
Schema Mapping for XML and Relational Data Sharing

Ya-Hui Chang∗ Feng-Chieh Chiu
Department of Computer Science
National Taiwan Ocean University

yahui@mail.ntou.edu.tw

Wang-Chien Lee
Dept. of Computer Science and Engineering

Penn State University
wlee@cse.psu.edu

Abstract

While XML has emerged as the de facto standard
for data representation and exchange on the World-
Wide-Web (WWW), relational databases are widely
used in enterprises to support critical business oper-
ations. Thus, providing interoperability between rela-
tional databases and XML data repositories is a very
important issue. In this paper, a mapping dictionary in
XML format is proposed to capture the necessary in-
formation for resolving representational conflicts be-
tween relational and XML schemas. Based on this pro-
posal, relational queries can be transformed to XML
queries, so that XML data can be easily accessed in
SQL. A prototype is built to validate our idea and
demonstrate the feasibility of the mapping dictionary
proposal.

Keywords: interoperability, mapping dictionary,
query transformation, relational database, XML

1 Introduction

XML has emerged as the de facto standard for data
representation and exchange on the World-Wide-Web
(WWW), while relational databases are widely used
in enterprises to support critical business operations.
Thus, providing interoperability between relational
databases and XML data repositories is a very impor-
tant issue.

There are existing works addressing the is-
sue of representing XML documents in relational
databases [1, 2, 5]. To allow users properly manipulate
XML data under such environments, an XML query
(e.g., in XQuery) needs to be transformed into SQL.
The transformation is a challenge due to the differ-
ence between XML and relational schema [5]. On the
other hand, due to the growing number of data in XML
format, “native XML data repository” also receives a
lot of attention [3, 4]. However, the ubiquitous pres-
ence of relational databases in the business world has
resulted in many applications written in SQL. Thus,

∗This work is partially supported by the Republic of China Na-
tional Science Council under Contract No. NSC 93-2422-H-019-
001.

there is an obvious need for transforming SQL queries
into XML queries.

One critical issue needs to be addressed is the mis-
match between XML and Relational schemas.Repre-
sentational conflictshave been used in the literature to
represent all possible conflicts between two databases,
which are used to store the same information. For
example, an obvious conflict between XML and re-
lational schemas lies in their differentstructures. A
relational schema isflat since no explicit structures ex-
ist between relations. A relationship is constructed by
joining attribute values. On the contrary, XML has a
nestingstructure where the relationship is clearly de-
fined. For a proper query transformation, the corre-
spondence between a join and a nesting structure will
need to be properly presented in order to resolve the
representational conflicts.

The contributions of this paper are as follows:

• Representational conflicts: The representational
conflicts between relational and XML schemas
are identified, which serve as the basis of the
mapping dictionary.

• Mapping dictionary: A mapping dictionary
(based on the XML format) for resolving the
representational conflicts between relational and
XML schemas is proposed. Mapping dictionary,
specified in a declarative manner, is easy to un-
derstand and manipulate.

• Prototype: A prototype utilizing the mapping dic-
tionary for query transformation is built to vali-
date our proposal.

The rest of this paper is organized as follows. In
Section 2, examples of relational and XML schemas
are given to illustrate representational conflicts. In
Section 3, we define the mapping dictionary. The
transformation algorithms with illustrative query ex-
amples are presented in Section 4. Finally, we sum-
marize this work and point out some future research
directions in Section 5.

2 Problem Description
In this section, we present the representational con-
flicts, i.e., all the possible mismatch, between the rela-

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

148

tional schema and the XML schema. The termschema
anddatabaseare used interchangeably. We also use
the termtable instead ofrelation, and the termfield
instead ofattribute, to avoid confusion.

2.1 Sample Schemas

The sample schemas used throughout the paper is
presented in this section. The relational schema is
illustrated in Figure 1(a). The tablesstudentand
courserepresent the basic information of students and
courses. They define the primary keyssid andcid re-
spectively, which are denoted using a underline. The
tableenroll identifies the grade of a certain student for
a certain course. Note that the fieldsid corresponds to
the primary keysid of the tablestudent; similarly for
the fieldcid and the tablecourse. One more tablestu-
dentphoneis designed to represent the phone numbers
of each student. Since each student could have multi-
ple phone numbers, such information is represented in
a separate table due to normalization.

To explicitly show the key correspondence between
tables, the relational schema is depicted as theRDB
graph, as shown in Figure 1(b). Each node corre-
sponds to a table, and a directed link points from the
table representing the primary key to the table repre-
senting the foreign key. For example, the attributesid
of the tableenroll is defined as a foreign key corre-
sponding to the primary key of the tablestudent.

The XML schema (or DTD) basically supports
nesting relationship or sibling orders between ele-
ments. To make the structure of a DTD more easily ob-
served, it is represented as a rooted graph, and named
as theDTD graph. Figure 2(a) illustrates the DTD
graph for the sample XML schema, which represents
similar information as in Figure 1. The root of the
tree corresponds to the root element of the DTD docu-
ment, which is theschoolelement in this example. The
nesting relationship between elements is represented
by the relationship of parent/child in the graph. For
example, the root element has three sub-elements,stu-
dent, course, andevals.

If an element is associated with values, calledvalue
elements, it will be represented by rounded squares,
e.g., phone; otherwise, the elements will be repre-
sented using squares,e.g., enroll. On the other hand, if
an element is allowed to have multiple occurrences in
the same document, called arepeatable element, the
node will be represented by thicker lines. For exam-
ple, there could be manystudentelement instances,
and eachstudentcould in turn possess manyenroll el-
ement instances. Value elements could be also repeat-
able. In this example, astudentelement instance could
have multiplephoneelement instances.

Attributes are represented using ellipses, and are
depicted as the children of the associated element. At-
tributes are normally used to represent values, but it
can also define different types to illustrate certain con-

straints or relationship. For example, thecourseele-
ment defines an attributecid, which has the attribute
type ID to function as the identifier of eachcourseel-
ement instance. On the other hand, the attributecid
of the elementenroll is defined with the type IDREF,
which requires each attribute value to be also associ-
ated with an ID attribute of some element in the same
XML document. Such correspondence is explicitly
represented as an arrow pointing from the IDREF at-
tribute to the element which defines the corresponding
ID attribute. It can be considered as a reference from
one element to another element.

2.2 Representational conflicts

The representational conflictsbetween the relational
and XML schemas are classified into several cases and
illustrated using the two running schemas as follows:

A. Table-versus-Element conflicts

Relational databases usetablesas the basic unit to
define related information, and the counter part in
XML databases is the constructelement. For ex-
ample, the information associated with the table
coursein Figure 1, is represented by the element
coursein Figure 2(a). In general, the cardinality
of correspondence might be one-to-one, many-to-
one, or one-two-many,etc., and there might exist
naming conflictswhen different names are used
to represent semantically equivalent objects.

B. Field-versus-Element-or-Attribute conflicts

Values in relational databases are associated with
fields, and could be identified or retrieved by the
expressiontable.field. In XML databases, data
could be represented either by value elements,
e.g., thephoneelement, or attributes,e.g., thesid
attribute. However, since the same name could
be defined several times with different meanings
in the same XML document, we need to use the
path expression, which traverses the graph struc-
ture from the root to a certain element, instead of
only element tags, to avoid confusion. For exam-
ple, the path expressions of the two occurrences
of the elementname are /school/course/name
and/school/student/name, respectively. A special
symbol “@” is used to designate an attribute,e.g.,
/school/student/enroll@cid.

C. Semantic conflicts

This category refers to mismatch in data values
or data types,etc.The common data type in re-
lational database is alphanumeric, while that of
XML documents is the plain text. Functions
which provide transformation between data in the
two databases should be defined.

D. Structural conflicts

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

149

student sid namestudent

 sid phonestudent_phone

 cid namecourse

 sid cid scoreenroll sid cid score

 cid name

 sid phonestudent_phone

(a) The relational schema

enroll

 sid name

(b) The RDB graph

course

Figure 1. Sample relational schema

school

course evals

cid name

eid grade

eval

cid eidname

sid phone enroll

student

(a)The sample DTD graph

eid grade

course

cid namesid name enroll

student

major cid eval

school

(b) The nesting DTD graph

Figure 2. Sample XML schema

To cope with the “flat” structure of tables in rela-
tional databases, the relationship between tables
is constructed by joining field values, particularly
through the primary key/foreign key. This struc-
ture could be similarly represented in XML. For
example, in Figure 2(a), the elementsstudentand
evals do not have direct structural relationship
and the connection is built through the two de-
scendent value elements//student/enroll/eidand
//evals/eval/eid. As a counter example, since the
evalelement is directly nested within thestudent
element in Figure 2(b), we could directly retrieve
the evaluation records of a certain student through
the path expression//student/enroll/eval.

For easy identification, the conflicts specified in
cases A, B, and C will be referred as thebasic con-
flict in the remaining of the paper, to be distinguished
with thestructural conflictin case D.

3 Mapping Dictionary
A mapping dictionary is constructed to resolve rep-
resentational conflicts between schemas as discussed
in Section 2. The definition of the mapping dictio-
nary will be provided in this section, along with sam-
ple mapping information based on the two running
schemas.

3.1 Resolving Basic Conflicts

The mapping dictionary captures all the mapping in-
formation between the relational schema and the XML
schema. The mapping dictionary itself is represented
based on the XML format due to its powerful modeling
constructs. The corresponding DTD graph is shown in
Figure 3.

Observe that one attribute and four sub-elements
are defined by the root elementMD. The attributeRdb
represents the name of the relational database. The
first sub-elementXdocrepresents the document name
or the directory where the XML data is stored. It is
allowed to be multiple-occurred to support the case
when many XML documents conform to the XML
schema. The second sub-elementTablerepresents the
relevant mapping information for each table in the re-
lational database. The table is indicated by the at-
tributeTname, and the attributeTxpathrepresents the
path expression of the element in the XML schema
which is semantically equivalent to the target table. By
this way, we resolve conflict A in Section 2,i.e., table-
vs-element conflicts.

The repeatable elementTable in turn defines an-
other repeatable elementField, which represents the
mapping information for each field in the relational
database. Similarly, the attributeFnamerepresents the

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

150

 RefPath

 Xid RXfun XRfun

Operator Value

Xstructure

MD

Xid ForPath WherePathTname Txpath Field

Fname Fxpath

Rdb Xdoc Table Rstructure

Ftable FK

Xid

Ptable PK Joins

Figure 3. The DTD graph for the mapping dictionary

name of the field, and the value elementFxpath rep-
resents the path expression of the corresponding value
element or attribute in the XML database. Such in-
formation resolves conflict B in Section 2,i.e., field-
vs-element-or-attribute conflicts. However, since there
might exist semantic conflicts (conflict C) between
data in two database, we represent the function which
transforms relational data to XML data via the at-
tributeRXfun, and the reverse transformation function
is represented by the attributeXRfun.

The following example captures the mapping infor-
mation for thestudenttable in Figure 1 based on the
XML schema in Figure 2(a), where theItoS function
transforms integers to strings, and theStoI function is
vice versa:

Example md-1
<Table Tname=“student” Txpath=“/vs/student”>

<Field Fname=“sid”>
<Fxpath RXFun=“ItoS”, XRFun=“StoI”>
/vs/student@sid</Fxpath>

</Field>
<Field Fname=“name”>

<Fxpath RXFun=“ ”, XRFun=“ ” >
/vs/student/name</Fxpath>

</Field>
</Table>

An underscore “” is used when no transformation
function is needed. Refer to Figure 3 again. Note that
the elementFxpathdefines an attributeXid. It is used
for resolving structural conflicts, as will be discussed
in the later sub-section.

3.2 Resolving Structural Conflicts

The remaining sub-elements of the root element,i.e.,
the elementsRstructureand Xstructure, will be dis-
cussed in this section. They are used to resolve struc-
tural conflicts (conflict D) as discussed in Section 2. In

short, the information associated withRstructurewill
be used to identify those joins between tables which
convey structural information, and the information as-
sociated withXstructurerepresents the corresponding
structure in the XML database.

Recall that the structure of tables is “flat”, and
the relationship between tables is constructed through
joining fields, especially through keys. Therefore, a
Rstructureelement instance is designed to represent
all the possible joins for a particular table. The name
of the table is denoted by the attributePtableand its
primary key is denoted by the attributePK. Another
table to be joined with this table is denoted by the el-
ementJoins. It is repeatable since a table might have
structural relationships with several other tables due
to normalization orn : m relationship,e.g., the table
studentin Figure 1. Therefore, each element instance
represents one foreign relation (attributeFtable) along
with the foreign key (attributeFK).

The elementJoinsfurther defines the attributeXid
with the type IDREF to reference a particularXstruc-
ture element instance, which is identified by the ID
attributeXid. The elementXstructurealso defines two
elementsForPath or WherePathto provide the struc-
tural information in the XML schema corresponding to
the join condition in the target relational schema. The
elementForPath is used when the two elements cor-
responding to the two joined tables are represented by
thenestedstructure, and will be used to construct the
FOR clause of the XQuery. The elementWherePath
will be used for unstructured elements, and will be
used to construct the WHERE clause of the XQuery.
They are illustrated below using examples.

Consider the join statementstudent.sid = enroll.sid.
Since the corresponding elementenroll is nested
within the corresponding elementstudent, the element

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

151

Algorithm BuildMD
Input: rdb //an RDB tree
Output: md //the mapping dictionary
begin
1. md = ();
2. For each root noder in rdb
3. md = md + TraverseRDB(r);
4. End for;
5. return md;
end
Algorithm MatchNode
Input: n //an RDB node
Output: md //the mapping dictionary
Function
1. Build the information for /MD/Table/Field.
2. Determine if there exists structural conflicts.
Algorithm MatchEdge
Input: n, c //two RDB nodes with parent-child relatinship
Output: md //the mapping dictionary
Function
1. Build the information for /MD/Rstructure.
2. Determine if there exists structural conflicts.

Algorithm TraverseRDB
Input: n //an RDB node
Output: md //the mapping dictionary
begin
1. md = ();
2. If n.flag == 1
3. Then return md
4. If n is a leaf node Then
5. md = md + MatchNode(n)
6. n.flag == 1
7. return md;
8. End if;
9. For each child c of n
10. If c.flag == 0
11. md = md + TraverseRDB(c);
12. md = md + MatchEdge(n, c);
13. End For;
14. md = md + MatchNode(n);
15. m.flag = 1;
16. return md;
end

Figure 4. The algorithms for constructing the mapping dictionary

ForPathwill present the path up to thenestedelement
enroll. TheXstructureelement instance is specified as
follows:

Example md-2
<Xstructure Xid = “X001”>

<ForPath>/vs/student/enroll</ForPath>
</Xstructure>

Consider the other join conditioncourse.cid = en-
roll.sid. Although the corresponding elementscourse
and enroll are not nested through the parent/child
link, they could be considerednestedthrough the link
IDREF. Therefore, theXstructure element instance
will also define aForPath element instance for the
structural information. Moreover, the attributeRefPath
is used to represent the element being referenced by
the link, as specified in the following:

Example md-3
<Xstructure Xid = “X002”>

<ForPath RefPath=“/vs/course”>
/vs/student/enroll/id(@cid)</ForPath>

</Xstructure>

We now explain the definition of the element
WherePath. It is used if the corresponding elements
are un-nested, and a condition, usually a join state-
ment, needs to be specified in the WHERE clause of
XQuery as in SQL. The condition is divided into three
parts, and represented by the value elementWherePath
along with its two attributesOperatorandValue. We
use the structural conflict incurred by a field as an ex-
ample to illustrate how to construct the mapping in-
formation. Suppose we intend to retrieve the score of
a particular student. We could output the fieldscore
from theenroll table by restricting the fieldsSID and

CID in Figure 1. However, in Figure 2, the attribute
SID of the elementstudentand the attributeCID of
the elementenroll, could only get us the elementen-
roll and the identifier of the corresponding evaluation
record, i.e., eid. One more join between//enroll/eid
and //eval/eid is necessary to get the requiredgrade.
Such information is presented by theWherePathele-
ment as follows:

Example md-4
<Xstructure Xid = “X004”>

<WherePath Operator = “=”
Value = “/vs/evals/eval/eid”>
/vs/student/enroll/eid</WherePath>

</XStructure>

3.3 Algorithms

We have implemented a set of algorithms (Figure 4)
to assist in the construction of the mapping dictionary.
The details of the algorithm are omitted due to space
limitation. In short, the main algorithm BuildMD will
start processing from each root node in the RDB graph,
and perform a depth-first-search in the sub-graph. For
each node, the algorithm MatchNode will be invoked
to find the mapping information for each field. For
each edge, the algorithm MatchEdge will be invoked
to identify the correspondence for the joining relation-
ship. Note that a node could be pointed by several
links, such as the nodeenroll in Figure 1(b). There-
fore, each node is associated with a flag, which will be
assigned the value “1” when the mapping information
has be constructed, as shown in line 6 and line 15 of
Algorithm TraverseRDB.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

152

Transformation Module
Input: an SQL query S, the mapping dictionary MD
Output: an XQuery statement X
begin
1. Transform the input S to internal structures:

InvokeAlgorithm Preprocessor to output Fobj,
Wobj, and Robj corresponding to the FROM,
WHERE, and SELECT clauses, respectively.

2. Resolve basic conflicts:
InvokeAlgorithm Accessor to get the mapping
information under MD/Table and /MD/Table/Field,
and represent it in the internal structures.

3. Resolve structural conflicts:
If Algorithm Accessordetects there exists values
in Xid, either under /MD/Table/Field/Fxapth or
/MD/Rstructure/Joins, get the proper Xstructure
element instance with the same Xid, and output the
ForPath object and WherePath object if applicable.

4. Update Fobj and Wobj:
InvokeAlgorithm Joinprocessor to process
all ForPath and WherePath. Update existing Fobj
if necessary or create new Fobj or Wobj.

5. Formalize all paths:
InvokeAlgorithm Formalizer to process the
paths in Wobj, Robj, and Fobj. Create a proper
sequence of variable bindings.

6. Construct the output:
InvokeAlgorithm Constructor to produce an
XQuery based on Fobj, Wobj, and Robj.

end

Figure 5. The algorithms for query trans-
formation

4 Query Transformation
The different syntax of SQL and XQuery is illustrated
below by using two sample queries. Suppose the user
needs to identify all students who have registered the
course “PL”, and retrieve the score of this course. The
SQL query posed against the relational schema in Fig-
ure 1 will be as follows:

SELECT student.name, enroll.score
FROM student, enroll, course
WHERE course.name = “PL” AND

student.sid=enroll.sid AND
course.cid = enroll.cid

The XQuery statement which performs the same
function as the previous query does, but is appropriate
for the XML schema in Figure 2(a), will be as follows:

FOR $t1 IN /school/student, $t2 IN $t1/enroll,
$t3 IN $t2/id(@cid), $t4 IN /school/evals/eval

WHERE $t3/name = “PL” AND $t2/eid = $t4/eid
RETURN $t1/name, $t4/grade

An XQuery statement usually consists of three
clauses. The FOR clause lists a sequence of variable
bindings; the WHERE clause provides restriction on
values; the RETURN clause constructs the output. To
briefly explain this query, the variablet1 considers all
students, the variablet2 examines all the evaluation
records of a student, and the variablet3 refers to the
course corresponding to this evaluation record. In the

WHERE clause, we determine if the course has the
name “PL”, and retrieve the corresponding evaluation
records through the variablet4 and the sub-element
eid. The name of the identified student with the grade
of the course “PL” are then returned.

The set of algorithms which could transform an
SQL query into an equivalent XQuery statement is
shown in Figure 5. Some algorithms are mainly to
identify the useful mapping information in the map-
ping dictionary to meet the requirement of the schema,
and others deal with the different syntax between SQL
and XQuery to make sure proper constructs are pro-
duced. Note that three structural conflicts will be ob-
served in Step 3 for the sample queries. The first one is
introduced by the fieldenroll.score, and is resolved by
the mapping information presented inExample md-
4. The second one is introduced by the join condi-
tion student.sid=enroll.sid. It is used to connect the ta-
blesstudentandenroll, and corresponds to two nested
elements in the XML database. It is resolved based
on the mapping information inExample md-2. The
other join conditioncourse.cid = enroll.cidalso con-
veys structural information, and the corresponding el-
ements in the XML databases are nested through the
IDREF link. It is resolved based on the mapping infor-
mation inExample md-3. The details of other steps
are omitted due to space limitation.

5 Conclusions and Future Research
In this paper, we propose a mapping dictionary to re-
solve representational conflicts between the relational
and the XML schemas. The mapping dictionary, rep-
resented in XML, is declarative. A set of algorithms
are develop to perform the transformation between
SQL and XQuery by accessing the mapping dictio-
nary. A prototype is built to validate our proposal.

As for the next step of this work, we plan to conduct
a more comprehensive empirical study by using com-
plicated schemas and queries on our prototype. We
also plan to extend the mapping information and algo-
rithms to resolve more representational conflicts such
that complicated syntax constructs could also be pro-
cessed.

References
[1] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From

xml schema to relations: A cost-based approach to xml
storage. InProceedings of the 18th ICDE, 2002.

[2] D. Florescu and D. Kossmann. Storing and querying
xml data using an rdbms.IEEE Data Engineering Bul-
letin, 22(3), 1999.

[3] H. Jagadish et al. Timber: A native xml database.The
VLDB journal, 11(4), 2002.

[4] J. Naughton et al. The niagara internet query system.
IEEE Data Engineering Bulletin, 24(2), 2001.

[5] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J.
DeWitt, and J. F. Naughton. Relational databases for
querying xml documents: limitations and opportunities.
In Proceedings of the VLDB conference, 1999.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

153

