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A B S T R A C T 
 

In response to the stringent safety requirements of semiconductor cleanrooms, this study aims 

to develop an advanced dust-free protective equipment inspection system tailored for personnel 

entering these critical environments. Central to this system is the application of human pose 

detection techniques, which precisely identify essential body parts such as the head, body, hands, 

and foot. These detections serve as the foundation for deep learning network architectures that 

rigorously evaluate the adequacy of protective suits worn by personnel. Additionally, a system 

is designed to monitor the effectiveness of dust removal and ensure comprehensive coverage 

during the air shower process, crucial for maintaining impeccable cleanliness standards. The 

efficacy of the proposed pipeline is substantiated through rigorous validation encompassing 

comprehensive quantitative and qualitative analyses. Initial trials demonstrate robust perfor- 

mance, with quantitative accuracy rates of 98.42% for the protective equipment inspection 

system and an error rate of approximately 5% for the air showering process system. These results 

affirm the system’s capability to reliably assess adherence to safety protocols in real-time 

scenarios. Beyond its immediate application in semiconductor cleanrooms, this adaptable system 

holds promise for integration into diverse sectors where stringent safety and contamination- free 

environments are paramount. Future research aims to enhance the system’s adaptability to 

varying operational conditions and expand its functionalities through advancements in real-time 

feedback mechanisms and integration with edge computing technologies. 
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1. Introduction 

The significance of automated detection of protective clothing is increasingly evident, enhancing workplace safety 

and boosting productivity. This technology is applied across various sectors, including chemical plants [1, 2], 

construction sites [3, 4], healthcare [5, 6], and others. Automated detection systems ensure compliance with safety 

standards, reduce the incidence of accidents, and guarantee regulatory adherence. With the continual advancements 

in technologies such as the Internet of Things (IoT) and artificial intelligence (AI), the performance and accuracy of 

these systems are constantly improving, making them more intelligent and reliable. This technology plays a significant 

role in enhancing workplace safety, increasing productivity, and ensuring regulatory compliance. 

From Figure 1, it can be observed that the semiconductor industry’s output value has surged alongside an increase in 

demand, resulting in exponential growth in the requirements for production line efficiency and quality. This underscores the 

necessity of automated recognition of proper cleanroom garment wearing, especially within the semiconductor sector, 

given its direct impact on production efficiency and product quality. Therefore, ensuring strict adherence to 

cleanroom garment protocols among workers emerges as a pressing concern. Neglecting to address instances of 

improper garment wearing could lead to heightened production line downtime, increased production costs, and 

potential ramifications on product quality and market competitiveness. 

The primary objective of this research is to develop two inspection systems capable of automatically verifying the 

proper use of protective equipment by personnel entering cleanrooms, and determining whether personnel have fully 

undergone the air showering process before entering the cleanroom. The semiconductor industry requires environments 

of unparalleled purity in its relentless pursuit of perfection. Cleanrooms are meticulously designed to maintain low 

levels of pollutants such as dust, airborne microbes, aerosol particles, and chemical vapors. Personnel entering these 

environments are required to wear specialized protective equipment to prevent contamination. However, ensuring 

compliance with these stringent safety regulations has traditionally been a manual and time-consuming process. 

Inspired by recent advancements in technology, this research proposes the development of an intelligent, dust-free 

protective equipment inspection system by leveraging body keypoint detection and deep learning approaches. This 

initiative aims to enhance compliance with safety regulations and streamline operations. To achieve this, the system 
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Figure 1: The IC production value and annual growth trend of Taiwan’s semiconductor industry 

 

 
will employ cutting-edge computer vision technology to identify and analyze the protective gear worn by individuals. 

This approach will not only ensure adherence to safety protocols but also significantly reduce the time and labor 

traditionally required for manual inspections. 

In short, the main contributions of this work are highlighted as follows: 

1. Compilation of a varied dataset consisting of 8687 images featuring personnel with protective equipment, 

focusing on six body parts. 

2. Development of a real-time and robust dust-free automated protective equipment recognition system. 

3. Implementation of an air shower process verification system using body pose estimation to monitor personnel 

movement. 

4. Through an interactive GUI system, it is able to respond promptly to personnel and situations, thereby preventing 

contamination incidents in advance. 

5. Extensive experimental work and thorough analysis conducted to assess the performance and effectiveness of 

the developed system. 

The remaining structure of the paper is organized as follows. Section 2 conducts a synthesis of content from 

her relevant papers, including a comparative summary table and addressing he research gap. Section 3 outlines the 

esearch process of this system with intuitive insights into the proposed end-to-end protective equipment detection 

system and the cleanroom inspection system. Section 4 details the setup configurations, experiment settings, and 

performance metrics used. Subsequently, Section 5 presents and discusses the experimental results, including the 

challenges and limitations encountered. Finally, Section 6 concludes the paper with important findings highlighted 

and offers perspectives for future developments. 

 
2. Literature Review 

Despite considerable progress in image processing technologies in recent years, the advancement of automated 

t-free protective equipment and cleanroom inspection system research has been limited, mainly because of the 

absence of a dataset for experimental assessment. Section 2.1 provides a succinct overview of prior work on automated 

personal protective equipment (PPE) analysis, highlighting key findings. Moreover, Section 2.2 identifies a research 

gap, emphasizing the need for the proposed system. 
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Table 1 

Summary of the existing methods proposed for the automated personal protective equipment inspection system 
 

No. Ref. Task Target Images Labels Model Accuracy 

1 [7] Detection Pictor-V3 4727 4 YOLOv3 72.3 % 

2 [8] Detection CHVG 1699 8 YOLOX-m 89.84% 

3 [9] Detection D1,2,3 69227 12 YOLOv4-tiny 87.5 % 

4 [10] Classification/ Detection ODPD 18600 5 RFA-YOLO 88.41 % 

5 [11] Detection CHVG 1189 8 Faster R-CNN - 

6 [12] Classification RelD 6245 4 VGG16 87.33% 

 
 

2.1. Inspection System for Personal Protective Equipment 
Research groups across the globe have adopted automated inspection systems, aiming to utilize advanced 

hnologies to improve the precision and efficiency of wearing protective equipment correctly. This section sheds 

light on and discusses the applications and innovations of notable studies, emphasizing the significance of automated 

inspection systems in fostering a more knowledgeable and accurate approach to sustainability and cost-effectiveness. 

Previously published works are examined in this section, with a concise summary of these articles presented in Table 1. 

In the field of object detection for PPE on construction sites, [7] employs one of the object detectors, specifically the 

OLOv3 model [13], for real-time object detection. The study conducted experiments using three different methods, 

each involving various sizes of output layers and target recognition scenarios. Their self-collected dataset, namely 

Pictor-v3, includes individuals wearing vests, individuals wearing helmets, and both, with a total of 10,193 images. 

The best model i.e., YOLO-v3-A2 model achieved an average precision of 72.3%. However, the authors acknowledged 

limitations in their approach, such as the need for high-quality training data and the potential for false positives. 

Nonetheless, this work underscores the potential of deep learning in enhancing safety in the construction industry. 

On the other hand, a study conducted by [8] centers on the utilization of YOLOX [14]. To validate the proposed 

pipeline in a testing environment, a new dataset, namely CHVG [15], has been collected. This dataset comprises eight 

categories representing common and essential equipment found on construction sites, such as safety helmets, vests, 

safety glasses, body, and headgear. It encompasses a total of 1699 images, which include instances with various 

environmental conditions like rain, haze, and low-light situations, aimed at simulating real-world environments. The 

results of the experiments have revealed that the YOLOX-m architecture can achieve the highest average precision 

(mAP) at 89.84%. However, it is important to note that complex backgrounds may lead to detection errors. 

On a related note, [9] introduces an embedded real-time PPE detection system with a specific focus on head, 

helmets, chest, vests, hand and gloves. The dataset comprises three subsets (i.e., D1, D2, and D3), consisting of a total 

of 7283 images. To validate the robustness of the methods employed, five different CNN models were utilized (i.e., 

YOLOv4 [16], YOLOv4-tiny [16], SSD MobileNet V2 [17], CenterNet ResNet-50 V2 [18] and EfficientDet D0 [19]). 

The experimental results include measurements of recognition time and accuracy. Interestingly, the YOLOv4 

architecture achieved the highest accuracy,almost all have reached an accuracy of 90% or higher,especially the part 

related to hands and gloves exceeds the other four models by more than 20%.However, considering the significantly 

faster recognition time of YOLOv4-tiny (7.6 milliseconds compared to YOLOv4’s 30.6 milliseconds) and its 

comparable accuracy to ResNet-50 V2, the authors opted for YOLOv4-tiny as the operational network for their system. 

In a similar vein, [10] utilizes the RFA-YOLO model to recognize protective gear, with a specific focus on helmets 

work suits in the context of offshore drilling. Their dataset is extensive, comprising an object detection dataset 

includes objects such as a person, helmet, and workwear, a feature classification dataset to assess workwear 

opriateness, and a personal protective equipment dataset that encompasses objects like helmets and workwear. 

otal, these three datasets contain 18,600 images. During experimentation, a comparative analysis of YOLO models 

anging from V3 to V5 [13, 16, 20] was conducted. This analysis revealed that the RFA-YOLO model achieved optimal 

performance in helmet and work suit recognition, achieving accuracies of 84.21% and 84.72%, respectively. However, 

it is important to note that practical applications in offshore environments may encounter complex challenges, which 

could potentially limit the replicability of these results in real-world offshore settings. 
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[11] outlined in the document contributes significantly to the field of safety compliance monitoring in construction  

environments by developing a novel framework that leverages deep learning models (i.e., ResNet50 [21], OSNet [22] 

and OSNet+BDB [23]) for worker re-identification (ReID) and PPE classification. This work introduces a new loss 

function, named similarity loss, to enhance the accuracy of worker ReID, and a weighted-class strategy to address the 

challenge of imbalanced classes in PPE classification. The efficacy of these methods is quantitatively validated 

through improved accuracies—4% in ReID and 13% in PPE classification—using a real-world construction site dataset. 

Despite these innovations, the paper recognizes limitations, notably the lack of extensive discussion on the system’s 

performance in varying lighting conditions and across different site layouts, which suggests areas for further exploration 

and optimization. 

Recently, Ahmed et al. [12] explores the application of deep learning for the real-time detection of PPE to enhance 

worker safety in hazardous environments. The researchers employ Faster Region-based Convolutional Neural Network 

(Faster RCNN) [24] and YOLOv5 [25] models trained on a specifically developed dataset, the CHVG dataset [15], 

which includes various classes of PPE such as helmets, vests, and safety glasses. This methodological approach allows 

for the detection of multiple types of PPE with a high degree of accuracy, achieving a mean average precision (mAP) of 

96%, highlighting its potential to significantly improve safety compliance monitoring. Despite its promising results, the  

study does not delve into the model’s performance across different environmental conditions or its scalability, which 

could impact its utility in diverse real-world scenarios. 

2.2. Research Gap 
While recent advancements in automated PPE detection have shown promising results across various industries, 

several research gaps persist that limit the broader applicability and effectiveness of these technologies. First, there is 

a notable deficiency in the adaptability of current models to diverse and complex environmental conditions typical of 

real-world scenarios. Furthermore, there is a scarcity of comprehensive datasets that encompass the personnel entering 

the dust-room, which is crucial for training models to recognize and adapt to diverse situations effectively. Additionally, 

there is a lack of an end-to-end inspection system, encompassing both protective suit inspection and air showering 

procedure identification. By focusing on these aspects, our work not only contributes significantly to the development 

of a dust-free workplace but also aims to promote a comprehensive safety strategy in other similar industrial settings. 

 
3. Proposed Method 

The primary aim of this study is to ensure the correct wearing of cleanroom suits and the execution of cleanliness 

procedures upon entering the air shower room. To verify the suitability of the suit for each individual, the body is 

divided into six distinct parts. Deep learning models, enhanced by a transfer learning strategy, are then employed to 

analyze each part separately. Furthermore, upon entering the air shower room, both the frontal and rear body parts of 

personnel are recognized to confirm the completion of cleanliness actions. 

Concretely, the process is divided into four main steps: (a) data preparation: data collection, body parts defining, 

and regions of interest extraction; (b) CNN model development: to train six deep learning models to address each of 

the six body parts independently; (c) protective equipment verification: to evaluate the suitability of the protective suit 

worn; (d) self-rotation identification: to ensure the front and rear of each individual are captured to finalize the air 

showering process. To enhance understanding of the inspection procedure, Figure 2 presents a flowchart diagram with 

illustrative examples. 

3.1. Data Preparation 
To develop a robust and effective protective equipment inspection system, constructing a comprehensive dataset is 

a critical first step. Images acquired from five different individuals cover a complete range from head to toe, capturing 

the full scope of body variations. One of the notable challenges addressed by this approach is the variation in body size 

among individuals. To overcome this issue, a keypoint landmark detector, specifically the MediaPipe algorithm [26], 

is utilized for its skeleton-based approach to precisely locate each joint across the body. This method facilitates the 

detection of key points on various parts of the body, including the face, shoulders, elbows, wrists, hands, hips, knees, 

ankles, and foot, as illustrated in Figure 3(a). It is worth noting that the landmarks of the body can be detected accurately, 

both with and without wearing the protective suit. Thus, the landmark detector serves as an intuitive tool to ensure the 

entire body is captured within the image frame, despite these variations, thereby guaranteeing a comprehensive analysis 

of protective equipment fit and placement on diverse body types. 
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Figure 2: The flow chart of the proposed pipeline comprises four main components: (a) data preparation; (b) CNN model 

development; (c) protective suits checking; and (d) air showering process checking 

 

 
Following the initial detection, the body is further segmented into six distinct parts: the head, body, left hand palm, 

ight hand palm, left feet, and right feet. This segmentation, detailed in Figure 3(b), enables a more focused analysis 

of each body part. By dividing the body in this manner, the system can conduct targeted evaluations of the protective 

equipment worn on each specific body region. This detailed approach enhances the inspection system’s precision, 

enabling it to more effectively identify and address potential issues with equipment fit or placement. 

3.2. CNN Model Development 
Upon completing data collection, training each of the six body parts separately, particularly with a transfer learning 

ategy, accelerates the training speed and enhances efficiency. Transfer learning leverages knowledge from a related 

ask (previously learned by the model on a dataset, namely ImageNet) and applies it to a new task (e.g., binary 

classification for “pass” or “fail” in equipment inspection). This strategy significantly reduces the required volume 

of data and shortens the training duration. The visualization of the binary classification for each body part, along with 

their respective passing criteria, is provided in Figure 4. 

The robustness of this approach is affirmed by experimenting with a variety of CNN architectures (i.e., VGG- 

[27], ResNet-18 [21], Inception-V3 [28], and GoogLeNet [28]), each with its unique design and fine-tuning 

uirements. This diversity ensures that the selected models are best suited for the task at hand, taking into account 

specific features and challenges of protective equipment inspection. The four architectures experimented with are 

iefly described below: 

• VGG-19: 

It utilizes a deep architecture with repeated blocks of convolutional and max pooling layers, followed by fully 

connected layers. The simplicity and depth of VGG make it excellent for learning hierarchical features, with the 

depth contributing to the network’s strong performance on image recognition tasks. 

• ResNet-18: 

It introduces residual connections to facilitate the training of much deeper networks. These connections allow 

br 
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Figure 3: (a) The landmarks are detected accurately both with and without wearing a protective suit. (b) The illustration 

of the body partition that consists of six distinct parts: the head, body, left hand palm, right hand palm, left feet, and 

right feet. 

 

 
gradients to flow through the network more effectively, solving the vanishing gradient problem and enabling the 

network to learn more complex features without a significant increase in training difficulty. 

• Inception-V3: 

It employs modules that perform several convolutions in parallel, merging their outputs. This architecture allows 

the network to adapt to various scales and dimensions of the input data, making it highly efficient in recognizing 

patterns across different sizes and resolutions. 

• GoogLeNet: 

It incorporates a similar inception module concept, optimizing the network for computational efficiency by 

reducing the dimensionality of the convolutions. This makes it particularly suitable for environments where 

computing resources are limited. 
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Figure 4: Example of binary classification for each body part, including descriptions of their respective criteria 

 

 
To ensure fair and reliable performance evaluation, a five-fold cross-validation strategy is employed. This method 

ensures that each test image is evaluated once, allowing for a comprehensive assessment of the model’s effectiveness 

across different data subsets. It should be noted that all body parts are first resized to a fixed size (i.e., 200× 200 or 

150× 225) to accommodate the training and testing processes of the deep learning models. 

3.3. Protective Equipment Verification 
To facilitate real-time detection of protective equipment, which relies on the deep learning models developed in 

Section 3.2, an interactive interface has been implemented. Specifically, this integrated interface operates in four 

phases: (a) standby mode: to detect the presence of individuals; (b) posture adjustment: to ensure the visibility of 

all six human body parts; (c) image acquisition: to capture a full-body image; (d) protective equipment recognition: to 

verify whether the appropriate suit is correctly worn, with each of the six body parts being extracted and recognized. 

To enhance the clarity of the protective equipment verification stage, a flowchart accompanied by illustrative GUI 

eenshots is presented in Figure 5. The function of each phase is detailed below: 
 

Figure 5: The protective equipment verification process, accompanied by illustrative GUI screenshots 

scr 
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1. Standby mode: 

In the absence of individuals within the detection area, the system engages in continuous monitoring through 

a camera, maintaining a standby state. Simultaneously, the landmark detector (i.e., the MediaPipe algorithm) 

is employed to ascertain the entry of personnel into the detection area and to compute their appearance time 

based on the frame rate. Upon meeting the predetermined duration of appearance, the system transitions to the 

subsequent phase. 

2. Posture adjustment: 

Upon detection of body movement, a human-shaped outline is designed to guide the person to present the 

predefined pose on the screen, delineating the six body segments: the head, body, left and right hands, and left 

and right feet. Individuals are required to align their posture with the outline to activate the ensuing detection 

phase. Initially displayed as dashed lines, these outlines indicate misalignment of body parts with the specified 

locations. Correct positioning transforms the outlines to solid lines, signaling alignment to the user. 

3. Image acquisition: 

Once the correct posture is detected, a brief period is allocated for acquiring image data of the individual for 

further recognition. To reduce background interference, landmarks are utilized to individually extract the partial 

image based on the six body segments. 

4. Protective equipment recognition: 

Finally, the GUI displays the protective equipment verification result for each body part. Upon deriving the 

final recognition results for each segment, the human-shaped outline displayed on the screen will signify the 

correctness of each part’s attire in distinct colors. A green display denotes correct attire, whereas red signifies 

incorrect. For successful recognition, all six segments must be verified in green. 

3.4. Air Showering Process Checking 
Following the verification of appropriate attire for personnel before entry into the cleanroom, as outlined in Section 

3.3, the subsequent phase involves ensuring that personnel complete the entire air showering process. This dust 

removal procedure is conducted in a designated space measuring 80cm× 100cm, as portrayed in Figure 6(a). Personnel 
are required to first raise both hands above the head, facing the air outlet for three seconds, then execute a 180° rotation, 
maintaining this posture for another three seconds to finalize the cleaning. 

Given the spatial limitations, only the upper half of the body is captured. A 120° wide-angle lens, mounted on 

a webcam placed strategically about 30cm from the individual, ensures comprehensive coverage of the upper body. 

Simple trigonometric calculations are found to be adequate for capturing the air showering movement of individuals 

ranging in height from 150cm∼180cm. 
The MediaPipe algorithm is utilized initially to detect the human skeleton and subsequently to identify self-rotation 

movements. This involves analyzing the landmarks of the palms (landmarks 15 and 16) and the y-coordinate of the 

highest point on the head to verify that both hands are elevated above the head. Furthermore, landmarks 11 and 12, 

located at the shoulder ends, are considered for observing body rotation movements. Changes in the x-axis coordinates 

of these points signal a body turn. To enhance clarity on body movement detection, Figure 6 (b) offers an illustrative 

example of the self-rotation motion. 

Should any aspect of an individual’s actions deviate from the required standards, the system issues a voice alert 

and resets that phase to guarantee the thorough completion of the cleaning actions. This configuration not only 

captures movement actions efficiently but also ensures accurate measurements and analyses within the confined space. 

Moreover, this system is specifically designed to validate the air showering process, not only boosts the system’s 

response time but also significantly enhances its adaptability to varying environments. The inclusion of voice prompts 

for corrective action represents an intuitive feedback mechanism, further underscoring the system’s user-oriented 

design. This approach ensures compliance with hygiene protocols, reinforcing the cleanroom’s integrity and safety 

standards. 

4. Experiment Setup 

This section details the process of collecting and distributing a database of images, designing model training and 

testing, setting up experiments with detailed configurations for training deep learning models, and the performance 
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Figure 6: (a) Illustration of the cleanroom air shower with dimensions of 80cm× 100cm; (b) Utilization of a landmark 
detector to detect the hand-raising and self-rotation movements of personnel. 

 

 
4.1. Experimental Dataset 

The dataset used in this experiment comprises a total of 8687 images, covering six body parts: head, body, both 

hands, and both foot. These images were collected from five individuals with different body types. Notably, due to 

the varying resolution requirements for each body part, the exact quantity and resolution for each part are provided in 

Table 2. In total, this substantial dataset, comprising 7,921 images, aids in training the neural network. An 80/20 split 

for the training and validation sets is applied to ensure the model learns effectively and has a sufficient amount of 

unseen data for testing to accurately assess its performance. An additional 74 images were collected as a test set, 

which are not involved in the training process. To provide a better understanding of the passing and failing criteria for 

each body part, Figure 4 displays examples of binary classification along with the respective descriptions of their pass 

and fail criteria. 

4.2. Hardware Devices Setup 
In this work, the experiments were trained and evaluated on a computer equipped with an Intel(R) Core(TM) i7- 

9750H 2.60GHz CPU and an NVIDIA GTX 1660Ti GPU. MATLAB R2023b was selected as the development platform 

due to its rich suite of image processing and machine learning tools. For camera utilization, three identical Logitech 

C270 webcams were employed. To enhance the functionality of the webcams, they were equipped with wide-angle 

lenses to provide a broader field of view. Table 3 provides the detailed specifications of the webcam and wide-angle 

lenses utilized. 

4.3. Network Parameter Configuration 
Given that there are six body parts as regions of interest, six distinct deep learning networks for binary classification 

e designed. The input layer of each network has a size of 200× 200, except for images of foot, which were resized 

150× 225. This adjustment was necessary because foot are elongated, and resizing them to 200× 200 would cause 
cessive distortion, potentially affecting the accuracy of the recognition results. The optimizer used was Adam, with 

learning rate of 0.0001 and a mini-batch size of 64, with shuffling every epoch. On the other hand, Table 4 provides 

he epoch values applied to each selected network, indicating that VGG-19 was trained for 40 epochs, GoogleNet for 

50 epochs, ResNet-18 for 40 epochs, and Inception-V3 for 60 epochs. The variation in the number of epochs is due to 

the nature of the networks, which have distinct depths and varying numbers of learnable parameters. 
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The six body parts along with their respective distributions in the training and testing datasets 
 

 Pass Fail Total  

 Train 546 557 1103  

Head Validation 137 139 276  

 Test 47 27 74  
 

 Total 730 721 1453  

 Train 601 1010 1611  

Body Validation 150 252 402  

 Test 20 54 74  
 

 Total 771 1316 2087  

 Train 558 521 1079  

Left hand Validation 139 130 269  

 Test 20 54 74  
 

 Total 717 705 1422  

 Train 716 459 1175  

Right hand Validation 179 115 294  

 Test 20 54 74  
 

 Total 915 628 1543  

 Train 341 359 700  

Left feet Validation 85 90 175  

 Test 26 48 74  
 

 Total 452 497 949  

 Train 297 373 670  

Right feet Validation 74 93 167  

 Test 26 48 74  
 

 Total 397 514 911  

 
 

4.4. Performance Metrics 
To evaluate the effectiveness and robustness of the proposed classification system, performance metrics such as 

accuracy and F1-score were utilized. These metrics are mathematically expressed as follows: 

 

 

 

 

where 

 

 
and 

Accuracy =
 𝑇 𝑇  + 𝑇 𝑇 

 
𝑇 𝑇 𝑇 𝑇 𝑇 𝑇 𝑇 𝑇 

 
2 ×  Precision ×  Recall 

Precision + Recall 

 

Precision =
 𝑇 𝑇 

 
𝑇 𝑇 𝑇 𝑇 

(1) 

 

(2) 

 

 
(3) 

F1-score = 
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The specifications of the webcam and wide-angle lenses adopted 

Feature  Description 

Webcam 
  

Model Logitech C720 

Resolution 1280× 720 
Frame/ second 30fps 

Camera mega pixel 0.9 

Focus type Fixed 

   Diagonal field of view 55°  

Wide-angle lens 

Model 036 

Optical format 0.36× wide-angle 

   Magnification 15× macro  

Table 4 

The training configuration specifically the epoch parameters applied to each selected network 

   Epoch 

VGG-19  40 

GoogleNet 50 

ResNet-18 40 

   Inception-V3 60  

 
 
 

where 

 

 
Recall =

 𝑇 𝑇 
 

𝑇 𝑇 𝑇 𝑇 

 
 

(4) 

• TP (True Positive) indicates that the model correctly identifies the presence of protective equipment. 

• TN (True Negative) indicates that the model correctly predicts the absence of protective equipment. 

• FN (False Negative) indicates that the model incorrectly classifies worn protective equipment as absent. 

• FP (False Positive) indicates that the model incorrectly identifies the absence of protective equipment as present. 

 
5. Results 

The results of the protective equipment identification and cleanroom air showering process verification tasks are 

elucidated in Section 5.1 and Section 5.2, respectively. Additionally, the constraints and limitations of the proposed 

pipeline are thoroughly discussed in Section 5.3. 

5.1. Protective equipment verification 
To establish a fair and reliable evaluation methodology, the training, validation, and test datasets are distributed 

prevent the model from overfitting. Specifically, the test images, totaling 74, are acquired in real-time and include 

individuals with varying body types. Table 5 provides a summary of the performance metrics for the four network 

models considered in this work: VGG-19, ResNet-18, GoogleNet, and Inception-v3. The respective results for different 

body parts (i.e., head, body, left hand, right hand, left feet, and right feet) are tabulated. VGG-19 achieves perfect scores 

(100%) in all metrics for four body parts (i.e., head, left hand, left feet, and right feet). However, for the body and right 
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The performance results for the binary classification task for six distinct body parts using different pre-trained networks 
 

 Head Body Left hand Right hand Left feet Right feet Overall 

Accuracy 100 90.5 100 100 98.6 93.2 97.07 

GoogleNet 
Precision 100 74.0 100 100 96.3 83.9 92.44 

Recall 100 100 100 100 100 100 100 

F1-score 100 85.1 100 100 98.1 91.2 96.07 

Accuracy 100 93.2 100 94.6 100 97.3 97.52 

ResNet-18 
Precision 100 80.0 100 100 100 90.9 95.68 

Recall 100 100 100 80.0 100 100 97.48 

F1-score 100 88.9 100 88.9 100 95.2 96.57 

Accuracy 100 94.6 100 94.6 100 95.9 97.52 

Inception-V3 
Precision

 100 83.3 100 100 100 89.7 93.53 

Recall 100 100 100 80.0 100 100 100 

F1-score 100 91.0 100 88.9 100 94.6 96.66 

Accuracy 100 94.6 100 95.9 100 100 98.42 

VGG-19 
Precision 100 83.3 100 100 100 100 97.50 

Recall 100 100 100 85.0 100 100 98.11 

F1-score 100 91.0 100 91.9 100 100 97.80 

 

 
Table 6 

The confusion matrix of recognition result (%) for the binary classification task for six distinct body parts using employing 

VGG-19 network 

(a) Head 

 

 

Desired 

Pass Fail 

(b) Body 

 

 

Desired 

Pass Fail 

(c) Left hand 

 

 

Desired 

Pass Fail 

 

Predicted 
Pass 100% 0% 

Fail 0% 100% 
 

 

 
(d) Right hand 

 

Desired 

Pass Fail 

Predicted 
Pass 85% 0% 

Fail 15% 100% 

 

Predicted 
Pass 100% 7.4% 

Fail 0% 92.6% 
 

 

 
(e) Left feet 

 

Desired 

Pass Fail 

Predicted 
Pass 100% 0% 

Fail 0% 100% 

 

Predicted 
Pass 100% 0% 

Fail 0% 100% 
 

 

 
(f) Right feet 

 

Desired 

Pass Fail 

Predicted 
Pass 100% 0% 

Fail 0% 100% 
 

   

 
 

hand, VGG-19 achieves lower F1 scores of 91.0% and 91.9%, respectively. Conversely, GoogleNet, while performing 

perfectly for the head, left hand, and right hand, exhibits the lowest performance for the body, left feet, and right feet, 

with F1 scores of 85.1%, 98.1 and 91.1%, respectively. 

The results indicate that the head is the most accurately predicted body part across all models. This could be due to 

the distinct nature of the binary classification associated with the head (e.g., black hair versus white protective gear), 

making the classification more straightforward. On the other hand, the body shows the lowest precision, which may be 

due to significant variations in this body part, such as differences in zipper closures or misidentification of targets as 

hat edges, making classification more challenging. 

For a closer inspection into the performance of every individual class, the confusion matrices for two selected 

networks that performed the best and the poorest are tabulated in Table 6 and Table 7. These are VGG-19, with an 

average accuracy of 98.42%, and GoogLeNet, with an average accuracy of 97.07%, respectively. Specifically, VGG-19 

shows relatively stronger performance overall, achieving 100% accuracy in detecting the head, left hand, left feet, and 

right feet, with only minor errors observed in the body and right hand classifications. Additionally, VGG-19 achieves 

92.6% accuracy for the body and 85% for the right hand, compared to GoogLeNet, which exhibits lower accuracy in 
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Table 7 

The confusion matrix of recognition result (%) for the binary classification task for six distinct body parts using employing 

GoogLeNet network 

(a) Head  

Desired 

Pass Fail 

(b) Body  

Desired 

Pass Fail 

(c) Left hand  

Desired 

Pass Fail 

 

Predicted 
Pass 100% 0% 

Fail 0% 100% 
 

 

 
(d) Right hand 

 

Desired 

Pass Fail 

Predicted 
Pass 100% 0% 

Fail 0% 100% 

 

Predicted 
Pass 100% 12.9% 

Fail 0% 87.1% 
 

 

 
(e) Left feet 

 

Desired 

Pass Fail 

Predicted 
Pass 100% 2% 

Fail 0% 98% 

 

Predicted 
Pass 100% 0% 

Fail 0% 100% 
 

 

 
(f) Right feet 

 

Desired 

Pass Fail 

Predicted 
Pass 100% 10.4% 

Fail 0% 89.6% 
 

   

 

 

Table 8 

The confusion matrix of the dust-cleaning inspection system, where the participants were asked to execute 20 self-rotations 

with deliberately designed combinations of false and standard postures. 

(a) Participant 1 
 

Desired 

Pass  Fail 

Predicted 
Pass 90% 10% 

Fail 0% 100% 

 
(b) Participant 2 

 

Desired 

 Pass Fail 

Predicted 
Pass

 100% 0% 

Fail 0% 100% 

 
 

several categories, such as 87.1% for the body, 89.6% for the right feet, and 98% for the left feet. These results indicate 

that VGG-19 has higher precision and reliability, particularly in classifying smaller or more distinct body parts, making 

it a stronger model for this specific binary classification task. 

To visualize the network performance, Grad-CAM is employed for both correctly and incorrectly classified classes. 

Specifically, Figure 7 displays some classification results for the body parts. It is observed that a common error occurs 

when the model misinterprets headgear edges as the target for judgment, resulting in the misclassification of originally 

inappropriate attire as meeting the passing criteria. Our analysis suggests that these misclassifications mainly stem 

from the model’s challenge in handling edge cases, particularly in features with high variability. Hence, these findings 

hold significance for enhancing future model designs, particularly in addressing high-variability features and extreme 

binary classification problems. 

5.2. Air-shower detection 
To assess the reliability of the proposed dust-clean inspection system in the air shower, two individuals with heights 

165 cm and 170 cm participated in the validation process. The primary objective was to evaluate the system’s 

easibility across different body sizes. f 
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Figure 7: Sample visualization of the Grad-CAM activation for correct and incorrect classifications for the body parts 

 

 
The experiment is divided into two parts. The first part focuses on verifying the stability of joint point recognition 

oss individuals of varying heights. Participants were instructed to raise their hands in front of the camera to simulate 

cleaning movements in the air shower. Recordings were made at 30 fps, totaling 90 frames over three seconds. The 

skeleton detection results, illustrated in Figure 9, show occasional missed joints and limbs, potentially due to errors in 

the dust-cleaning inspection system. Specifically, Figure 8 provides detailed body landmark detected results, indicating 

an average error rate of approximately 5%, with 4 to 5 frames out of 90 being incorrect. Nonetheless, this error rate 

does not significantly impact the overall system performance. 

The subsequent stage of the dust-cleaning process involves a body turning experiment. Users are required to 

form a 180° turn after cleaning the front side to ensure thorough cleaning of both sides. Both testers were asked 

execute 20 self-rotations with their hands raised. Specifically, 10 of these rotations were deliberately designed to 

include instances where users either turned back to the front or disappeared from the camera’s view post-turn, with the 

expected outcome being a failure to pass the dust-cleaning system identification. In contrast, the remaining 10 rotations 

were performed at a constant speed, ensuring that the front and rear of each individual were captured to complete the 

air showering process. As a result, the actions of one participant were fully identified, while the other participant had 

a false detection. The experimental results of these two participants are summarized in Table 8. 

Nevertheless, this dust-cleaning process demonstrates the system’s robust capability in detecting proper cleaning 

ocedures during the air shower and effectively alerting users to errors. Moreover, the proposed system is valuable for 

personnel training, highlighting correct postures and those that may lead to errors. Furthermore, the insights gained 

from this dust-clean inspection system underscore its potential to not only enhance operational efficiency but also to 

contribute significantly to maintaining stringent cleanliness standards essential for various industrial applications. 

5.3. Limitation 
The equipment recognition system has limitations rooted in its dependency on fixed locations and predefined 

actions for accurate recognition. These constraints restrict its adaptability to dynamic environments where equipment 

and actions may vary beyond the predefined scenarios. Similarly, the dust cleanroom inspection system implemented 

in the air shower room faces limitations due to the absence of real-world filming in actual air shower rooms during 

experimentation. Relying on online references for the experimental environment lacks the fidelity of actual camera 

setup conditions and the complexities posed by real-time interactions. Furthermore, detecting skeletons becomes 

challenging amidst the constraints imposed by wearing protective clothing. 

Future work could focus on enhancing the adaptability of the equipment recognition system by integrating 

more robust and flexible recognition algorithms capable of autonomously learning from dynamic environments. 

Additionally, the algorithms should prioritize low computational cost to enable deployment on edge devices. For 

the air shower room recognition system, future research could involve conducting experiments in real air shower 
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Figure 8: The body landmark detection results when the two participants of different heights were instructed to raise their 

hands in front of the camera to simulate cleaning movements in the air shower room. 

 

 
environments to validate and refine the system under realistic conditions. Additionally, exploring advanced body 

skeleton detection techniques or sensor fusion methods could mitigate the challenges posed by protective clothing 

and fisheye lens distortions, thereby improving recognition accuracy in confined spaces. 

 
6. Conclusion 

This study introduces two inspection systems suitable for deployment in dust-free cleanroom environments: the 

tective equipment verification system and the body pose verification system in cleanroom inspections. The former 

aims to develop a robust binary classification system designed to automate the recognition of proper wearing of 

protective clothing. Through extensive experimentation and analysis, the effectiveness of our algorithm has been 

rigorously validated. The adoption of VGG-19 as the foundational model for training yielded an impressive average 

accuracy rate of 98.42%, confirming its capability to reliably identify adherence to protective clothing protocols. 

Additionally, the second system designed to detect human body poses in cleanroom inspections demonstrated 

able accuracy in capturing and recording actions within the dynamic environment of he air shower room. This 

dual capability not only ensures workplace safety within semiconductor facilities but also extends its applicability to 

diverse industries such as healthcare and pharmaceuticals. By leveraging advanced machine learning techniques, our 

system enhances operational efficiency and safety protocols, paving the way for broader implementation across various 

sectors. 

Looking forward, future research could explore enhancing the system’s adaptability to diverse operational 

vironments and expanding its capabilities beyond binary classification. Integrating real-time feedback mechanisms 

and leveraging edge computing technologies could further optimize performance and scalability. Moreover, conducting 

field trials in real-world air shower rooms and refining the system’s algorithms to address challenges like protective 

clothing and environmental variations would validate its robustness and reliability in practical settings. These 

advancements not only bolster workplace safety standards but also drive forward automation technologies in critical 

industrial processes, fostering safer and more efficient workplaces globally. 
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