
XML-based SCM Environment and Related Metrics

Ya-Chi Weng and Chin-Feng Fan
Computer Science and Engineering Dept., Yuan-Ze U.

 csfanc@saturn.yzu.edu.tw

Abstract- This paper presents an XML-based
SCM (Software Configuration Management)
environment along with XML-based data
collection for metrics. We propose using XML
tags and links to express semantic relationships
among configuration items and their contents so
as to efficiently assist major SCM activities,
such as impact analysis and configuration
verification. Furthermore, information retrieved
from XML links/tags can be modeled using BBNs
(Bayesian Belief Networks) for metrics
measurement. The proposed approach can
effectively support SCM activities and its related
decision-making.

Keywords: XML, Software configuration
management, BBN (Bayesian Belief Networks)

1. Introduction

Current Software Configuration
Management (SCM) tools usually manage
various types of files, and support changes and
different versions of source code. But these tools
norma lly do not address the relationships
between the contents of different configuration
items. However, such inter- or intra-
relationships among configuration items can be
used to support SCM functions more effectively
than approaches without using them. XML can
easily implement relationships by marking and
linking related portions with meaningful user
defined names. Thus, we propose to use XML to
annotate important relationships among contents
of configuration items to effectively support
SCM major activities. Moreover, we propose to
combine the information extracted from XML
tags and links with Bayesian Belief Networks
(BBN) to estimate software maintainability,
complexity, and to support release decision.

In the following, we will first give a brief
background introduction, followed by our XML
approach and tools description. Then
XML-based metrics are presented. Finally, a
conclusion is given.

2. Related Background

2.1. SCM tools

Many commercial SCM tools are available.
For instance, IBM Rational ClearCase [3] helps
users manage and track software resources;
Visible system [8] produced by Razor supports
problem tracking, file version control, and the
release management; while PVCS (Project
Version Control System) [6] assists Version
Manager and Tracker.

 Most of the current SCM tools focus on
management of different versions of source code;
our SCM environment supports complete SCM
activities. Most of the current SCM tools do not
explicitly handle relationships in the contents of
configuration items; yet, our tools deal with such
inter- or intra- relationships so as to accurately
and efficiently support SCM functions.

2.2. Bayesian Belief Network

Bayesian Belief Network [5] is an acyclic
graph used for modeling and reasoning with
uncertainties. Each node in a BBN represents a
random variable, whose state is usually
expressed in discrete numbers or ranges. Each
edge in the graph represents the casual influence
between connected nodes. A Conditional
Probability Table (CPT) is associated with each
node to denote such casual influence. CPT's are
filled by experts or inferred from statistical data.
Once new evidence is obtained, it can be
plugged in the graph to update the states of the
related nodes. The calculation is propagated
from parent nodes to child nodes and vice versa.
A BBN graph can be expanded into an influence
diagram by adding decision nodes and utility
nodes. The former are shown by rectangles; the
latter, representing cost or profit functions are
depicted by diamonds. Figure 1 is a sample BBN
example . In short, BBNs provide powerful
modeling and computation under uncertainties.
Thus, we use BBN’s such advantages to estimate
SCM related metrics.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

350

Manager capability

Developer capability

Product quality Product performance

Training

Training Cost

Figure 1. BBN example

3. Our XML-based SCM

Environment

In the following, we will first introduce our
XML-based SCM environment, and then present
its related metrics, a by-product extracted from
XML tags.

We have constructed an XML-based SCM
environment on Windows 2000, using Visual
Basic 6.0 and Microsoft Access.

Our environment provides different tools to
assist the following SCM tasks [4]:
1) Configuration ID and Markup

� DTD definition tool
� Markup tagging tool

2) Configuration Control
� Workflow tool
� Change impact analysis tool

3) Configuration Status Accounting
� Status accounting reports tool

4) Configuration Verification
� Review tool

5) Release Management (provides related
metrics)

Our tool allows the user to define his/her
own tags and links by defining DTD’s
(Document Type Definitions), and then mark up
related documents using the selected DTD. The
reviewer may use XML DTD to define
requirements of related industrial standards.
Thus, documents marked by such tags can be
checked for its conformance to the standards.
Figure 2 is a sample DTD diagram for
requirements specification.

Figure 2. DTD diagram for requirements

In addition, to support the implementation

of a full-scale software configuration

environment, our system also provides the
following predefined XML tags and links to
express relationships among configuration items.
We identify the related relations including
tracing, reference, use and inheritance . They are
explained below:
1. Tracing – It indicates tracing relations at

contiguous stages . This is shown in Figure 3.
Tracing links may assist reviewers to perform
configuration verification.

2. Reference – Documents may refer to figures
or document fragments from different sources.

3. Use – It presents as caller and callee
relations.

4. Inheritance – It presents superclass and
subclass relations for an object-oriented
system.

UML diagra ms can also be tagged by their
types, messages, and use cases, etc. Besides, we
use XML tags to show change history. The
changed fragments may be marked using
new/removed/changed tags. The change related
DTD is shown in Figure 4. The CR No. (Change
Request Number) identifies the change request
form.

Figure 3. Tracing relationship between

documents

<! ELEMENT CR No. (#PCDATA)>
<! ATTLIST CR No. type (New|Removed|Changed)
#REQUIRED>

<!ELEMENT simplelink ANY>
<!ATTLIST simplelink
 XLink:type (simple) #FIXED “simple”

 XLink:href CDATA #IMPLIED>
Xlink:title CDATA #IMPLIED>

Figure 4. The change related DTD

Configuration identification is the first SCM
activity. It assigns unique identifiers to software
configurations items. In order to help users
manage concerned files, we add SCM -related
identifiers as tags, such as names of the file,
versions, ID’s, and information of related files,
as the header of a document.

Configuration control is a major SCM
activity. The validity and impact of a suggested
change are analyzed before the change request is
forwarded to the CCB (Change Control Board).
Once the suggested change is approved, it will
be sent to the developed team for change
implementation and finally the reversion has to

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

351

be verified. Our system provides a workflow
solution to control change process via e-mail.
Change request forms will automatically deliver
via e-mail to the designated receivers according
to the customized workflow. The change request
forms should include a unique number and be
filled in by involved persons in order. The
change request form forwarded by workflow is
shown in Figure 5.

Our tools retrieve related information using
related links as use and inheritance to assist
analysts to perform impact analysis. Use links
link caller-callee relations, and inheritance links
indicate superclass-subclass relations. We
utilized “use” and “inheritance” relations to
support analyzers in change impact analysis.

Configuration status accounting records and
reports information related to a software

configuration item. Users can retrieve the
information of a SCM item from the marked
header.

Configuration verification is another
major SCM activity, which verifies that the
software system matches the description in the
specifications and related documents. The results
of verification are also kept by our tool since
they may be used for release decision.
Furthermore, our tools can retrieve related
portions using tracing links or
change/modification links to assist the reviewer
to perform configuration verification. The
tracing links can be used to extract related
contents of documents at contiguous stages to
assist reviewers. The tracing mode is shown in
Figure 6.

Figure 5. Change request forms in change control workflow

Figure 6. Configuration verification (tracing between requirements and design)

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

352

4. XML-based Metrics

Once a project has used our SCM
environment to maintain its configuration
items, the information extracted from XML
tags and links can be collected for metrics
measurement. We use the following ways to
estimate software complexity,
maintainability, and to make release
decision:

(1) Weighted summation: When related

factors all have numerical values, we
simply use weighted summation for
measurement.

(2) Use BBNs : When most of the

concerned factors are uncertain, BBNs
can be used for metrics estimation.

(3) Hybrid approach: When the number of

certain factors are more than that of
uncertain ones, the uncertain ones are
first estimated by BBNs and then BBN
results are combined with the certain
factors using a weighted summation.

These methods are described in the
following subsections.

4.1. Complexity measurement

A wide variety of complexity-related
metrics has been proposed [1][7]. The XML
tags and links marked in the SCM items can
be collected and used to calculate them. We
also suggest to use counts from constructs in
UML diagrams to estimate Object-Oriented
complexity. Some of OO complexity metrics
and the related XML links/tags for their
measurement are listed below:

(1) Project complexity

– Numbers of use cases (diagram tag)
– Average numbers of scenarios (scenario

tag)
(2) Class complexity

1. Numbers of the messages in sequence or
collaboration diagrams (message links)

2. Numbers of tracing links (tracing links)
3. Class Fan out (use links)
4. Numbers of Classes, Numbers of

Attributes, Numbers of Methods
(diagram tags)

5. Numbers of Children (NOC)
(inheritance links).

6. Weighted methods per class (WMC)
(method tags with assigned weights)

7. Depth of inheritance tree (DIT)
(inheritance links)

These metrics present different viewpoints of
complexity. Independent ones can be
combined using weighted summation
approach to form general complexity
metrics.

4.2. Release management decisions

Our tools utilize Bayesian Belief

Networks to support the decision making
process of release management. BBNs
provide modeling of uncertainties and
support repeated evaluation given updated
information. The data from configuration
control and configuration verification can be
plugged in for release decision. The BBN
diagram for release decision is presented in
Figure 7.
 In Figure 7 “Release decision” is
affected by “strategic issues” and “new
version’s product quality” nodes. While,
“Strategic issues” is further influenced by
the following factors:

– Time span from last release
– Market competition
– Portion of significant changes
– Company policy

On the other hand, the factor “New version’s
product quality” is further determined by the
following:

– Maintainer’s capability
– Number of outstanding changes per

KLOC (K Lines of Code)
– Quality of the original version
– amount of detected defects

Among them, the “amount of detected
defects” is in turn influenced by

--Portion of significant changes
 --Number of the average abnormal

reports per KLOC
--Number of the average negative

review comments per KLOC

Of all the nodes in Figure 7, we notice

that values of the following three nodes are
certain and can be obtained from tags.
(1) Number of the average abnormal reports

per KLOC.
(2) Number of the average negative review

comments per KLOC.
(3) Number of outstanding change per

KLOC.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

353

Figure 7. Release decision model

Since most of the factors in Figure 7 are

uncertain, BBN estimation, as indicated
above, can be used to support release
decision. The above three certain data are
first mapped by experts into numbers ranged
from 0 to 1, and then they can be converted
into probabilities of BBN nodes using fuzzy
triangular functions shown in Figure 8. Take
0.6 for example, it will be mapped to the
following probabilities: Low=0, mid= 0.8,
high=0.2.

Figure 8 Fuzzy triangular function

. Figure 9 is a sample scenario where
strategic issues node is highly favor release
and the new version’s product quality is
estimated as high. This scenario is calculated
using Hugin [2], a BBN’s tool.

4.3. Maintainability prediction

We can also use information extracted
from XML tags to predict software
maintainability. Maintainability may be
reflected through the following factors:
(1) Number of new/removed/corrected

modules
(2) Number of revisions
(3) Average time required for impact

analysis
(4) Number of outstanding change requests

(5) Average time taken to implement a
change request

(6) Maintainer’s capability
(7) Quality of the previous version

Items (3) to (5) are suggested by
Sommerville [7]. Our tool can extract values
of the first five items from XML tags and
links. The last two factors are uncertain.
Since the numbers of certain items are more
than the uncertain ones, we use a hybrid
approach to combine BBNs with weighted
summation.

First, the uncertain factors, i.e.,
maintainer’s capability and previous
version’s quality, are first expanded into
BBNs shown in Figures 10 and 11. Once we
have estimated probabilities of the
“maintainer’s capability” and the “quality of
the previous version” using these BBNs, we
can change their probabilities to real
numbers using weighted summation. Finally,
the values of these two factors are combined
with all those of the other factors (items 1-5)
using weighted summation to calculate the
maintainability.

5. Evaluation and Conclusion

This paper presented an XML-based
SCM environment along with data collection
through XML tags and links for SCM related
metrics. We have used a set of life cycle
documents of an elevator simulator as a case
study of our constructed SCM environment.
Tests showed that the constructed tools could
satisfactorily assist SCM tasks [9]. We have
also tested the proposed metrics using
extreme good and bad conditions. They all
yield correct results [9].

 0 0.5 1

1
Low Mid High

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

354

Figure 9. Favor release scenario

Test effort
Test coverage

Testing quality

Usage profile

Process maturity level

Quality of the previous version

Figure 10. Quality of the previous version

Level of education

Maintainer’s Capability

Maintainer’s experience

Job training

Fig. 11. Maintainer’s capability

In summary, the major idea in the research
was to use XM L to express content semantics as
well as the critical relationships among contents
of configuration items . Thus, SCM tools can
accurately and effectively retrieve related
information to support major software
configuration management activities, such as
status accounting, impact analysis in change
control, and configuration verification.
Furthermore, the XML tags and links can be
collected to provide metrics calculation, such as
software complexity, maintainability, and release
decision. The XML approach seems to be a
perfect match for SCM tools and metrics.

References

[1] S. R. Chidamber and C. F. Kemerer, “A

Metrics Suite for Object-Oriented
Design,” IEEE Transactions on Software
Engineering, vol. 20, no. 6, Jun. 1994, pp.
476-493

[2] HUGIN EXPERT, http://www.hugin.com
[3] IBM Rational software,

http://www.rational.com/
[4] “IEEE Guide to Software Configuration

Management,” ANSI/IEEE Standard
1042-1987, September 1987.

[5] F. V. Jensen, An introduction to Bayesian
networks, UCL Press, London; 178 pages,
1996.

[6] MERANT, http://www.merant.com
[7] I. Sommerville, Software Engineering , 5th

Edition
[8] Visible Systems, http://www.visible.com/
[9] Y. Weng, “XML-based Software

Configuration Environment,” master’s
thesis, Computer Science and Engineering
Dept., Yuan-Ze University, July, 2004.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

355

