

Updating Generalized Association Rules with Evolving Taxonomies

Wen-Yang Lin Ming-Cheng Tseng
Dept. of Comp. Sci. & Info. Eng.
National University of Kaohsiung

Institute of Information Engineering
I-Shou University

Kaohsiung 811, Taiwan Kaohsiung 840, Taiwan
wylin@nuk.edu.tw clark.tseng@msa.hinet.net

Abstract-Mining generalized association rules be-
tween items in the presence of taxonomy has been
recognized as an important model in data mining.
Earlier work on mining generalized association rules
confined the taxonomy to be static. However, the
taxonomy of items cannot be kept unchanged all the
time. Some items will be sifted from one hierarchy
tree to another for more suitable classification or be
abandoned from the taxonomy if they will not be
produced any more; new born items will also be
added into the taxonomy. Under these circumstances,
how to update the discovered generalized association
rules effectively is a crucial task. In this paper, we
examine this problem and propose a novel algorithm,
called Taxo_UP, to update the discovered frequent
itemsets. Empirical evaluation shows that the pro-
posed algorithm is very effective and has good linear
scale-up characteristic.

Keywords: Data mining, generalized association
rules, frequent itemsets, evolving taxonomy.

1. Introduction

Mining association rules from a large database of
business data, such as transaction records, has been a
popular topic within the area of data mining [1]. An
association rule is an expression of the form X ⇒ Y,
where X and Y are sets of items. Such a rule reveals
that transactions in the database containing items in X
tend to contain items in Y, and the probability, meas-
ured as the fraction of transactions containing X also
containing Y, is called the confidence of the rule. The
support of the rule is the fraction of the transactions
that contain all items in both X and Y. For an associa-
tion rule to be valid, the rule should satisfy a
user-specified minimum support, called minsup, and
minimum confidence, called minconf, respectively.
The problem of mining association rules is to dis-
cover all association rules that satisfy minsup and
minconf.

In many applications, there are taxonomies (hier-
archies), explicitly or implicitly, over the items. It
may be more useful to find associations at different
levels of the taxonomy than only at the primitive
concept level [6][10]. For example, consider Figure 1,
the taxonomies of items from which the previous
association rule derived.

Tomato

Vegetable

Carrot

Kale

Non-Root
Vegetable

Pickle

Apple

Fruit

Papaya

Figure 1. An example of taxonomies T.

It is likely to happen that the association rule

Carrot ⇒ Apple (Sup. = 30%, Conf. = 60%)

does not hold when the minimum support is set to
40%, but the following association rule may be
valid,

Vegetable ⇒ Fruit.

Earlier work on mining generalized association
rules confined the taxonomies to be static. However,
the taxonomy of items may change as time passes [5].
Some items will be sifted from one classification tree
to another. For example, tomato would be reclassi-
fied from a vegetable to a fruit. Some trees of the
taxonomies will be merged together or be split into
smaller trees if the items on the trees cannot meet the
demands in a new classification. Items will be aban-
doned if those items do not be produced any more,
and newborn items are added. Under these circum-
stances, how to update the discovered generalized
association rules effectively becomes a critical task.

In this paper, we introduce the problem of updat-
ing the discovered generalized association rules un-
der evolving taxonomy. We will give a formal prob-
lem description and clarify the situations of taxon-
omy updates in Section 2.

A simple way for dealing with this problem is to
adopt the mining approach to re-scan the whole da-
tabase from scratch to reflect the most recent asso-
ciations. This approach, however, has the following
disadvantages:
(1) It is not cost-effective because the discovered

frequent itemsets are not reused.
(2) It is not acceptable in general since the process of

generating frequent itemsets is very
time-consuming.
To be more realistic and cost-effective, it is better

to perform the association mining algorithms to gen-
erate the initial association rules, and when update to

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

368

the taxonomy occurs, apply an updating method to
re-build the discovered rules. The challenge thus falls
into developing an efficient updating algorithm to
facilitate the whole mining process. This problem is
nontrivial because updates to the taxonomy not only
can reshape the concept hierarchy and the form of
generalized items, but also may invalidate some of
the discovered association rules, turn previous weak
rules into strong ones, and generate import new,
undiscovered rules.

We propose an algorithm called Taxo_UP (Tax-
onomy Update) for mining the generalized frequent
itemsets, which is capable of effectively reducing the
number of candidate sets and database re-scanning,
and so can update the generalized association rules
efficiently. Detail description of the Taxo_UP algo-
rithm will be given in Section 3.

In Section 4, we evaluate the performance of the
proposed Taxo_UP with two leading generalized
associations mining algorithms, Cumulate and Strat-
ify from [10], on synthetic data. A brief description
of previous related work is presented in Section 5.
Finally, we summarize our work and future investi-
gation in Section 6.

2. Update of Generalized Association
Rules

2.1. Problem description

Let I = {i1, i2, …, ip} be a set of items and DB =
{t1, t2, …, tn} be a set of transactions, where each
transaction ti = 〈tid, A〉 has a unique identifier tid and
a set of items A (A⊆I). Assume that a set of taxono-
mies of items, T, is available and is denoted as a set
of hierarchies (trees) on I ∪ J, where J = {j1, j2, …, jp}
represents the set of generalized items derived from I.
A generalized association rule is an implication of
the form A ⇒ B, where A, B ⊂ I ∪ J, A ∩ B = ∅, and
no item in B is an ancestor of any item in A.

Given a user specified minsup and minconf, the
problem of mining generalized association rules is to
discover all generalized association rules whose
supports and confidence are larger than the specified
thresholds. This problem is reduced to the problem of
finding all frequent itemsets for a given minimum
support [6][10].

Let L be, after an initial discovery of all the gen-
eralized association rules in DB, the set of all fre-
quent itemsets with respect to minsup. As time passes,
some updated activities may occur to the taxonomies
due to some reasons [5]. We denote the updated tax-
onomies as T’. The problem of updating discovered
generalized association rules in DB is to find the set
of frequent itemsets L’ with respect to the refined
taxonomies T’.

2.2. Types of taxonomy updates

In this subsection, we will describe different
situations for taxonomy evolution, and clarify the
essence of frequent itemsets update for each type of
taxonomy evolutions.

According to our observation, there are four basic
types of item updates that will cause taxonomy evo-
lution:
(1) Item insertion: New items are added to the tax-

onomy.
(2) Item deletion: Obsolete items are pruned from the

taxonomy.
(3) Item rename: Items are renamed for some reasons,

such as error correction, product promotion, etc.
(4) Item reclassification: Items are classified into

different categories.
Note that hereafter the term “item” refers to a

primitive or a generalized item. Each type of evolu-
tions is further explained in the following.

Type 1: Item insertion. The strategies to handle this
type of update operation are different in whether the
inserted item is primitive or generalized.

When the new inserted item is primitive, we
cannot process this item until there is an incremental
database update, because the new item does not ap-
pear in the original set of frequent itemsets.

On the other hand, if the new item represents a
generalization, then the insertion itself also has no
effect on the discovered associations until the new
generalization incurs some item reclassification.

Figure 2 shows an example of this type of tax-
onomy evolution, where a new item “J” is inserted as
(a) a primitive item or (b) a generalized item. Note
that in Figure 2b item “E” is reclassified to the gen-
eralization represented by “J”.

A

G

C

I

DB

F

H

E J

A

G

C

I

DB

F

H

J

E
(a) (b)

Figure 2. An example of taxonomy evolu-
tion caused by item insertion. The inserted
item “J” is: (a) primitive; (b) generalized.

Type 2: Item deletion. This case is similar to the
insertion case. There is nothing to do with the dele-
tion of primitive items if no transaction update to the
original database, and the removal of a generalization
may also lead to items reclassification.

Figure 3 shows an example of this type of tax-
onomy evolution.

Type 3: Item rename. When items are renamed, we
do not have to process the database. Instead, we just
replace the frequent itemsets with new names and so
the association rules.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

369

A

G

C

I

DB

F

H

A

G

C

I

DB

F

H

EE
 (a) (b)

Figure 3. An example of taxonomy evolu-
tion caused by item deletion: (a) The

primitive item “E” is deleted; (b) The gen-
eralized item “B” is deleted, and items “C”

and “E” are reclassified to “A”.

Type 4: Item reclassification. Among the four types
of taxonomy updates this is the most profound opera-
tion. Once an item, primitive or generalized, is re-
classified into another category, all of its ancestor
(generalized items) in the old and the new taxono-
mies are affected. In other words, the supports of
these affected generalized items have to be updated
and so do the frequent itemsets containing any one of
the affected generalized items. For example, in Fig-
ure 4, the two shifted items E and G will change the
support counts of generalized items A, B, and F, and
also affect the support counts of itemsets containing
A, B, or F.

A

G

C

I

DB

F

H

E

A

E

C

I

G

B

F

HD

Figure 4. An example of taxonomy evolu-

tion caused by item reclassification.

In this paper, we assume that there is no transac-
tion update to the original database, and so we only
have to consider, according to the above discussions,
the taxonomy evolution caused by insertion or dele-
tion of generalized items, and reclassification of
primitive or generalized items.

3. The Proposed Taxo_UP Algorithm

3.1. Algorithm description

Let ED denote the extended version of DB by
adding, in taxonomies T, the ancestors of each primi-
tive item to each transaction, while UE be another
extension of DB by adding generalized items in the
updated taxonomies T’. A straight-forward way to
find updated generalized frequent itemsets would be
to run any of the algorithms, such as Cumulate and
Stratify [10], for finding generalized frequent item-
sets on the updated extended transactions UE. This
simple way, however, ignores the fact that many
discovered frequent itemsets would not be affected
by the taxonomy evolution.

Lemma 1. The supports of all primitive items do

not change with respect to a taxonomy evolution.
Thus, the proposed Taxo_UP algorithm follows a

simple guideline: Identify the affected and unaffected
generalizations first, and so the affected transactions.
Then utilize them to lessen the work of support
counting of itemsets as could as possible.

An affecting item is a primitive item whose an-
cestor set changes with respect to a taxonomy evolu-
tion. An item is an affected item if its descendent
primitive item set changes with respect to a taxon-
omy evolution. A transaction is called an affected
transaction if it contains at least one of affecting
items. For a given itemset A, we say A is an affected
itemset if it contains at least one of affected items.
There are four different cases in dealing with the
support counting of A.
(1) If A is an unaffected itemset and is frequent in

ED, then it is also frequent in UE.
(2) If A is an unaffected itemset and is infrequent in

ED, then it is also infrequent in UE.
(3) If A is an affected itemset and is frequent in ED,

then it may be frequent or infrequent in UE.
(4) If A is an affected itemset and is infrequent in

ED, then it may be frequent or infrequent in UE.
Note that only cases 3 and 4 need further database

scan to determine the support count of A. Indeed, for
case 3, we only have to scan the affected transactions
in ED and UE. Then calculate its support to decide
whether it is frequent or not.

As for case 4, the following lemma provides an
effective pruning strategy to reduce the number of
candidate itemsets and so can avoid unnecessary da-
tabase scan.

Lemma 2. If an affected itemset A ∉L (frequent
itemsets in ED) and '

Aδ − Aδ ≤ 0, then A ∉L’ (frequent
itemsets in UE), where ∆ is the set of transactions
in ED affected by taxonomy update, '∆ the set of
affected transactions in UE, and Aδ and '

Aδ are
support counts of A in transactions ∆ and '∆ , re-
spectively.

Proof. If A ∉L, then Aσ < |ED| × minsup, where
Aσ denotes the support count of A in ED. Note that

|UE| = |ED| = |ED| − |∆| + |∆’| due to |∆| = |∆’|.
Hence, Aσ ′ = Aσ + ('

Aδ − Aδ) < |ED| × minsup = |UE| ×
minsup, where Aσ ′ is the support count of A in UE.
Thus, A ∉L’.

Thus in case 4, we scan the affected transactions
in ED and UE to count the appearances of A. If the
support count of A in UE’s affected transactions is
greater than that in ED, then we have to scan the rest
of UE to decide whether A is frequent or not.

An overview of the Taxo_UP algorithm is pre-
sented below.

Algorithm: Taxo_UP
Inputs: (1) DB: the database; (2) ms: the minimum
support setting; (3) T: the old item taxonomy; (4) T’:
the new item taxonomy; (5) L = UkLk: the set of old

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

370

Figure 5. An example of mining generalized association rules caused by item reclassified.

frequent itemsets
Output: L’ = UkL’k: the set of new frequent itemsets.
Method:
1. Load L1; let C1 be the set of items in T’.
2. Divide the set of candidate 1-itemsets C1 into two

parts: one X consists of unaffected items in L1,
and the other Y contains affected items.

3. Add generalized items in T and T’ into the origi-
nal database DB to form ED and UE respectively.

4. Compute the count of each 1-itemset A in Y over
the affected transactions of ED (∆) and UE (∆’);
let the values be Aδ and '

Aδ , respectively.
5. For each 1-itemset A that is in L1 and the affected

set Y, i.e., A ∈ Y ∩ 1L , calculate σ’A = σA
− Aδ + '

Aδ .
6. For any candidate A ∉ 1L and ('

Aδ − Aδ) > 0,
count A over the transactions in UE - ∆’ and add
the counts to '

Aδ .
7. Create L’1 by combining X and those itemsets

which are frequent in Y.
8. Generate candidates C2 from L’1.
9. Repeat Steps 1-8 for new candidates Ck until no

frequent k-itemsets L’k created.

3.2. An example

Consider Figure 5. Let minsup = 25% (3 transac-
tions). The set of frequent itemsets L includes: A(7),
D(6), F(5), G(3), I(8), AF(4), AG(3), AI(6), DF(3),
DG(3), DI(6), FI(3), GI(3), AFI(3), AGI(3), DFI(3),
and DGI(3), where the support counts of itemsets are
shown within parentheses.

The Taxo_UP algorithm first divides all items in
C1 into two sets: one consists of unaffected items D,
G, and I in L1, and the other contains affected gener-
alized items A, B and F, where A and F are frequent
in L1, while B is not. Since items D, G, and I are
primitive frequent items and do not change their
supports in ED and UE, we do not need to process

them; we only have to process generalized items A,
B and F. Next, transactions 1, 2 and 3 in ED and UE
are scanned since these transactions are affected by
exchanging items G and E. We then subtract the
support counts of items A and F in ED’s affected
transactions from and add their counts in UE’s af-
fected transactions to their original support counts.
For example, we have σ’{F} =σ{F} − }F{δ + '

{F}δ
= 5 − 3 + 1 = 3. Item B is not frequent in ED and may
become frequent because '

}B{δ − }B{δ = 3 − 1 = 2 > 0
according to Lemma 2. Therefore, we scan transac-
tion 4 to counting item B and add 1 to the count from
UE. That is, σ’{B} = '

}{Bδ + 1 = 3 + 1 = 4. After com-
paring the supports of A, B, and F to minsup, the new
frequent 1-itemsets '

1L are A, B, D, F, G, and I.
Next, we use '

1L to generate candidate

2-itemsets 2C , obtaining AF, AI, BD, BF, BI, DF, DG,
DI, FG, FI, and GI. However, only AF, AI, BD, BF,
BI, DF, FG, and FI undergo support counting, be-
cause the others are composed of primitive items.
Note that the original frequent 2-itemset AG is de-
leted in UE due to the existence of item-ancestor
relationship. After that, the procedure of generating
frequent 2-itemsets is the same as that for generat-
ing '

1L . The new frequent 2-itemsets '
2L are AI, BD,

BI, DG, DI, and GI. Finally, we use the same ap-
proach to generat '

3L , obtaining BDI and DGI. Note
that transaction 2 has the same generalized items
after the taxonomy evolution; however, we still re-
quire processing this transaction in Step 4 of the
proposed algorithm. If we do not process this trans-
action, 2-itemset FG will not become frequent when
minsup = 10%.

The whole process of running this example using
Taxo_UP is illustrated in Figure 6.

Original Extended Database
(ED)

 Updated Extended Database
(UE)

TID
Primitive

Items
Generalized

Items

TID
Primitive

Items
Generalized

Items
1 D, G, I A, F 1 D, G, I A, B
2 D, E, G, I A, B, F 2 D, E, G, I A, B, F
3 D, G, I A, F 3 D, G, I A, B
4 C, H A, B, F 4 C, H A, B, F
5 H F 5 H F
6 I 6 I

7 I 7 I

8 D, I A 8 D, I A
9 D, I A 9 D, I A

10 D, I A 10 D, I A

A

EC

I

DB

F

HG

A

GC

I

DB

F

HE

∆ '∆

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

371

A, B, C, D, E, F, G, H, I

D, G, I

DG, DI, GI

Unaffected
1C Affected 1C

 B A, F

1C

L1
Load

1C not in L11C in L1 1C in L1

A F

37

Cal.
Scan ED & UE

B

3*

Scan rest UE

* only shows
count in UE

B

4

'L1

Generate 'L1

A, B, D, F, G, I

AF, AI, BD, BF, BI, DF, DG,
DI, FG, FI, GI

Load L2

2C

Generate
2C

Affected
2CUnaffected

2C
2C not in L2 2C in L22C in L2

BD, BF, BI, FG

Cal.
Scan ED & UE

Scan rest UE

Scan ED & UE

BD BI

3*3*

FG

1*

BD BI

33

FG

1

AI, BD, BI, DG, DI, GI

'L2Generate
'L2

BDI, DGI

DGI

Load L3

3CGenerate

BDI

Affected
3C

3C

BDI
3*

Cal.

Unaffected
3C

BDI, DGI

Generate 'L3
'L3

4C
4CGenerate

∅

BDI
3

Scan rest UE

AF, AI, DF, FI

 in L33C not in L33C

AF AI DF FI

2 6 1 1

Figure 6. Illustration of algorithm

Taxo_UP.

4. Performance Evaluation

In order to examine the performance of Taxo_UP,
we conducted experiments to compare its perform-
ance with that of Cumulate and Stratify, using the
synthetic dataset generated by the IBM data genera-
tor [1]. The parameter settings are shown in Table 1.
Two items in the taxonomies were randomly chosen
to exchange their positions. All experiments were

performed on an Intel AMD-800 with 512MB RAM,
running on Windows 2000.

Table 1. Default parameter settings for

synthetic data generation.
Parameter Default value

|DB| Number of original transactions 100,000
|t| Average size of transactions 5
N Number of items 200
R Number of groups 30
L Number of levels 3
F Fanout 5

We first compared the performance of these algo-
rithms with varying minimum supports. As shown in
Figure 7, Taxo_UP performs significantly better than
Stratify and Cumulate; the improvement ranges from
3 to 6 times and increases as minsup decreases.

0
100
200
300
400
500
600
700

0.5 1.0 1.5 2.0 2.5 3.0
ms %

Ti
m

e
(s

ec
.)

Cumulate
Stratify
Taxo_UP

Figure 7. Performance comparison of

Taxo_UP, Cumulate, and Stratify for dif-
ferent minsups.

We then compared the three algorithms under

varying transaction sizes. The result is depicted in
Figure 8. As shown in the figure, Taxo_UP performs
significantly better than Cumulate and Stratify. Algo-
rithm Cumulate performs a little better than Stratify.
The results also demonstrate that Taxo_UP has better
scalability than Cumulate and Stratify.

0
20
40
60
80

100
120
140
160
180

1 2 3 4 5 6 7 8 9
Number of Transactions (x 10,000)

Ti
m

e
(s

ec
.)

Cumulate
Stratify
Taxo_UP

Figure 8. Performance comparison of

Taxo_UP, Cumulate, and Stratify for dif-
ferent transactions at minsup = 1.0%.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

372

5. Related Work

The problem of mining association rules in the
presence of taxonomy information was addressed
first in [6] and [10], independently. In [10], the prob-
lem is named as mining generalized association rules,
which aims to find associations among items at any
level of the taxonomy under the minimum support
and minimum confidence constraints. In [6], the
problem mentioned is somewhat different from that
considered in . They generalized the uniform mini-
mum support constraint to a form of level-wise as-
signment, i.e., items at the same level receive the
same minimum support. The objective was mining
associations level-by-level in a fixed hierarchy. That
is, only associations among items at the same level
are examined progressively from the top level to the
bottom.

The problem of updating association rules
incrementally was first addressed by Cheung et al.
[2]. They coined the essence of updating the
discovered association rules when new transaction
records are added into the database over time and
proposed an algorithm called FUP (Fast UPdate).
They further examined the maintenance of
multi-level association rules [3], and extended the
model to incorporate the situations of deletion and
modification [4]. Their approaches [3][4], however,
did not consider the generalized items, and hence
could not discover generalized association rules.

Since then, a number of techniques have been
proposed to improve the efficiency of incremental
mining algorithm [7][8][9][11]. But all of them were
confined to mining associations between primitive
items. The problem of maintaining generalized asso-
ciations incrementally has been recently investigated
in [12], wherein the model of generalized associa-
tions was extended to that with non-uniform mini-
mum support.

To sum up, all related previous works addressed
in part the aspects discussed in this paper; no work,
to our knowledge, has considered the issues of
evolving taxonomies.

6. Conclusions

We have investigated in this paper the problem of
updating generalized association rules under evolv-
ing taxonomy. We presented an algorithm, Taxo_UP,
for updating generalized frequent itemsets. Empirical
evaluation showed that the Taxo_UP algorithm is
very effective and has good linear scale-up charac-
teristic.

In the future, we will extend the problem of up-
dating generalized association rule to a more general
model that deals with an incremental database update
and fuzzy taxonomic structure. We will also investi-
gate the problem of on-line discovery and mainte-
nance of multi-dimensional association rules from
data warehouse data under taxonomy or attribute

evolution.

References

[1] R. Agrawal and R. Srikant, “Fast algorithms

for mining association rules,” Proc. 20th Int.
Conf. Very Large Data Bases, 1994, pp.
487-499.

[2] D.W. Cheung, J. Han, V.T. Ng, and C.Y. Wong.
“Maintenance of discovered association rules
in large databases: An incremental update
technique,” Proc. 1996 Int. Conf. Data Engi-
neering, 1996, pp.106-114.

[3] D.W. Cheung, V.T. Ng, B.W. Tam, “Mainte-
nance of discovered knowledge: a case in
multi-level association rules,” Proc. 1996 Int.
Conf. Knowledge Discovery and Data Mining,
1996, pp. 307-310.

[4] D.W. Cheung, S.D. Lee, and B. Kao, “A gen-
eral incremental technique for maintaining
discovered association rules,” Proc.
DASFAA'97, 1997, pp. 185-194.

[5] J. Han and Y. Fu, “Dynamic generation and
refinement of concept hierarchies for knowl-
edge discovery in databases,” Proc. AAAI’94
Workshop on Knowledge Discovery in Data-
bases (KDD’94), 1994, pp. 157-168.

[6] J. Han and Y. Fu, “Discovery of multiple-level
association rules from large databases,” Proc.
21st Int. Conf. Very Large Data Bases, 1995,
pp. 420-431.

[7] T.P. Hong, C.Y. Wang, Y.H. Tao, “Incremental
data mining based on two support thresholds,”
Proc. 4 Int. Conf. Knowledge-Based Intelligent
Engineering Systems and Allied Technologies,
2000, pp.436-439.

[8] K.K. Ng and W. Lam, “Updating of association
rules dynamically,” Proc. 1999 Int. Symp. Da-
tabase Applications in Non-Traditional Envi-
ronments, 2000, pp. 84-91.

[9] N.L. Sarda and N.V. Srinivas, “An adaptive
algorithm for incremental mining of associa-
tion rules,” Proc. 9th Int. Workshop on Data-
base and Expert Systems Applications
(DEXA'98), 1998, pp. 240-245.

[10] R. Srikant and R. Agrawal, “Mining general-
ized association rules,” Proc. 21st Int. Conf.
Very Large Data Bases, 1995, pp. 407-419.

[11] S. Thomas, S. Bodagala, K. Alsabti, and S.
Ranka, “An efficient algorithm for the incre-
mental updation of association rules in large
databases,” Proc. 3rd Int. Conf. Knowledge
Discovery and Data Mining, 1997.

[12] M.C. Tseng and W.Y. Lin, “Maintenance of
generalized association rules with multiple
minimum supports,” Intelligent Data Analysis,
in print.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

373

