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Abstract-Mining generalized association rules be-
tween items in the presence of taxonomy has been 
recognized as an important model in data mining. 
Earlier work on mining generalized association rules 
confined the taxonomy to be static. However, the 
taxonomy of items cannot be kept unchanged all the 
time. Some items will be sifted from one hierarchy 
tree to another for more suitable classification or be 
abandoned from the taxonomy if they will not be 
produced any more; new born items will also be 
added into the taxonomy. Under these circumstances, 
how to update the discovered generalized association 
rules effectively is a crucial task. In this paper, we 
examine this problem and propose a novel algorithm, 
called Taxo_UP, to update the discovered frequent 
itemsets. Empirical evaluation shows that the pro-
posed algorithm is very effective and has good linear 
scale-up characteristic. 
 
Keywords: Data mining, generalized association 
rules, frequent itemsets, evolving taxonomy. 
 
1. Introduction 

Mining association rules from a large database of 
business data, such as transaction records, has been a 
popular topic within the area of data mining [1]. An 
association rule is an expression of the form X ⇒ Y, 
where X and Y are sets of items. Such a rule reveals 
that transactions in the database containing items in X 
tend to contain items in Y, and the probability, meas-
ured as the fraction of transactions containing X also 
containing Y, is called the confidence of the rule. The 
support of the rule is the fraction of the transactions 
that contain all items in both X and Y. For an associa-
tion rule to be valid, the rule should satisfy a 
user-specified minimum support, called minsup, and 
minimum confidence, called minconf, respectively. 
The problem of mining association rules is to dis-
cover all association rules that satisfy minsup and 
minconf. 

In many applications, there are taxonomies (hier-
archies), explicitly or implicitly, over the items. It 
may be more useful to find associations at different 
levels of the taxonomy than only at the primitive 
concept level [6][10]. For example, consider Figure 1, 
the taxonomies of items from which the previous 
association rule derived. 

Tomato

Vegetable

Carrot

Kale

Non-Root
Vegetable

Pickle

Apple

Fruit

Papaya

 
Figure 1. An example of taxonomies T. 

 
It is likely to happen that the association rule 

Carrot ⇒ Apple (Sup. = 30%, Conf. = 60%) 

does not hold when the minimum support is set to 
40%, but the following association rule may be 
valid, 

Vegetable ⇒ Fruit. 

Earlier work on mining generalized association 
rules confined the taxonomies to be static. However, 
the taxonomy of items may change as time passes [5]. 
Some items will be sifted from one classification tree 
to another. For example, tomato would be reclassi-
fied from a vegetable to a fruit. Some trees of the 
taxonomies will be merged together or be split into 
smaller trees if the items on the trees cannot meet the 
demands in a new classification. Items will be aban-
doned if those items do not be produced any more, 
and newborn items are added. Under these circum-
stances, how to update the discovered generalized 
association rules effectively becomes a critical task. 

In this paper, we introduce the problem of updat-
ing the discovered generalized association rules un-
der evolving taxonomy. We will give a formal prob-
lem description and clarify the situations of taxon-
omy updates in Section 2.  

A simple way for dealing with this problem is to 
adopt the mining approach to re-scan the whole da-
tabase from scratch to reflect the most recent asso-
ciations. This approach, however, has the following 
disadvantages: 
(1) It is not cost-effective because the discovered 

frequent itemsets are not reused. 
(2) It is not acceptable in general since the process of 

generating frequent itemsets is very 
time-consuming.   
To be more realistic and cost-effective, it is better 

to perform the association mining algorithms to gen-
erate the initial association rules, and when update to 
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the taxonomy occurs, apply an updating method to 
re-build the discovered rules. The challenge thus falls 
into developing an efficient updating algorithm to 
facilitate the whole mining process. This problem is 
nontrivial because updates to the taxonomy not only 
can reshape the concept hierarchy and the form of 
generalized items, but also may invalidate some of 
the discovered association rules, turn previous weak 
rules into strong ones, and generate import new, 
undiscovered rules. 

We propose an algorithm called Taxo_UP (Tax-
onomy Update) for mining the generalized frequent 
itemsets, which is capable of effectively reducing the 
number of candidate sets and database re-scanning, 
and so can update the generalized association rules 
efficiently. Detail description of the Taxo_UP algo-
rithm will be given in Section 3. 

In Section 4, we evaluate the performance of the 
proposed Taxo_UP with two leading generalized 
associations mining algorithms, Cumulate and Strat-
ify from [10], on synthetic data. A brief description 
of previous related work is presented in Section 5. 
Finally, we summarize our work and future investi-
gation in Section 6. 
 
2. Update of Generalized Association 
Rules 

2.1. Problem description 
 

Let I = {i1, i2, …, ip} be a set of items and DB = 
{t1, t2, …, tn} be a set of transactions, where each 
transaction ti = 〈tid, A〉 has a unique identifier tid and 
a set of items A (A⊆I). Assume that a set of taxono-
mies of items, T, is available and is denoted as a set 
of hierarchies (trees) on I ∪ J, where J = {j1, j2, …, jp} 
represents the set of generalized items derived from I. 
A generalized association rule is an implication of 
the form A ⇒ B, where A, B ⊂ I ∪ J, A ∩ B = ∅, and 
no item in B is an ancestor of any item in A.  

Given a user specified minsup and minconf, the 
problem of mining generalized association rules is to 
discover all generalized association rules whose 
supports and confidence are larger than the specified 
thresholds. This problem is reduced to the problem of 
finding all frequent itemsets for a given minimum 
support [6][10]. 

Let L be, after an initial discovery of all the gen-
eralized association rules in DB, the set of all fre-
quent itemsets with respect to minsup. As time passes, 
some updated activities may occur to the taxonomies 
due to some reasons [5]. We denote the updated tax-
onomies as T’. The problem of updating discovered 
generalized association rules in DB is to find the set 
of frequent itemsets L’ with respect to the refined 
taxonomies T’. 
 
2.2.  Types of taxonomy updates 

In this subsection, we will describe different 
situations for taxonomy evolution, and clarify the 
essence of frequent itemsets update for each type of 
taxonomy evolutions.  

According to our observation, there are four basic 
types of item updates that will cause taxonomy evo-
lution:  
(1) Item insertion: New items are added to the tax-

onomy. 
(2) Item deletion: Obsolete items are pruned from the 

taxonomy. 
(3) Item rename: Items are renamed for some reasons, 

such as error correction, product promotion, etc. 
(4) Item reclassification: Items are classified into 

different categories.  
Note that hereafter the term “item” refers to a 

primitive or a generalized item. Each type of evolu-
tions is further explained in the following. 

 
Type 1: Item insertion. The strategies to handle this 
type of update operation are different in whether the 
inserted item is primitive or generalized.  

When the new inserted item is primitive, we 
cannot process this item until there is an incremental 
database update, because the new item does not ap-
pear in the original set of frequent itemsets.  

On the other hand, if the new item represents a 
generalization, then the insertion itself also has no 
effect on the discovered associations until the new 
generalization incurs some item reclassification.  

Figure 2 shows an example of this type of tax-
onomy evolution, where a new item “J” is inserted as 
(a) a primitive item or (b) a generalized item. Note 
that in Figure 2b item “E” is reclassified to the gen-
eralization represented by “J”. 
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I
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H

J

E  
(a)                      (b) 

Figure 2. An example of taxonomy evolu-
tion caused by item insertion. The inserted 
item “J” is: (a) primitive; (b) generalized. 

 
Type 2: Item deletion. This case is similar to the 
insertion case. There is nothing to do with the dele-
tion of primitive items if no transaction update to the 
original database, and the removal of a generalization 
may also lead to items reclassification.  

Figure 3 shows an example of this type of tax-
onomy evolution.  
 
Type 3: Item rename. When items are renamed, we 
do not have to process the database. Instead, we just 
replace the frequent itemsets with new names and so 
the association rules.  
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Figure 3. An example of taxonomy evolu-
tion caused by item deletion: (a) The 

primitive item “E” is deleted; (b) The gen-
eralized item “B” is deleted, and items “C” 

and “E” are reclassified to “A”. 
 
Type 4: Item reclassification. Among the four types 
of taxonomy updates this is the most profound opera-
tion. Once an item, primitive or generalized, is re-
classified into another category, all of its ancestor 
(generalized items) in the old and the new taxono-
mies are affected. In other words, the supports of 
these affected generalized items have to be updated 
and so do the frequent itemsets containing any one of 
the affected generalized items. For example, in Fig-
ure 4, the two shifted items E and G will change the 
support counts of generalized items A, B, and F, and 
also affect the support counts of itemsets containing 
A, B, or F.  
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Figure 4. An example of taxonomy evolu-

tion caused by item reclassification. 
 

In this paper, we assume that there is no transac-
tion update to the original database, and so we only 
have to consider, according to the above discussions, 
the taxonomy evolution caused by insertion or dele-
tion of generalized items, and reclassification of 
primitive or generalized items. 
 
3. The Proposed Taxo_UP Algorithm  
 
3.1. Algorithm description 
 

Let ED denote the extended version of DB by 
adding, in taxonomies T, the ancestors of each primi-
tive item to each transaction, while UE be another 
extension of DB by adding generalized items in the 
updated taxonomies T’. A straight-forward way to 
find updated generalized frequent itemsets would be 
to run any of the algorithms, such as Cumulate and 
Stratify [10], for finding generalized frequent item-
sets on the updated extended transactions UE. This 
simple way, however, ignores the fact that many 
discovered frequent itemsets would not be affected 
by the taxonomy evolution.  

Lemma 1. The supports of all primitive items do 

not change with respect to a taxonomy evolution.  
Thus, the proposed Taxo_UP algorithm follows a 

simple guideline: Identify the affected and unaffected 
generalizations first, and so the affected transactions. 
Then utilize them to lessen the work of support 
counting of itemsets as could as possible.  

An affecting item is a primitive item whose an-
cestor set changes with respect to a taxonomy evolu-
tion. An item is an affected item if its descendent 
primitive item set changes with respect to a taxon-
omy evolution. A transaction is called an affected 
transaction if it contains at least one of affecting 
items. For a given itemset A, we say A is an affected 
itemset if it contains at least one of affected items. 
There are four different cases in dealing with the 
support counting of A.  
(1) If A is an unaffected itemset and is frequent in 

ED, then it is also frequent in UE. 
(2) If A is an unaffected itemset and is infrequent in 

ED, then it is also infrequent in UE. 
(3) If A is an affected itemset and is frequent in ED, 

then it may be frequent or infrequent in UE.  
(4) If A is an affected itemset and is infrequent in 

ED, then it may be frequent or infrequent in UE. 
Note that only cases 3 and 4 need further database 

scan to determine the support count of A. Indeed, for 
case 3, we only have to scan the affected transactions 
in ED and UE. Then calculate its support to decide 
whether it is frequent or not.  

As for case 4, the following lemma provides an 
effective pruning strategy to reduce the number of 
candidate itemsets and so can avoid unnecessary da-
tabase scan. 

Lemma 2. If an affected itemset A ∉L (frequent 
itemsets in ED) and '

Aδ − Aδ ≤ 0, then A ∉L’ (frequent 
itemsets in UE), where ∆  is the set of transactions 
in ED affected by taxonomy update, '∆  the set of 
affected transactions in UE, and Aδ  and '

Aδ  are 
support counts of A in transactions ∆  and '∆ , re-
spectively. 

Proof. If A ∉L, then Aσ < |ED| × minsup, where 
Aσ denotes the support count of A in ED. Note that 

|UE| = |ED| = |ED| − |∆| + |∆’| due to |∆| = |∆’|. 
Hence, Aσ ′ = Aσ + ( '

Aδ − Aδ ) < |ED| × minsup = |UE| × 
minsup, where Aσ ′  is the support count of A in UE. 
Thus, A ∉L’.  

Thus in case 4, we scan the affected transactions 
in ED and UE to count the appearances of A. If the 
support count of A in UE’s affected transactions is 
greater than that in ED, then we have to scan the rest 
of UE to decide whether A is frequent or not.  

An overview of the Taxo_UP algorithm is pre-
sented below. 

Algorithm: Taxo_UP 
Inputs: (1) DB: the database; (2) ms: the minimum 
support setting; (3) T: the old item taxonomy; (4) T’: 
the new item taxonomy; (5) L = UkLk: the set of old  
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Figure 5. An example of mining generalized association rules caused by item reclassified. 
 
frequent itemsets 
Output: L’ = UkL’k: the set of new frequent itemsets. 
Method: 
1. Load L1; let C1 be the set of items in T’. 
2. Divide the set of candidate 1-itemsets C1 into two 

parts: one X consists of unaffected items in L1, 
and the other Y contains affected items. 

3. Add generalized items in T and T’ into the origi-
nal database DB to form ED and UE respectively.  

4. Compute the count of each 1-itemset A in Y over 
the affected transactions of ED (∆) and UE (∆’); 
let the values be Aδ  and '

Aδ , respectively. 
5. For each 1-itemset A that is in L1 and the affected   

set Y, i.e., A ∈ Y ∩ 1L , calculate σ’A = σA 
− Aδ + '

Aδ . 
6. For any candidate A ∉ 1L and ( '

Aδ − Aδ ) > 0, 
count A over the transactions in UE - ∆’ and add 
the counts to '

Aδ .  
7. Create L’1 by combining X and those itemsets 

which are frequent in Y. 
8. Generate candidates C2 from L’1. 
9. Repeat Steps 1-8 for new candidates Ck until no 

frequent k-itemsets L’k created. 
 
3.2. An example 

Consider Figure 5. Let minsup = 25% (3 transac-
tions). The set of frequent itemsets L includes: A(7), 
D(6), F(5), G(3), I(8), AF(4), AG(3), AI(6), DF(3), 
DG(3), DI(6), FI(3), GI(3), AFI(3), AGI(3), DFI(3), 
and DGI(3), where the support counts of itemsets are 
shown within parentheses.  

The Taxo_UP algorithm first divides all items in 
C1 into two sets: one consists of unaffected items D, 
G, and I in L1, and the other contains affected gener-
alized items A, B and F, where A and F are frequent 
in L1, while B is not. Since items D, G, and I are 
primitive frequent items and do not change their 
supports in ED and UE, we do not need to process 

them; we only have to process generalized items A, 
B and F. Next, transactions 1, 2 and 3 in ED and UE 
are scanned since these transactions are affected by 
exchanging items G and E. We then subtract the 
support counts of items A and F in ED’s affected 
transactions from and add their counts in UE’s af-
fected transactions to their original support counts. 
For example, we have σ’{F} =σ{F} − }F{δ  + '

{F}δ  
= 5 − 3 + 1 = 3. Item B is not frequent in ED and may 
become frequent because '

}B{δ − }B{δ = 3 − 1 = 2 > 0 
according to Lemma 2. Therefore, we scan transac-
tion 4 to counting item B and add 1 to the count from 
UE. That is, σ’{B} = '

}{Bδ + 1 = 3 + 1 = 4. After com-
paring the supports of A, B, and F to minsup, the new 
frequent 1-itemsets '

1L are A, B, D, F, G, and I.  
Next, we use '

1L to generate candidate 

2-itemsets 2C , obtaining AF, AI, BD, BF, BI, DF, DG, 
DI, FG, FI, and GI. However, only AF, AI, BD, BF, 
BI, DF, FG, and FI undergo support counting, be-
cause the others are composed of primitive items. 
Note that the original frequent 2-itemset AG is de-
leted in UE due to the existence of item-ancestor 
relationship. After that, the procedure of generating 
frequent 2-itemsets is the same as that for generat-
ing '

1L . The new frequent 2-itemsets '
2L are AI, BD, 

BI, DG, DI, and GI. Finally, we use the same ap-
proach to generat '

3L , obtaining BDI and DGI. Note 
that transaction 2 has the same generalized items 
after the taxonomy evolution; however, we still re-
quire processing this transaction in Step 4 of the 
proposed algorithm. If we do not process this trans-
action, 2-itemset FG will not become frequent when 
minsup = 10%. 

The whole process of running this example using 
Taxo_UP is illustrated in Figure 6. 
 

Original Extended Database 
(ED) 

 Updated Extended Database 
(UE) 

TID 
Primitive 

Items 
Generalized 

Items 
 

TID 
Primitive 

Items 
Generalized 

Items 
1 D, G, I A, F  1 D, G, I A, B 
2 D, E, G, I A, B, F  2 D, E, G, I A, B, F 
3 D, G, I A, F  3 D, G, I A, B 
4 C, H A, B, F  4 C, H A, B, F 
5 H F  5 H F 
6 I   6 I  

7 I   7 I  

8 D, I A  8 D, I A 
9 D, I A  9 D, I A 

10 D, I A  10 D, I A 

A

EC

I

DB

F

HG

A

GC

I

DB

F

HE

∆ '∆
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Figure 6. Illustration of algorithm 

Taxo_UP. 
 

4. Performance Evaluation 

In order to examine the performance of Taxo_UP, 
we conducted experiments to compare its perform-
ance with that of Cumulate and Stratify, using the 
synthetic dataset generated by the IBM data genera-
tor [1]. The parameter settings are shown in Table 1. 
Two items in the taxonomies were randomly chosen 
to exchange their positions. All experiments were 

performed on an Intel AMD-800 with 512MB RAM, 
running on Windows 2000. 

 
Table 1. Default parameter settings for 

synthetic data generation. 
Parameter Default value 

|DB| Number of original transactions 100,000 
|t| Average size of transactions 5 
N Number of items 200 
R Number of groups 30 
L Number of levels 3 
F Fanout 5 
 

We first compared the performance of these algo-
rithms with varying minimum supports. As shown in 
Figure 7, Taxo_UP performs significantly better than 
Stratify and Cumulate; the improvement ranges from 
3 to 6 times and increases as minsup decreases.  
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Figure 7. Performance comparison of 

Taxo_UP, Cumulate, and Stratify for dif-
ferent minsups. 

 
We then compared the three algorithms under 

varying transaction sizes. The result is depicted in 
Figure 8. As shown in the figure, Taxo_UP performs 
significantly better than Cumulate and Stratify. Algo-
rithm Cumulate performs a little better than Stratify. 
The results also demonstrate that Taxo_UP has better 
scalability than Cumulate and Stratify.  
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Figure 8. Performance comparison of 

Taxo_UP, Cumulate, and Stratify for dif-
ferent transactions at minsup = 1.0%. 
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5. Related Work 

The problem of mining association rules in the 
presence of taxonomy information was addressed 
first in [6] and [10], independently. In [10], the prob-
lem is named as mining generalized association rules, 
which aims to find associations among items at any 
level of the taxonomy under the minimum support 
and minimum confidence constraints. In [6], the 
problem mentioned is somewhat different from that 
considered in . They generalized the uniform mini-
mum support constraint to a form of level-wise as-
signment, i.e., items at the same level receive the 
same minimum support. The objective was mining 
associations level-by-level in a fixed hierarchy. That 
is, only associations among items at the same level 
are examined progressively from the top level to the 
bottom. 

The problem of updating association rules 
incrementally was first addressed by Cheung et al. 
[2]. They coined the essence of updating the 
discovered association rules when new transaction 
records are added into the database over time and 
proposed an algorithm called FUP (Fast UPdate). 
They further examined the maintenance of 
multi-level association rules [3], and extended the 
model to incorporate the situations of deletion and 
modification [4]. Their approaches [3][4], however, 
did not consider the generalized items, and hence 
could not discover generalized association rules. 

Since then, a number of techniques have been 
proposed to improve the efficiency of incremental 
mining algorithm [7][8][9][11]. But all of them were 
confined to mining associations between primitive 
items. The problem of maintaining generalized asso-
ciations incrementally has been recently investigated 
in [12], wherein the model of generalized associa-
tions was extended to that with non-uniform mini-
mum support. 

To sum up, all related previous works addressed 
in part the aspects discussed in this paper; no work, 
to our knowledge, has considered the issues of 
evolving taxonomies. 

 
6. Conclusions 

We have investigated in this paper the problem of 
updating generalized association rules under evolv-
ing taxonomy. We presented an algorithm, Taxo_UP, 
for updating generalized frequent itemsets. Empirical 
evaluation showed that the Taxo_UP algorithm is 
very effective and has good linear scale-up charac-
teristic. 

In the future, we will extend the problem of up-
dating generalized association rule to a more general 
model that deals with an incremental database update 
and fuzzy taxonomic structure. We will also investi-
gate the problem of on-line discovery and mainte-
nance of multi-dimensional association rules from 
data warehouse data under taxonomy or attribute 

evolution. 
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