
An Implementation for Subcube Based Query Processing

Huei-Huang Chen
Tatung University
hhchen@ttu.edu.tw

Kuo-Wei Ho
Tatung University

d8706001@ms2.ttu.edu.tw

Cheng-Ling Shiou
Tatung University

g9106008@ttu.edu.tw

Abstract-Data cube materialization is commonly
used in reducing OLAP response time. However,
materializing a whole data cube requires large disk
space as the focus on the interested subjects results
in only a small portion of data cubes being
frequently accessed. The subcube, a finer partition of
a data cube, is proposed. The subcubes are formed
from multi-dimensional queries, and the number of
subcubes grows when various queries issued by
users with different dimension levels and value
ranges. The management framework of these
subcubes is important. The technique for searching
the subcubes directly affects the query performance,
and therefore binary trees and linked lists are used
to manage the subcubes. For saving the query
processing time, an algorithm for searching
appropriate subcubes is proposed.

Keywords: data cube, materialization, subcube,
query processing.

1. Introduction

In most cases, OLAP execution is expensive
because answering a query with aggregation entails
processing numerous details from the fact tables in
the data warehouse. Materialized views have long
been proposed to speed up query processing. The
most common practice is applying view selection
algorithms on search lattice in advance as an
undividable unit and then picking up some nodes for
materialization. Research by Huei-Huang Chen and
Kuo-Wei Ho [1] suggest that most OLAP queries
merely focus on some nodes and even some regions
within the nodes. That means only a small portion of
the materialized nodes is accessed. A subcube-based
implementation framework is proposed to further
partition a node in a lattice into subcubes for
materialization. Thus, storage space is saved.

In OLAP query processing, the most important
issue is to find the appropriate subcubes for a query
efficiently in order to reduce the query processing
cost. A subcube's identifier (a combination of
subcube cell and subcube class) is adequate for a
query cell to check whether it can be answered from
the subcube or not. A Subcube Table Method (STM)
is introduced to store subcube's information in a
RDB table. Appropriate subcubes are then searched

to answer a query by scanning the table. Appropriate
as these subcubes may be, they may not be the best
choice. The best choice is the "nearest parent" [8]
based on the subcube computational dependency.

To avoid incurring the extra cost of selecting the
best subcube from several appropriate ones, a tree
structure constructed from the data cube lattice is
maintained to keep the computational dependency of
subcubes. The tree called Subcube Dependency Tree
(SDT) is designed to prune the search space down to
a subset of potentially appropriate subcubes. Each
node of the tree is a subcube fragment. In this paper,
algorithms for SDT management (insertion, deletion
and adjustment of SDT nodes) and searching
appropriate subcubes for OLAP queries are proposed.

2. Related Works

Data warehouses come to fill a gap in the field of
querying large, distributed and frequently updated
systems. Data are extracted from several data
sources, cleansed, customized and inserted into the
data warehouse. OLAP is one of the analysis tools
supported by data warehouses. [3] generalizes OLAP
query operators as aggregation, subtotaling, cross
tabulation, and grouping. To select views to be
materialized for reducing OLAP computing cost, [4]
proposed a lattice framework frequently used by
view selection algorithms, and it captures the
computational dependencies among the data cubes.
The static view selection method requires large disk
space to store a whole data cube. Research by Yu
Feng and Shan Wang [2] proposes a method to build a
compressed data cube by a clustering technique and use
this compressed data cube to provide approximate
answers to queries directly.

[1] states that most OLAP queries merely focus
on some nodes and even some regions within nodes.
A subcube-based implementation framework is
proposed to further partition a node in a lattice into
subcubes for materialization. The subcubing
methods have the following two advantages: First,
the unit for materialization can be reduced from a
node in a lattice to a finer partition. Second, the drill-
down operation in all dimensions will not result in a
partition that is too fine to take possible locality
effect into consideration. Smith et al. [7] proposes a
method for adaptively representing multidimensional

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

160

data cubes using wavelet view elements in order to
more efficiently support data analysis and querying
involving aggregations. The proposed method
decomposes the data cubes into an indexed hierarchy
of wavelet view elements. The view elements differ
from traditional data cube cells in that they
correspond to partial and residual aggregations of the
data cube. The view elements provide highly
granular building blocks for synthesizing the
aggregated and range-aggregated views of the data
cubes.

3. Subcube Dependency Tree

The disadvantages of employing Subcube Table
Method (STM) are its inefficiency in checking all
the subcubes in the table and the overhead of picking
up the nearest subcubes. To address these problems,
a data structure called Subcube Dependency Tree
(SDT) is proposed.

3.1 Nodes of the SDT

The SDT is a tree structure formed of nodes, the
subcube fragments. A subcube fragment computed
from its parent node is a part or a complete subcube.
In other words, the fragments for a subcube may be
scattered in the SDT. As Figure 1 illustrated, Node 3
and Node 4 are computed from Node 1 and Node 2,
respectively; Node 3 and Node 4 represent a
complete subcube. In our investigation, the
operations of SDT are performed in the unit of nodes
(subcube fragments) regardless of subcubes.

The basic properties of nodes in the SDT are
similar to that in a common tree. Each node in the
SDT, except for the root, has one parent node and
zero or more child nodes. The root node is the base
fact table, which exists originally in the data
warehouse; the leaf nodes contain the coarsest
summarized information among the nodes in the
branch. By keeping the computational dependency,
parents and children are related in that data in parent
nodes can be used to compute data in child nodes,
whereas sibling nodes are totally independent of one

another. Computing can span across more than two
levels of the SDT as the computational dependency
of nodes is kept in the branches of the tree.

3.2 Construction of the SDT

One main job of a subcube based query processor is
to find the appropriate subcubes for queries and then
use the found subcubes to compute the results. At the
same time, the corresponding subcube is checked if
it is worth materializing. When the subcube deserves
materialization, it is computed by the query
processor and stored in the pool for future use, as
shown in Figure 2. These newly formed fragments
for a subcube are all inserted into the SDT as child
nodes of their parents from whom they are computed
one by one.

OLAP Query Dictionary

Subcube pool

Result
………………..
………………..
…………………

subcube

Subcube

Subcube cell
Subcube class

??

SQL
EXECUTION

Materialization
Admission

Figure 2. A newly formed subcube.

In the initial construction stage, a SDT contains
only the root node (the base fact table) and the child
nodes are computed from the root without any other
choices. Along with the coming queries, the
corresponding fragments may be computed from the
coarser nodes, and therefore, the descendants of the
root may have their own child nodes. The newly
formed nodes are then added into the SDT, and
hence the SDT grows as the materialized subcubes
are formed for coming queries.

3.3 A Binary tree representation

r o o t

21

3 4

P a r e n t

A s u b c u b e

Figure 1. The nodes in the SDT.

The node degree of a node in the SDT is

unlimited. To simplify its representation, a k-ary tree
is usually transformed into a binary tree for storing.
In this case, the SDT is transformed into a binary
tree by Left-Most-Child-Right-Nearest-Sibling
method. An example of transformation of a SDT into
a binary tree is shown in Figure 3. The Node 3 is the
left most child of Node 1 in the SDT, so Node 3 is
the left child of Node 1 in the mapped binary tree.
The Node 2 is the right nearest sibling of node 1 in
the SDT, so Node 2 is the right child of Node 1 in

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

161

the mapped binary tree. The most popular data
structure to represent a binary tree is the linked lists.

3.4 Node structure

The node structure of the SDT transformed binary
tree is shown in Figure 4. A node has four parts.
Lchild links to the child node, Rsibling links to a
sibling node which has the same parent as the node,
the block pointer points to the starting address of a
disk block that stores the subcube data, and the
information field in the node stores the subcube
identifier (a combination of subcube cell and
subcube class), the dimension value ranges and
usage statistics (accessed frequency, last accessed
time, etc.).

3.5 Operation algorithms
The SDT tree is designed for subcube-based

query processing. It helps the query processor to
search the storage pool for appropriate subcubes. We
then explain those algorithms regarding the
maintenance of SDT including insertion, deletion
and necessary adjustment.

3.5.1. Node Insertion
After issuing a new query, if the corresponding

subcube is worth materializing, the new subcube
fragments are formed and the insertion operation will
be performed to insert the new nodes into the SDT
for consistency. Figure 5 shows a case that a node is
inserted into the SDT. The Node 8 is computed from
Node 6, so Node 8 is a child of Node 6 in the SDT.

The Node insertion algorithm for the mapped
binary tree of SDT is shown in Figure 6. We let the
inserted node be the Lchild of its parent node for
quicker access in the near future. The operation
requires changing only two pointers and thus, the
time complexity of the algorithm is O(1).

3.5.2. Node deletion

Due to the constraints imposed by disk space and
update window, the less frequently used subcubes
are evicted from the pool of subcubes on disk. The

0 /* p computed v */

add (subcube p, subcube v){

v->Rsibling=p->Lchild; /* p->Lchild maybe a null value */

p->Lchild=v;

}

Figure 6: Adding a SDT node algorithm.

0

1 2

3

4.1

4.2

5

6

7

1

3 2

4.1 4.2 5

6

7

8

8

SDT Mapped Binary Tree

Figure 3: Transformation of a SDT into
a binary tree.

0

1 2

4

5

0

1

2

4 58

8

0

1 4 58

0

1

4

5

8

9

9

9

9

SDT Mapped Binary Tree

Figure 7: Deleting a node from SDT.

Usage statisticsSubcube class

fragment ranges
Rsibling

Subcube cell
Lchild

Usage statisticsSubcube class

fragment ranges
Rsibling

Subcube cell
Lchild

Block
Pointer

Figure 4: Node structure of SDT.

delete (subcube v){

if (v->Lchild <> Null){

s=v->Lchild;

r=v->Rsibling;

v.data=s.data;

v->Lchild=s->Lchild;

v->Rsibling=s->Rsibling;

t=s;

/*to find the last right leaf */

while(t->Rsibling<>Null)

t=t->Rsibling;

t->Rsibling=r;

…

…

…

destroy(s);

}

1

v

s r

Lc Rs
RsLc

Rs

t
1

1

2

2

3

3

4

4

t

1

s
Lc Rs

r

Rs

Lc Rs

0

1 2 5

6

8

0

1

2

5

6

87

79

9

SDT Mapped Binary Tree

4

4

Figure 5: Inserting a node into the SDT. Figure 8: Node deletion algorithm (Case 1).

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

162

node of an evicted subcube should be deleted from
the SDT for consistency. Figure 7 shows a case of
deleting a node from SDT. The Node 2 in the SDT is
deleted, and its child nodes (Node 4 and Node 8)
become child nodes of the parent of Node 2, Node 0.

Actually, there are three cases to be considered
for the deletion operation of the mapped binary tree:
Case 1: v has Lchild.
Case 2: v has no Lchild but Rsibling.
Case 3: v is a leaf.
(The deleted node is assumed to be Node v.)

The deletion algorithm for case 1 is shown in
Figure 8; for case 2 and case 3 it is shown in Figure
9.

The time complexity of the algorithm is O(n),
because of the traversal to find the last sibling node
in Case 1.

3.5.3. Adjustment

In the insertion stage of the SDT, an inserted node
probably becomes a parent of its sibling. Figure 10 is
used as an example to explain it. Nodes 5, 6 and 7
show the ancestor-descendant relationship. When
Node 6 is deleted, Node 7 replaces Node 6 and
becomes a child of Node 5. After some time, Node 6
may be recomputed from Node 5 for some coming

queries, and Node 5 is the parent of both Node 6 and
Node 7. However, Node 6 computes Node 7 more
efficiently than Node 5 does, so Node 6 is better to
be the parent of Node 7 than Node 5. To keep the
SDT in the good condition, after inserting a node,
the adjustment is necessary be made to discover any
potential ancestor-descendant relationship and adjust
the SDT accordingly.

The adjustment algorithm is proposed in Figure
11. Each node from the Rsibling of the inserted node
is checked to the last, so the time complexity of the
algorithm is O(n).

3.5.4. Searching

The tree, SDT is designed for subcube based
query processing. It helps the query processor to
search the storage pool for appropriate subcubes.
The looking up procedure for nodes is made in
breadth-first fashion. At first, the child nodes of the
root are checked. If an appropriate node is found, the
checking is turned to its child nodes to find the better
node. The better of the node is coarser and nearer to
the leaf, and more efficiently to compute the query
result. By the tree traversal method, the SDT prunes
down search space to a subset of potentially
appropriate subcubes, as Figure 12 shows.

…

…

…

else if (v->Rsibling <> Null){

s=v->Rsibling;

v.data=s.data;

v->Lchild=s->Lchild;

v->Rsibling=s->Rsibling;

else /* v is a leaf */

s = v

destroy(s);

}

/* p computed v*/
Add (p,v);
Refresh (v);
Refresh (subcube v) {

s=v;
t=v->Rsibling;
while (t <> Null) {

if (vcan compute t) {
s->Rsibling=t->Rsibling;
t->Rsibling=v->Lchild;
v->Lchild=t;
t=s->Rsibling;
}

else {
s=s->Rsibling;
t=s->Rsibling;
}

}
}

p

v r

1

2

3

p

v

p

v

r
1

r

2
3
4

s

t

4

Figure 11: Adjustment algorithm.

1

v

s

RsLc

1

2

3
1

2

3

Figure 9: Node deletion algorithm (Case 2 & 3).

N

N

Y

Y

N

N

N N Y

Y

N N Y

Y
SDT

Mapped Binary Tree

Searching
Space

Figure 12: Looking up nodes.

0

5

6

7

0

5

7

0

5

6 7

0

5

6

7

Delete Node 6

Add Node 6

Refreshing

Figure 10: An example of adjustment.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

163

Figure 13 is the searching algorithm for the

mapped binary tree. The time complexity of the
algorithm is O(n) where n is the number of nodes in
the unbalanced binary tree.

4. Implementation

The overall system framework proposed by [5] is
shown in Figure 14. The subcubes are stored in the
subcube pool. Through the API calls, the subcubes
could be accessed, managed and updated by
queryPool(), storePool(), and updatePool(),
respectively. Our implementation is the queryPool()

including the subcube based query processing
algorithm. We implement the algorithm using STM
and SDT, respectively.
4.1 Environments

The system used is a Pentium 4 2.8G Hz with
1GB DDR 400 SDRAM, running Microsoft
Windows 2000 Advanced Server and SQL Server
2000. The algorithms were implemented by
Microsoft C#.NET.

We use the APB-1 OLAP Benchmark File
Generator to produce the sample data. [6] The
common parameters are: channel=10, number of
users= 100. The density is 1.0. The complete relation
schemas of the APB-1 Benchmark database are
listed below (the subscripts denote corresponding
dimension level numbers).

/* Searching a subcube in a SDT */

/* picked node records the recent useful subcube*/

/*The Lchild of SDT root is the first node being checked */

SDT_Search(SDT t, query cell q) {

Picked_Node=Null;

v=t.Root->Lchild
While (v<>Null)

if (v can compute q){
Picked_Node=v;
v=v->Lchild;

}
else

v=v->Rsibling;
}
Return Picked_Node;

}

SalesFact(Code, Store, Store, Month, UnitsSold,
DollarSales)
ProdDim(Code7, Class6, Group5, Family4, Line3,
Division2, Top1)
CustDim(Store3, Retailer2, Top1)
ChanDim(Base2, Top1)

Figure 13: A SDT searching algorithm.
TimeDim(Month3, Quarter2, Year1)

The queries are produced from four types(only
these queries are considered directly related to our
Sales cube). The query types are listed bellow.
Query 1: (?product, ?customer, ?channel, ?time)
Query 2: (?product, ?customer, ?channel, ?time)
Query3: (?product, ?customer, ?channel, 1995Q1-

1996Q2) divided into two query cells:
(?product, ?customer, ?channel, 1995Q1)
(?product, ?customer, ?channel, 1996Q1)

Query 4:(?product, ?customer, allchannel, ?time)

4.2 Results

In our implementation, we materialized all the
mapped subcubes that we used in the process of
computing the query results, and the query values
were generated randomly within a range of locality.

Pool
API

queryPool(q)

storePool (f)

updatePool (d)

Directory

View
Pool

Figure 14: The overall system framework.

The height of the mapped binary tree of SDT
means the worst case to search a subcube. If the
height of the tree is h (including the root), it is
possible to search an appropriate subcube by
checking h times (h-1 nodes and 1 Null). That is the
reason why we concern with the growth of the tree
height.

0

5

10

15

20

25

30

35

40

45

1 10 20 30 40 50 60 70 80 90 10
0
11
0
12
0
13
0

number of subcubes

H
ie
gh
t
o
f

T
re
e

60 %

Figure 15: The tree height vs. number of
subcubes.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

164

Figure 15 shows that the height of the tree grows
with the number of materialized subcubes and the
speed of growth is getting slower. When the disk
space of materialized subcubes is under 60%, most
new nodes are the sibling of existing nodes. After
the materialized subcubes occupy 60% of disk space,
the growth rate (added height / new nodes) is getting
slower (≤ 2 / 5) because the descendant subcubes can
be already computed from the existed subcubes.
Thus, the newly inserted Lchild nodes do not make
the tree much higher. The tree is efficient for looking
up when the number of subcubes is large in a
specified disk space (the locality property).

In the next implementations, the following three
algorithms are employed in the query processing:

STM: Looking up subcubes in a table stored
subcubes' information. When an appropriate
is found, it stops searching.

STM+NPS: Scanning all records in the STM table
for the nearest parent subcube (NPS).

SDT: The subcube Dependency Tree.
The results show that when the number of

subcubes is large (over 60% in our experiments), the
spent time in SDT is nearly the same as STM, and
SDT found the best subcube spent almost half of the
time compared with STM+NPS, as shown in Figure
16. SDT is more efficient than STM+NPS. We also
observe that the SDT is nearly a balanced tree when
the number of subcubes is large.

5. Conclusions and Future works

By introducing the computational dependency of

the data cube lattice framework, we propose the
Subcube Dependency Tree (SDT), an improved
dictionary to keep the parent-child relationship of
subcube fragments. The SDT can prune the search
space to save the checking time for the most
appropriate subcubes. For storing the SDT with
unlimited node degrees (the number of children), we
adopt the common method (Left Most Child Right

Nearest Sibling) to transform the SDT into the
mapped binary tree. The mapped binary tree is
therefore like a decision tree for checking whether
the subcube is appropriate or not. We design the
node structure to store the necessary information and
links (Lchild and Rsibling) for a subcube fragment.
The necessary management algorithms for insertion,
deletion, and adjustment of nodes are also proposed.
In our implementation, the SDT shows the efficiency
for OLAP queries compared with STM especially
when the queries focus on domain ranges (locality
property).The other two functions (storePool() and
updatePool()) of the system framework in Figure 14
are possible future works.

0

20

40

60

80

100

120

1 10 20 30 40 50 60 70 80 90 10
0
11
0

Number of Nodes

N
um
be
r
of
 C
he
ck
ed
 N
od
es

STM

STM+NPS

SDT

Figure 16: Performance comparison.
The design of admission of materializing

subcubes is an important issue. The storePool()
should judge whether the subcube mapped by the
new queries is worth materializing or not. The less
useful subcubes should be evicted from the pool for
the better usage of resources.

Once updates occur in base fact table, how to
determine those affected subcubes and propagate
necessary updates is another issue worth future
investigation. updatePool() should adopt a suitable
update policy in the update phase.

Acknowledgement

This work has been partially sponsored by the
National Science Council under grants NSC93-2213-
E-036-007.

References

[1] H.H. Chen and K.W. Ho, "Implementing Data Cubes

via Subcubes," In IDEAS, pp. 378-386, Coimbra,
Portugal, 2004.

[2] Y. Feng and S. Wang, "Compressed data cube for
approximate OLAP query processing,” Journal of
Computer Science and Technology, pp. 625-635, May
2002.

[3] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh,
“Data Cube: A Relational Aggregation Operator
Generalizing Group By, Cross-Tab, and Sub-Totals”,
In ICDE, pp. 152-159, New Orleans, USA, 1996.

[4] V. Harinarayam, A. Rajaraman, and J.D. Ullman,
“Implementing Data Cubes Efficiently”, In SIGMOD,
pp. 205-216, Montreal, Canada, 1996.

[5] Y. Kotidis and N. Roussopoulos, "A Case for Dynamic
View Management," ACM Transactions on Database
System, Vol. 26, No. 4, pp. 388-423, Dec. 2001.

[6] OLAP Council, “OLAP Council APB-1 Benchmark
Specification”, White Paper, 1998, available at
http://www.olapcouncil.org/research/bmarkly.htm.

[7] J.R. Smith, C.S. Li and A. Jhingran, “A Wavelet
Framework for Adapting Data Cube Views for OLAP”,
IEEE Transactions on Knowledge and Data
Engineering, Vol. 16, No. 5, pp.552-565, May 2004.

[8] H. Uchiyama, K. Runapongsa and T.J. Teorey, "A
Progressive View Materialization Algorithm," In
DOLAP, Kansas City, USA, 1999.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

165

