating curled and non- 
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Figure 4: (a) Leaf annotation in the Image Labeler application, where 
leaf pixels are marked in blue and background pixels in or- ange, 
and (b) the process of executing leaf segmentation and pixel 
thresholding to identify withering conditions. 

 
 

curled conditions. It is important to note that the pre-

trained model was previously trained on Ima- geNet 

[13], which consists of more than 1 million im- ages 

across 1000 categories. The assessment of droop- ing 

relies on images captured from various angles, leading 

to the proposal of a simple  voting  mecha- nism to 

determine whether a plant is in a drooping or healthy 

condition. An image displaying both healthy and 

drooping conditions is shown in Figure 5. 

 

3.4. Machine Control 

To construct an automated plant health monitoring sys- 

tem, the designed machine incorporates functions for both 

watering and fertilizing. Specifically, the system initiates 

watering when the yellowish discoloration of the leaf re- 

gion, indicative of withering, exceeds 20% of the entire im- 

age. Conversely, fertilization is activated solely when the 

yellowish discoloration in the leaf region surpasses 40%. 

The criteria of triggering the watering and fertilizing ac- 

tions can be summarized as: 

Figure 5: The exemplar of plants with drooping and healthy condi- 
tions. 

 
 
 
 

Withering = 
20% < x < 40% , watering; 

x ≥ 40% , fertilizing and watering 

(1) 

Additionally, the presence of a drooping condition also 

triggers the watering function. That is to say that when the 

leaves presented mild yellowing and curling, it is a sig- nal 

of deficiency in nutrients and water, thus necessitating 

fertilization and watering. 

In the context of the irrigation system, the nozzles des- 

ignated for watering and fertilizing are precisely positioned 

at the z-axis manipulator rod angled at 45°, enhancing the 

efficiency of the rotating spray. The system utilizes an in- 

novative design incorporating a three-way pipe equipped 

with a check valve, allowing for the installation of just one 

nozzle at the end. This setup effectively blocks the reverse 

flow of water and liquid fertilizer. Positioned at this cru- 

cial juncture are two 5V submersible motors, connected 

to a high-voltage trigger relay that facilitates the switch- 

ing of motor functions. MATLAB software is instrumental 

in issuing command codes to the Arduino Uno, triggering 

the system’s activation. The mechanisms for watering and 

fertilizing are depicted in Figure 6. 

3.5. Flower Detection 

To enable accurate flower counting, an object detection 

method is utilized to initially identify flower positions, fol- 

lowed by counting the detected flowers. The foundation for 
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Figure 6: (a) The Z-axis manipulator rod, equipped with a nozzle for 
both watering and fertilizing functions, (b) triggering of the watering 
action, and (c) activation of the fertilizing action. 

 
 

the flower detection algorithm is the Image Labeler tool in 

MATLAB software, as demonstrated in Figure 7 (a).  It is 

crucial to acknowledge that the target objects are an- 

notated within rectangular bounding boxes, contrasting 

with the pixel-based annotations used in Section 3.3 for 

leaf segmentation. 

The Faster R-CNN model [23], with ResNet-50 [19] as 

the backbone architecture, is deployed for object detec- tion. 

This algorithm introduces a Region Proposal Net- work 

(RPN), significantly boosting the model’s capacity to 

generate candidate regions. Additionally, Faster R-CNN 

adopts an end-to-end training methodology, streamlining 

and enhancing the training process for  better  efficiency and 

integration. The execution of flower detection, inclu- sive of 

the confidence scores for each detection, is shown in Figure 

7 (b). 

Subsequently, a straightforward count of the detected 

bounding boxes is conducted to determine the number of 

flowers present on each plant. To aggregate the number of 

flowers, an average of the flowers identified is calculated for 

each image taken of the plant. It is important to note that 

images in which no flowers were detected are excluded from 

the calculation to avoid potential inaccuracies stemming 

from angles where flowers are not visible. 

 

3.6. Plant Readiness for Sale 

To ascertain whether a plant is ready for sale, it must 

meet three fundamental criteria: it should not be drooping 

or withering, and it must have a minimum of five flowers. 

The evaluation of these criteria involves a detailed analysis 

of the plant’s physical condition and its flowering state. 

 

1. Non-drooping: The plant must exhibit a healthy pos- 

ture without any signs of drooping leaves or stems. 

Drooping is often an indicator of insufficient water 

uptake or overexposure to heat, which can affect the 

plant’s overall health and aesthetic appeal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: (a) Annotation of flower bounding boxes in the Image La- 
beler application, and (b) the process of conducting flower detection 
and counting. 

 
 

2. Non-withering: For a plant to be considered non- 

withering, its overall appearance must be vibrant and 

free from signs of decay or dehydration.   The spe- cific 

threshold for withering determination in this con- text 

is set at a yellowing percentage of less than 20%. This 

means that less than 20% of the plant’s foliage should 

show yellowing, which is commonly associated with 

nutrient deficiencies, over-watering, or under- watering. 

3. Minimum flower count: A plant must have at least 

five fully developed flowers to qualify for sale. This 

criterion ensures that the plant is attractive to poten- 

tial buyers and indicates a healthy growth stage. The 

flower count serves as a direct indicator of the plant’s 

reproductive success and overall vitality. 

 

3.7. Interactive Platform and Data Analysis 

Once the models for evaluating leaf condition and flower 

count are fully trained, they are deployed to assess the 

plant’s growth status in real time. During this assessment 
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S 
  ci i  

phase, a total of 11 images are captured for each plant (10 

at 45° angles and 1 at a 90° angle) to ensure a compre- 

hensive analysis. The condition of the leaves, including 

any signs of withering and drooping, is then aggregated 

and displayed on the GUI, indicating whether the plant 

requires fertilization and watering interventions. Simulta- 

neously, the GUI also presents the total flower count, pro- 

viding a holistic view of the plant’s health and flowering 

status on the same screen. An example of the designed 

GUI is shown in Figure 8. Specifically, the left part of the 

window lists the criteria for judging withering, water- ing, 

and selling conditions, while the right part shows the on-

the-spot leaf segmentation, flower detection, and flower 

counting results. 

Upon completing these recognition tasks, the GUI tran- 

sitions to a final screen that provides an in-depth analy- 

sis of the plant’s overall growth condition, offering guid- 

ance on whether the plant is sufficiently healthy and well- 

developed to be considered ready for sale. This final in- 

terface is designed to make interaction with the system as 

intuitive as possible, ensuring that users are thoroughly 

informed about the health and marketability of the plant. 

By offering a detailed yet accessible overview of the plant’s 

condition, the enhanced GUI supports informed decision- 

making about its suitability for sale. In short, this inter- 

active GUI aims to provide a seamless and enlightening 

user experience, effectively bridging the gap between the 

complexities of recognition technology and user-friendly 

presentation. 

 

 
4. Experiment Setup 

 
This section elaborates on the details of the dataset ac- 

quired and the experimental configuration used for train- ing 

the models for  various  tasks  (i.e.,  leaf  segmenta- tion, 

withering identification, drooping identification, and flower 

counting). Additionally, the performance metrics adopted 

for each task are elucidated in this section. 

 

4.1. Database Description 

 

The database used in this experiment comprises 926 im- 

ages collected from 15 varieties of chrysanthemum plants. 

These images represent various growth conditions of the 

plants, as detailed in Table 3. Specifically, the dataset 

includes 49 images of withering plants, 12 images of with- 

ering plants that contain flowers, 404 images of plants that 

Table 3: The experimental plant samples with different health con- 
ditions 

Condition Number of samples 

Withering  49 

Withering and contain flowers 12 

Contain flowers 404 

Drooping 107 

Drooping and contain flowers 69 

Seedlings (leaves only) 285 

Total 926 

 

 
4.2. Experiment Configuration 

The experiments were conducted on  a  platform equipped 

with an Intel(R) Core(TM) i7-12700H 2.3 GHz CPU and an 

NVIDIA®  GeForce RTX™  3060  Laptop GPU, with 16GB 

of memory. MATLAB 2022b was used for training the 

image recognition models. The input size for each CNN 

model varied slightly depending on the se- lected backbone 

architecture, necessitating resizing of the database. The 

detailed training  configurations  for  each task are provided 

in Table 4, which includes information on the tasks, 

approaches, backbone architectures, input sizes, learning 

rates,  maximum  epochs,  and  mini-batch  sizes. In short, 

the three tasks were trained based on ResNet backbone 

architectures with input sizes of 400× 400× 3 or 

640× 480× 3. 

4.3. Performance  Metric 

Since the developed system involves three tasks—leaf 

segmentation, drooping determination, and flower count- 

ing—various metrics were used to evaluate the perfor- 

mance of the algorithm for each task. The rationale behind 

each metric, along with the corresponding mathematical 

equations, is detailed in the following subsections. 

 

4.3.1. Leaf segmentation 

To evaluate the performance of leaf segmentation, four 

metrics were adopted: mean accuracy (mAcc), mean In- 

tersection over Union (mIoU ), weighted Intersection over 

Union (WIoU ), and mean Boundary F1-Score (mBF ). 

1. mAcc: 

This metric assesses the accuracy of correctly identify- 

ing pixels for each class (e.g., background and leaves). 

It provides an overall measure of how well the model 

is performing in terms of pixel-wise classification and 

can be expressed as: 

contain flowers, 107 images of drooping plants, 69 images 

 
1 Σ

 Σ TPs,c 

!
 

seedlings with leaves only. To provide a clearer visualiza- 

tion of the images used in the experiments, some sample 

mAcc = 
S s=0 Σ

s,ci 

TPs,ci 
+ FPs,ci 

images are shown in Figure 9. Specifically, the figure por- trays the three different health conditions captured at both 45° 

of drooping plants that contain flowers, and 285 images of (2) 
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and 90° angles. where S represents the total number of images in- 

volved in the testing evaluation and C denotes the 

total number of classes (i.e., 2). On the other hand, 
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S 

  s,ci s,ci  WIoU = 
S ci=0 

 

 
Figure 8: The interactive GUI displays the results of leaf segmentation, flower detection, and flower counting, providing intuitive insights for 
further actions such as watering, fertilizing, or determining readiness for sale. 

 

TPs,ci and FPs,ci are the number of true positive and 

false positive instances for a specific class ci within 

the image s, respectively. 

 
2. mIoU : 

IoU measures the degree of overlap between detected 

leaves and the ground truth annotation regions. It 

calculates the ratio of the intersection area of the de- 

tected object region and the ground truth annotation 
region to their union area. mIoU averages this value 

where FNs,ci is the number of false negative instances 

for a given class ci within the sample s. 

3. WIoU : 
This metric is the weighted average of IoU for each 

class,  where the IoU  for each class is weighted by its 

pixel count(Ps,ci ). This ensures that classes with more 

pixels contribute more to the overall IoU , pro- viding a 

balanced evaluation that accounts for class 
imbalances. 

across both the background and leaves classes, pro- 

 

1  Σ 
 
Σ|C| 

 

 

P ×  TP 
 

      

1  Σ 
 

  1    Σ
|C|   T Ps,ci  

(4) 

viding a comprehensive measure of segmentation ac- 

curacy. s=0 
C 

ci=0 P s,ci )(TPs,ci 
+ FPs,ci + FN ci ) 
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mIoU = 
S 

 

s=0 

 
|C| 

 

ci=0 

TPs,ci 
+ FPs,ci + FN 

s,ci  
4. mBF : 

This metric evaluates the boundary quality of the seg- 

(3) mentation, measuring how well the model delineates 
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Rate 

k 

 

 
 

Figure 9: Sample images with three different healthy conditions captured at two angles 

 
Table 4: The training configuration for the three tasks (i.e., leaf segmentation, drooping determination, and flower detection) involved in the 
plant health diagnostics and irrigation process 

 

Backbone 

Architecture 
Input Size 

Learning
 

Max 

Epoch 

Mini-batch 

Size 

1 Leaf segmentation DeepLabV3+ ResNet-18 400× 400× 3 0.0001 5 2 

2 Drooping  determination Binary classification ResNet-18 640× 480× 3 0.0001 8 2 

3 Flower counting Faster R-CNN ResNet-50 400× 400× 3 0.00001 110 1 

 

 

the boundaries of the segmented regions. It is particu- 

larly useful for tasks where precise boundary detection 

is crucial. 

where cii represents the number of true positives for 

class i, while cij denotes the number of samples incor- 

rectly classified as class i instead of class j. k is the 

total number of classes. 

1 Σ 2T Ps,ci 

!
 

mBF = 
S 

 

s=0 

Σ
s,ci 2TPs,ci 

+ FPs,ci + FN 
 
s,ci  

(5) 

2. Precision: 

It reflects the model’s ability to accurately predict 

positive instances. In the context of binary classi- 

4.3.2. Drooping and Withering Determination 
To determine the drooping condition, this study em- ploys 

a binary classification approach.  After identifying leaf 

regions, they are categorized into two groups: non- drooping 

and drooping. For yellowing analysis, a three- category 

classification method is utilized, categorizing yel- 

fication (drooping/ non-drooping), it measures how 

many of the identified drooping instances are actually 

drooping.  For  three-class  classification  (yellowing), 

it indicates how accurately each class (no yellowing, 

mild yellowing, severe yellowing) is identified. 

 
k 

lowing severity into three levels: no yellowing, mild yellow- 

ing, and severe yellowing. When assessing the performance Precision = 
Σ 
Σ 

cii
 

 
cji 

(7) 

of the classification models, four key metrics are employed: 
accuracy, F1-score, precision, and recall. 

 
3. Recall: 

i=1 j=1 

1. Accuracy: 

It measures the ratio of correctly classified samples to 

the total number of samples. It provides an overall 

effectiveness of the model across all classes (binary or 

three-class). 

Task Approach 

S 
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k 

Σ Σ Σ 

Accuracy = i=1 ii  (6) Recall = 
  ii  

It measures the model’s ability to identify all 

actual positive instances. In binary classification, 

it evalu- ates how many of the actual drooping 

instances are correctly identified. For three-class 

classification, it assesses how well each class is 

detected. 

Σk 
c Σ c 

(8) 
k 
i=1 

k 
j=1 

cij i=1 
k 
j=1 

cij 
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= 2 ×  

4. F1-score: 

It is the harmonic mean of precision and recall, offer- 

ing a balanced assessment of the model’s performance. 

It is particularly useful in situations where the class 

distribution is imbalanced, as it considers both false 

positives and false negatives. 

of the proposed system are finalized in Section 5.5. It is im- 

portant to note that this study utilizes a newly collected 

dataset of plant specimens, encompassing tasks  such  as leaf 

segmentation, leaf yellowing/ withering identification, leaf 

curling classification, and flower counting. Therefore, 

comparisons with existing literature may not be directly 

applicable to this research. The data collection involves 

F1-score 
Precision ×  Recall 

Precision + Recall 

4.3.3. Flower Counting 

(9) 
15 plants exhibiting various growth conditions, including 

seedlings and mature plants, varying degrees of leaf yel- 

lowing, presence or absence of leaf curling, and different 

flower bud counts. Additionally, the dataset includes plant 

Note that this flower counting process initially relies on 

the object detection algorithm (i.e., Faster R-CNN), for 

which the commonly used metric is IoU . However, since the 

ultimate aim of this flower counting task is to accu- rately 

assess the number of flowers present in a video cap- turing 

the plant from a 360° perspective, resulting in a to- tal of 11 

images per video, additional analysis is required after 

detecting the flowers.   Consequently,  three metrics are 

employed in this flower counting task: precision, re- call, 

and the F1-score. The metrics offer intuitive insights into 

quantifying the error between the number of flowers 

identified by the model and the actual number. The math- 

ematical formulas for each metric are provided below: 

1. Precision: 

This metric indicates the accuracy of the model in 

correctly identifying flowers. A high precision value 

suggests that when the model predicts the presence 

of a flower, it is correct most of the time. 

photos captured from different angles. 

 

5.1. Results of leaf segmentation 

In this section, a dataset of 395 images was extracted 

from the database for leaf segmentation, and it was split 

into training and testing sets in an 8:2 ratio for cross- 

validation. This process was repeated five times to en- 

sure thorough testing of all data. The results of leaf seg- 

mentation are presented in Table 5, indicating satisfac- 

tory performance across all validation metrics: mAcc at 

95.01%, mIoU at 0.9183, WIoU at 0.9747, and mBF at 

0.9373. These results indicate the effectiveness of the pro- 

posed framework in leaf detection. 

However, it is important to note that  leaf  pixels  oc- cupy 

less than one-fifth of the entire image area. There- fore, 

when calculating WIoU , the background IoU score is 

weighted higher, while mIoU  provides a fairer evaluation by 

emphasizing leaf scores, thereby mitigating the issue of 

inflated IoU due to the dominance of background pixels 

 

 
2. Recall: 

Precision =  
TP 

TP + FP 
(10) in the image. Consequently, based on the mIoU reported in 

Table 5, the proposed method typically outperforms in leaf 

segmentation tasks, with an average score of 0.9183, 

peaking at 0.9434 during the first validation. However, 

It indicates the ability of the model to capture all the 
flowers present in the video. A high recall value sug- 

gests that the model can identify most of the flowers 

present. 

it is discerned that the values in the fifth cross-validation 

are lower. This is attributed to the presence of more in- 

stances of leaf curling in the test set, which presents needle- 

like leaves, thereby increasing recognition difficulty. Apart 

from the challenges posed by the original shape and color 

 

 
3. F1-score: 

Recall =  
TP 

TP + FN 
(11) of leaves, the varied backgrounds from different shooting 

angles also contribute to the difficulty in extracting plant leaf 

segments. Figure 11 provides insights into the highest 

It offers a balanced assessment of the model’s perfor- 

mance in terms of both identifying flowers accurately 

and capturing all the flowers present. 

and lowest segmentation scores. Specifically, it illustrates 

two sets of experimental data alongside their correspond- 

ing original, ground truth, and predicted images. Despite 

the challenging condition of leaf curling, with an IoU score 

 

F1-score 
Precision ×  Recall 

(12) 
Precision + Recall 

of 0.6871, the segmentation results remain satisfactory. 

 

5.2. Results of leaf withering analysis 

5. Experimental Result and Discussion 

To demonstrate the effectiveness of the proposed frame- 

work in monitoring plant growth conditions, the focus lies 

on the performance analysis of CNN model training and 

evaluation, as reported and discussed in Sections 5.1, 5.2, 5.3, and 

5.4. Additionally, a summary and the limitations 

= 2 ×  
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In the analysis of leaf yellowing, the 395 sample 

images were categorized into three levels based on 

the proportion of yellow pixels among the detected 

leaves: less than 20% yellowing was classified as 

“non-withering”, 20% to 40% as “mild withering”, 

and over 40% as “severe withering”. Table 6 reveals 

sporadic errors across all categories, pri- marily due 

to variations in manual classification standards 
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and the system’s reliance on RGB thresholding to detect 

yellow pixels, which can be influenced by environmental 

lighting conditions. Additionally, occlusion of leaves by 

flowers due to varying shooting angles contributes to er- 

rors in yellowing proportion estimation. Nonetheless, the 

precision, recall, and F1-score presented in Table 7 demon- 

strate satisfactory performance, with an overall accuracy 

of 96.20%, indicating the feasibility of the model in assess- 

ing plant yellowing/ withering condition. 

 
Table 5: Performance of leaf segmentation, including mean accuracy 
(mAcc), mean intersection of unions (mIoU ), weighted intersection of 
unions (WIoU ), mean boundary F1 score (mBF ) when employing 5-
fold cross validation strategy 

 
 mAcc mIoU WIoU mBF  

Fold 1 0.9786 0.9434 0.9901 0.9602  

Fold 2 0.9577 0.9329 0.9955 0.9837  

Fold 3 0.9387 0.9264 0.9889 0.9564  

Fold 4 0.9612 0.9075 0.9496 0.9029  

Fold 5 0.9142 0.8815 0.9492 0.8835  
 

  Average 0.9501 0.9183 0.9747 0.9373   

 
Furthermore, Figure 10 provides the ROC curves and their 

corresponding AUC values for this multi-class clas- 

sification task.   Classes 0,  1,  and 2 refer to non-,  mild, and 

severe withering conditions. Notably, the AUC value for the 

non-withering class (class 0) is 0.98, while it is 

0.97 for the mild withering class (class 1) and 0.98 for the 

severe withering class (class 2). The ROC curves for all 

classes remain close to the top-left corner, indicating high 

true positive rates and low false positive rates. Class 0, 

with an AUC of 0.98, shows the highest separability, 

suggesting that the classifier can distinguish class 0 from 

the other classes with exceptional accuracy. Classes 1 and 

2, with AUCs of 0.97 and 0.98 respectively, also demon- 

strate strong performance. However, the performance for 

class 1 is slightly lower than that of classes 0 and 2, which 

could be due to the middle values being more prone to 

misclassification into class 0 or class 2. The substantial 

distance of all curves from the diagonal line, which repre- 

sents random guessing (AUC = 0.5), underscores the clas- 

sifier’s effectiveness. These results affirm that the classifier 

is proficient in differentiating between the classes, making 

it reliable for the given multi-class classification task. Fur- 

ther refinement could potentially enhance the already high 

performance, particularly for class 1. 

 

Table 6: Confusion matrix of plant withering analysis, where “wit.” 
refers to withering 

 
 

  Predicted  

  Non-wit. Mild wit. Severe wit.   

Non-wit. 169 5 0 

Desired Mild wit. 2 154 4 

  Severe wit. 0 4 57  

Table 7: Performance results of plant withering analysis, where “wit.” 
refers to withering 

 

   Accuracy Precision Recall F1-score 

Non-wit.  0.9713  0.9883 0.9713  0.9797 

Mild wit. 0.9625 0.9448 0.9625 0.9536 

  Severe wit. 0.9344 0.9344 0.9344 0.9344 
 

 

Average 0.9561 0.9558 0.9561 0.9559 

  Overall 0.9620 0.9620 0.9620 0.9620  

 

 
Figure 10: The ROC curves and the corresponding AUC values for multi-
class classification in determining the leaf withering conditions, where 
classes 0, 1, and 2 refer to non-, mild, and severe withering conditions. 

 
 

5.3. Results of leaf drooping classification 

In this section, a dataset of 292 images was extracted from 

the database for the classification of leaf curling. It 

comprises 136 images depicting instances of leaf curling and 

156 images without leaf curling. The dataset was divided 

into training and testing sets in an 8:2 ratio for cross-

validation. This process was repeated five times to ensure 

comprehensive testing of all data. The classification results, 

presented in confusion matrices in Table 8, were also 

tabulated in Table 9 to showcase the validation out- comes 

across the five iterations. The average performance metrics 

were calculated, yielding an accuracy of 97.59%, a precision 

of 97.86%, a recall rate of 97.04%, and an overall F1-score 

of 97.24%. 

Note that, although Table 9 reveals four misclassified 

images depicting instances of leaf curling, as illustrated in 

Figure 12, these misclassifications are concentrated within 

the same plant image. This is possibly attributed to the 

camera angle, which obstructs most of the leaves with 

flowers, making it challenging for the model to discern. 

Nonetheless, most of the accuracies yielded 98% and above 

(except the fourth fold), indicating the excellent accuracy 

of the model in identifying leaf curling across multiple val- 

idations. 
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Desired 

 

 
 

Figure 11: The example of the leaf segmentation.Top row is the case with the lowest IoU (i.e., 0.6871), where as bottom row is the case with 
the highest IoU (i.e., 0.9981) 

 
 
 
 

 
Table 8: Confusion matrix of leaf curling and leaf drooping classifi- 
cation 

   Predicted  

Drooping Non-drooping 

Drooping 131 4 

  Non-drooping 3 152  

 

 

 

 

 

 

 
Table 9: Performance of leaf curling and drooping classification 

   Accuracy  Precision Recall  F1-score 

Fold 1 0.9828 0.9643 1 0.9810 

    Fold 5 0.9828 0.9643 1 0.9810 

  Average 0.9759 0.9786 0.9704 0.9724  

 

 

 

 

 

 

 
Figure 12: Examples of four misclassified images depicting instances 
of leaf curling due to the capturing angle, which obstructs most of 
the leaves with flowers 

 
 

5.4. Results of flower counting 

Similar to the previous task, a five-fold cross-validation 

strategy is applied for the flower counting task. Table 10 

provides a detailed breakdown of the performance metrics 

for flower object detection for each fold. The average re- 

sultant F1-score is 85.37%.   A closer inspection of each fold 

reveals that the  fifth fold has  the lowest precision 

Fold 2 0.9310 1 0.8519 0.9191 

Fold 3 1 1 1 1 

Fold 4 0.9828 0.9643 1 0.9810 
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Figure 13: Examples of misdetection of the flower, resulting in incor- 
rect flower counting, where the bounding boxes in yellow, red, and green 
indicate the detected flower, false positive, and false negative results, 
respectively 

 
 

(66.18%) and consequently the lowest F1-score (78.70%). 

This discrepancy may be attributed to significantly differ- 

ent flower colors and shooting angles in the training and 

testing datasets. For instance, Figure 13 shows the two 

images with the poorest flower recognition results. Ex- 

amples of flower misdetection, resulting in incorrect flower 

counting, are indicated by bounding boxes in yellow (de- 

tected flower), red (false positive), and green (false nega- 

tive). Additionally, factors such as varying lighting condi- 

tions, background complexities, and the diversity of flow- 

ers across different geographical regions can influence the 

model’s performance. Despite these challenges, it is rea- 

sonable to conclude that the overall performance is satis- 

factory and that the proposed algorithm is more robust 

and reliable for real-world applications. 

Table 10: Performance of flower counting task in terms of precision, 
recall, and F1-score 

 

   Precision  Recall  F1-score 

Fold 1 0.9102 0.7988 0.8509 

Fold 2 0.8316 1 0.9081 

Fold 3 0.7150 0.9733 0.8244 

Fold 4 0.8150 1 0.8981 

    Fold 5 0.6618 0.9708 0.7870 
 

 

  Average 0.7867 0.9486 0.8537  

 

5.5. Summary and limitations 

The proposed system, which integrates plant health 

diagnostics and an irrigation system, offers several sig- 

nificant strengths. Firstly, its use  of  advanced  CNN models 

for tasks such as leaf segmentation, leaf yellow- 

ing/withering identification, leaf curling classification, and 

flower counting ensures high accuracy and robustness 

across various plant conditions and environmental factors. 

This consistent performance, as  depicted in the histogram 

in Figure 14, highlights the robustness and reliability of 

the proposed system. The experimental results demon- strate 

that the system consistently achieves performance levels 

exceeding 75% across all tasks, with certain metrics, 

such as mAcc and mIoU, reaching over 90%. This high level 

of accuracy is crucial for precise plant health moni- toring 

and decision-making, enabling timely interventions and 

optimized resource utilization. Additionally, the sys- tem’s 

ability to process and analyze data from multiple an- gles 

further enhances its reliability, making it well-suited for 

real-world agricultural applications. 

Moreover, the system’s integration of plant health diag- 

nostics with automated irrigation offers a comprehensive 

solution for precision agriculture. By accurately detecting 

signs of withering, drooping, and flowering, the system can 

automate the irrigation process,  ensuring  plants  receive the 

appropriate amount of water and nutrients based on their 

specific needs.  This not only improves plant health and 

productivity but also promotes sustainable farming practices 

by minimizing water and fertilizer waste. The use of a 

newly collected dataset tailored to various growth conditions 

and angles also highlights the system’s adapt- ability and 

potential for widespread application in diverse agricultural 

settings. 

Despite its strengths, the proposed system does have 

certain limitations. One notable challenge is the system’s 

sensitivity to variations in environmental conditions, such 

as lighting and background complexities, which can affect 

the accuracy of the diagnostic algorithms. For instance, 

the flower counting task exhibited discrepancies due to 

differences in flower colors and shooting angles between the 

training and testing datasets. Additionally, the pres- ence 

of occlusions, such as flowers obstructing leaves, posed 

challenges for accurate leaf condition assessment. These 

factors highlight the need for further refinement and cal- 

ibration to ensure consistent performance across different 

scenarios. 

Furthermore, while the system demonstrates high accu- 

racy overall, there are instances where specific tasks, such 

as leaf curling classification, resulted in misclassifications 

due to obstructed views and challenging angles. The fifth 

fold in the cross-validation process, which included more 

instances of curled leaves, showed lower performance met- 

rics, indicating areas where the model could be improved. 

Addressing these limitations will require ongoing research 

and development to enhance the system’s robustness and 

adaptability, ensuring it can reliably  handle  the  diverse and 

dynamic conditions encountered in real-world agricul- tural 

environments. 

 
6. Conclusion 

In summary, this work introduces a novel approach and 

framework for plant monitoring and care, integrating ad- 

vanced deep learning image recognition with a quad-axis 

mechanical slider system. The proposed system, capable 

of bidirectional communication with MATLAB, effectively 

assesses plant growth conditions through various analyt- ical 

methods. Training was conducted using a dataset 

comprising 926 images that capture diverse growth con- 

ditions of plants. Utilizing semantic segmentation, object 
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Figure 14: Overall performance on the four tasks: leaf segmentation, leaf withering analysis, leaf drooping classification, and flower counting. 
A standard line is drawn at 0.75 as the baseline indicator for all tasks. 

 

classification, and object detection methods, the system is 

proficient in performing tasks such as leaf yellowing anal- 

ysis, determination of leaf curling, and flower counting. 

Extensive analysis and investigation confirm the system’s 

reliability and robustness, achieving an average accuracy 

of approximately 95% for leaf segmentation, 96.20% over- 

all accuracy in leaf withering analysis, 97.59% accuracy in 

leaf drooping classification, and an F1-score of 85.37% for 

the flower counting task, thereby validating the effective- 

ness of the collected database. 

The proposed system’s high accuracy and comprehen- 

sive functionality demonstrate its potential as a valuable tool 

in precision agriculture. By providing real-time mon- itoring 

and analysis of plant health, the system can facil- itate more 

informed decision-making, optimize the use of resources 

like water and fertilizers, and ultimately enhance crop yield 

and quality. Its adaptability to various growth conditions and 

angles underscores its practicality for real- world 

agricultural applications. The integration of plant health 

diagnostics  with  automated  irrigation  exemplifies a holistic 

approach to plant care, promoting sustainable farming 

practices by minimizing resource wastage. 

This study should incentivize future research to address 

the limitations identified, such as the system’s sensitivity 

to environmental conditions and the challenges posed by 

occluded views and varied backgrounds. Enhancing the 

robustness and adaptability  of  the  diagnostic  algorithms to 

handle a wider range of conditions will be a priority. 

Additionally, expanding the dataset to include more di- verse 

plant species and growth stages will help improve the 

model’s generalizability. The incorporation of advanced 

sensor technologies and IoT (Internet of Things) capabili- 

ties could further enhance the system’s precision and func- 

tionality, enabling more comprehensive plant health mon- 

itoring and automated care solutions. Continued research 

and development will aim to refine the system for broader 

application in diverse agricultural settings, contributing to 

the advancement of precision agriculture. 
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