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Abstract- In time series analysis, there have been 
many statistic models widely used; some models 
could estimate long memory. A new idea for 
analyzing time series is Detrended Fluctuation 
Analysis (DFA), which was originally developed for 
finding long-rage power-law correlations in DNA 
sequences. We apply DFA to Taiwan stock market 
for three categories of data: TAIEX (Taiwan Stock 
Exchange Capitalization Weighted Stock Index), the 
group indices aggregated from individual stock 
indices, and individual stock indices. The results 
show that long memory exists in most listed 
companies of Taiwan stock market for the cases 
when 5.0≠α . However, the correlations detected 
from aggregated data series do not imply the 
correlation of original data series. Our findings are 
that the correlations detected from main index do not 
imply the same correlation of group indices and 
individual stock indices, but there are greater than 
half of group indices and individual stock indices 
following the same correlation with the main index. 
 
Keywords: Detrended Fluctuation Analysis, Time 
Series Analysis, Long Memory. 
 
1. Introduction 
 

In time series analysis, there have been many 
statistic models widely used; some models could 
estimate long memory and they are non-parametric, 
such as Hurst analysis [1]. If a series is detected as 
persistent correlation, its trend will be unchanged in 
the future and vice versa. Therefore, the existence of 
long memory in financial time series data would be a 
good reference for investment. 

A new idea for analyzing time series is Detrended 
Fluctuation Analysis (DFA) [2], which was originally 
developed for finding long-rage power-law 
correlations in DNA sequences, and the advantages 
of DFA over conventional methods (e.g., spectral 
analysis and Hurst analysis) are that it permits the 
detection of intrinsic self-similarity embedded in a 
seemingly non-stationary time series, and also avoids 

the spurious detection of apparent self similarity, 
which may be an artifact of extrinsic trends [3]. 
Furthermore, this method has been applied to 
financial time series analysis in recent years [4][5][6]. 

Most previous researches on analyzing time series 
data of stock market using DFA focused on the main 
indices of each nation to detect long-range power-law 
correlation. Therefore, we applied DFA to analyze 
Taiwan stock market for three categories of data: 
TAIEX (Taiwan Stock Exchange Capitalization 
Weighted Stock Index), the group indices aggregated 
from individual stock indices, and individual stock 
indices to see whether there exists some long-range 
power-law correlation in each of them. The results of 
the analysis in those three categories of indices are 
then compared to each other. 

The rest of the paper is organized as follows: 
Section 2 presents literatures review in the field of 
long memory time series analysis; three long memory 
analysis methods are included. Section 3 details how 
we use the DFA method in our analysis. Section 4 
describes the results, followed by the conclusions and 
future works in Section 5. 

 
2. Literatures Review 
 

Time series analysis has been used to various 
fields for many years. Methods to analyze time series 
could be applied to various domains, such as Hurst 
method that was originally developed for water 
resource researches and was also used in finance 
researches. Section 2.1 gives a brief introduction to 
time series analysis. Section 2.2 presents three long 
memory analysis methods.  

 
2.1. Time Series Analysis 
 

The analysis of experimental data that have been 
observed at different points in time leads to new and 
unique problems in statistical modeling and inference. 
The obvious correlation introduced by the sampling 
of adjacent points in time can severely restrict the 
applicability of many conventional statistical 
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methods which depends on the assumption that these 
adjacent observations are independent and uniformly 
distributed. The systematic approach by which one 
goes about answering the mathematical and statistical 
questions posed by these time correlations is 
commonly referred to as time series analysis [7]. 

The measurement of some particular characteristic 
over a period of time constitutes a time series. It may 
be an hourly record of temperature at a given place 
or the annual rainfall at a meteorological station. It 
may be a quarterly record of gross national product; 
an electrocardiogram may compose several time 
series [8]. 

The theoretical correlation expresses the 
dependence of the time series observations on each 
other. This dependence can also be expressed by 
regression model that represents the present 
observation as the sum of two independent, 
uncorrelated, or “orthogonal” parts: one dependent 
on the preceding ones and the other an independent 
sequence [9]. A system is said to exhibit long-range 
correlations when some physical properties of the 
system at different positions (or times) are correlated 
and its correlation function decays much slower than 
exponential decay. This long-range correlation 
property can be a consequence of a diverging 
(infinite) correlation length or there is no 
characteristic length (“scale-free”) for the correlation. 
In the latter case, the correlation is usually associated 
with power-law decay. The mechanisms for 
generating long-range correlations are not always 
obvious, but in most cases they can result from two 
different origins: (i) Long-range correlations are 
generated by some physical interaction of the system, 
the interaction is usually short-range but manifests 
itself to long-range correlation under special physical 
condition. One famous example is the magnetic 
system at critical point. (ii) Long-range correlations 
are simply a reflection of other scale-invariant 
properties of the system [10]. 

 
2.2. Long Memory Detecting Methods 
 

Estimating long memory in time series is an 
important topic of time series analysis and there had 
been many approaches developed in this filed. In this 
section, three commonly used approaches of long 
memory analysis will be presented. We will give an 
introduction to rescaled range analysis and 
periodogram regression in lines of Weron’s [11] 
work. Finally, we will discuss the detrended 
fluctuation analysis, which we will use in our 
experiments. 

 
2.2.1 Rescaled Range Analysis 

Rescaled range analysis, also called R/S or Hurst 
method was developed by Hurst [1] for the research 
of the variation of water capacity of river Nile in 
Egypt. His original work is related to the design of an 

ideal storage on river Nile. Using this method can 
finally obtain a parameter H called Hurst exponent, 
which measures the intensity of long-range 
dependence in a time series. 

The R/S method begins with dividing a time series 
of length L into d subseries of length n . Next for each 
subseries dm ,,1 K= : 
l Find the mean ( mE ) and standard deviation ( mS ). 
l Normalize the data ( miZ , ) by subtracting the 

sample mean mmimi EZX −= ,,  for ni ,...,1= . 
l Create a cumulative time series 

∑ =
= i

j mjmi XY
1 ,, for ni ,,1 K= . 

l Find the range 
},,min{},,max{ ,,1,,1 mnmmnmm YYYYR KK −= . 

l Rescale the range mm SR / . 
Finally, calculate the mean value of the rescaled 
range for all subseries of n  

∑
=

=
d

m
mmn SR

d
SR

1
/1)/( .  (1) 

The R/S method asymptotically follows the 
relation 

H
n cnSR ~)/( .  (2) 

Thus the value of H can be obtained by running a 
simple linear regression over a sample of increasing 
time horizons 

nHcSR n loglog)/log( += .  (3) 
The Hurst exponent ranges from 0 to 1 and it can 

be classified into 3 ranges: 
l For 2/1=H the time series is called uncorrelated 

random series. 
l For 121 << H the time series is probably 

persistent. 
l For 2/10 << H the time series is probably 

antipersistent. 
 
2.2.2 Periodogram Regression 

 
This method is a semi-parametric procedure to 

obtain an estimate of the fractional differencing 
parameter d . This technique, proposed by Geweke 
and Porter-Hudak [12], was also called GPH method, 
based on observations of the slope of the spectral 
density function of a fractionally integrated series 
around the angular frequency 0=ω . Since they 
showed that the spectral density function of a general 
fractionally integrated model with differencing 
parameter d is identical to that of a fractional 
Gaussian noise with Hurst exponent 5.0+= dH , the 
GPH method can be used to estimate .H  

The estimation procedure begins with calculating 
the periodogram, which is a sample analogue of the 
spectral density. For a vector of 
observations },,{ 1 Lxx K the periodogram is defined as 
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where [ ]2,,1, LkLkk K==ω and [ ]x denotes the 
largest integer less then or equal to x . Observe 
that LI is the squared value of the Fourier transform 
and if the observations vector is of appropriate length. 

The next and final step is to run a simple linear 
regression 

kkkL daI εωω +−= )}2(sin4log{)}(log{ 2   (5) 
at low Fourier frequencies [ ]2,,1, LKkk ≤= Kω . 

The least squares estimate of the slope yields the 
differencing parameter d , hence 5.0+= dH . A 
major issue on the application of this method is the 
choice of K . 

 
2.2.3 Detrended Fluctuation Analysis 
 

C.-K. Peng et al. [2] developed the DFA method 
for their researches on DNA sequences. This method 
is independent of investigator input and permits the 
detection of long-range correlations embedded in a 
series, and also avoids the spurious detection of 
apparent long-range correlations that are an artifact 
of trends. 

The DFA method comprises the following steps: 
l Divide the entire sequence of 

length N into lN / non-overlapping boxes, each 
containing l data, and define the “local trend” in 
each box (proportional to the compositional bias 
in the box) to be the ordinate of a linear least-
squares for the DNA walk displacement in that 
box. 

l Define the “detrended walk”, as the difference 
between the original walk )(ny and the local 
trend )(nyl . Calculate the variance about the 
detrended walk for each box, and calculate the 
average of these variances over all the boxes of 
size l , denoted )(2 lFd . 

The function )(2 lFd is defined as following: 

∑
+

+=

−=−=
lk

kln
ld l

Nknyny
l

lF
)1(

1

22 )1(,,2,1,0,))()((1)( K . (6) 

 

 
Figure 1. DFA with box size l = 100 
 

To illustrate the DFA method, they use a 1000-
nucleotide subsequence of the DNA sequences. 

Figure 1 shows the local trends when this 
subsequence is partitioned into boxes of size 100=l . 
 

Figure 2 shows the local trends when the 
subsequence is partitioned into boxes of size 200=l . 
It is apparent by visual inspection that the variance 
increases with the box size. The dependence of 
variance on box size gives rise to the scaling 
properties of the fluctuations. 

 

 
Figure 2. DFA with box size l = 200 
 

If only short-range correlations (or no correlations) 
exist in the nucleotide sequence, then the detrended 
DNA walk must have the statistical properties of a 
random walk; the behavior is expected to be a power 
law              αllFd ~)(  (7) 
with an exponent α = 2/1 . An exponent 21≠α  in a 
certain range of l  values implies the existence of 
long-range correlations in that time interval, i.e. if 
values of α  are less than 2/1 , the evolution of the 
events will follow an antipersistent power-law while 
values of α  is greater 2/1  indicate persistence in the 
event sequence. 

 
3. Research Methodology 
 
3.1 Problem Description 
 

Most previous researches on stock market using 
DFA focused on the main indices of each nation to 
detect long-range power-law correlation. They all 
proved that DFA could be used to estimate long 
memory in stock markets. However, detecting long-
range correlations in main index is just useful for 
long-term investment in future market. If long-term 
investors want to invest individual companies, 
detecting long-range correlations in individual stock 
indices is also needed. 

Moreover, we know that the main index and group 
indices are aggregated from individual stock indices. 
If the main index is analyzed as persistent correlation, 
what correlations of group indices and individual 
stock indices will be? Will the three categories of 
indices follow the same correlation or there has no 
relation between them? Therefore, we want to use 
DFA to analyzed Taiwan stock market with the three 
categories of data: TAIEX (Taiwan Stock Exchange 
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Capitalization Weighted Stock Index), the group 
indices, and individual stock indices. 
 
3.2 Method Selection 
 

In section 2, we presented three long memory 
analysis methods: R/S method, GPH method, and 
DFA method. We surveyed the literatures about the 
three methods and findings are all presented that 
DFA method is better than others.  

In Weron’s [11] work, he had tested these three 
methods on samples drawn from Gaussian white 
noise. The DFA method is more accurate on 
estimating the scaling exponent. Another similar 
work [13] compared the performance of the DFA 
method with Hurst method and show that the DFA is 
a superior method to quantify the correlation of noisy 
signals. We know that many non-economic factors 
(noisy signal) will influence the stock market in 
short-term period. So, the DFA can work better then 
Hurst method, because DFA can avoid spurious 
detection. 

Moreover, the GPH method assumes that the data 
should be seasonal time series but our research 
focuses on daily closing price of listed companies. 
Therefore the GPH method may not work well in our 
research for its’ assumption. So, We chose DFA 
method. For our research purpose, we substituted the 
l  in Equations (6) to (7) for t . The variable t  
indicates the time. Then we redefine the Equation (6) 
as 

)1(,,2,1,0,))()((1)(
)1(

1

22 −=−= ∑
+

+= t
Nknyny

t
tF

tk

ktn
ld K   (8) 

and redefine the Equation (7) as 
αttFd ~)( .  (9) 

We will use the new definitions in our work. 
 
3.3 Data Analysis 
 

We analyzed the Taiwan stock market for daily 
data of 3 categories of indices:  1 main index, 19 
group indices, and 667 individual stock indices 
(listed companies). We will use the time series of the 
main index starting on January 1991 and extending to 
May 2004 and use the time series of group indices 
starting on January 1995 and extending to May 2004. 
The ranges of third category of data are not described 
here because they listed on the stock market started 
on different dates, hence we will give a note of each 
index with date range on the experimental result 
tables. 

The three categories of data are listed as follows: 
l Main index: The one index is TAIEX (Taiwan 

Stock Exchange Capitalization Weighted Stock 
Index). 

l Group index: The 19 indices are Cement, Food, 
Plastics, Textiles, Electric Machinery, Appliance 
Cable, Chemical, Glass Ceramics, Paper Pulp, 

Steel Iron, Rubber, Automobile, Electron, 
Construction, Transportation, Tourism, Banking 
Insurance, Department Stores, and Other. 

l Individual stock index: They are listed companies 
of Taiwan stock market. We don’t list them here. 
They will be listed on experimental result table 
with their codes (stock codes). 

All the collection of data is extracted from the 
freeware ezChart, which is available on the web [14]. 

 
3.4 Use of DFA 
 

DFA method was well built as C program by Peng, 
and this program is free and could be downloaded 
from reference [15]. After downloading the program, 
we modified it for our purpose. We rewrote the 
function input() and added a lsm() function to fit the 
results from function dfa() and estimate the scaling 
exponent. Then we used Microsoft Visual C++ to 
compile this program and generated a DOS program. 

The original program has some options and we 
will give brief description of them as following: 
l -d k : Detrend the data using a polynomial of 

degree k (1: linear, 2: quadratic, etc.). The default 
value option is linear detrending. 

l -h : Print a usage summary and exit. 
l -l minbox : Set the smallest box width. The 

default, and the minimum allowed value for 
minbox, is 2k + 2 (where k is determined by the -
d option, see above). 

l -s : Perform a sliding window DFA (measure the 
fluctuations using all possible boxes at each box 
size). By default, fluctuations are measured using 
non-overlapping boxes only. Using the -s option 
will make the calculation much slower. 

l -u maxbox: Set the largest box width. The default, 
and the maximum allowed value for maxbox, is 
one-fourth the length of the input series. 
Options -u and -l are both follow a number, if the 

given numbers are logically conflict (e.g. minbox > 
maxbox), the program will automatically swap the 
value of them. And if the given numbers are out of 
range of the time series, the program will 
automatically set the default value for them. Because 
all of our time series data don’t have the same 
number of data points, we use the default values for 
the two options. As to option -d and -s, we also use 
default values for them for the original idea of DFA 
method. 

Our modified program will automatically read the 
external data described from the database of ezChart 
and generate the scaling exponent and the time 
holding the exponent of each time series. 

 
4. Experimental Results 
 

In this section, we will give the comparison of the 
experimental results. Firstly, we will compare the 
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main index with group indices; secondly, we will 
compare the group index with individual stock 
indices; thirdly, we will compare the main index with 
individual stock indices. 

 
4.1 Comparison – Main Index vs. Group 

Index 
 

Table 1 gives the result of the scaling exponent 
for main index and group index. It can be observed 
that the main index TAIEX shows a persistent power-
law, and 12 group indices also have the persistent 
correlation, 4 group indices are antipersistent, and 
others are uncorrelated series. By the results, we 
found that not all of the group indices follow the 
same correlation with the main index, but the number 
of persistent correlation of group indices is grater 
than half of all group indices. So the results say that 
more than half of all group indices follow the same 
correlation with the main index. 

 
Table 1: Experiment of main and group 

indices 
 

Main Index Name Scaling Exponent α Range (trading days) 
TAIEX 0.53 10 → 178 

Group Index Name Scaling Exponent α Range (trading days) 
Cement 0.52 10→97 
Food 0.57 10→93 

Plastics 0.50 10→199 
Textiles 0.55 10→197 

Electric Machinery 0.50 10→190 
Appliance Cable 0.56 10→157 

Chemical 0.51 10→120 
Glass Ceramics 0.43 10→62 

Paper Pulp 0.53 10→142 
Steel Iron 0.51 10→235 

Rubber 0.44 10→162 
Automobile 0.50 10→195 

Electron 0.59 10→122 
Construction 0.54 10→96 

Transportation 0.45 10→200 
Tourism 0.56 10→150 

Banking Insurance 0.49 10→175 
Department Stores 0.51 10→135 

Other 0.53 10→136 

 
4.2 Comparison – Group Index vs. Individual 

Stock Index 
 

Table 2 gives the result of the scaling exponent 
for individual indices of Appliance Cable. There are 
5 individual indices follow the persistent correlation, 
10 individual stock indices follow the antipersistent 
correlation. Comparing the results with group indices 
of Appliance Cable (see Table 1), we can observe 
that all individual stock indices of Appliance Cable 
don’t follow the same correlation with group indices 
Appliance Cable and there are greater than half of 
individual stock indices of Appliance following the 
different correlations from group index of Appliance. 
This phenomenon can also be found in group indices 
of Cement, Chemical, Steel Iron, Construction, 
Tourism, Department Stores and Other with their 
individual indices (see Table 3). So the results say 

that there is no obvious relation found between group 
indices and individual stock indices. 

 
Table 2: Experiment of individual stock 

indices of Appliance Cable 
 

Stock 
Code 

Scaling Exponent α Range (trading days) Starting 
Date 

1601 0.57 10→158 1991/01/03 
1603 0.52 10→165 1991/01/03 
1604 0.46 10→230 1991/01/03 
1605 0.51 10→70 1991/01/03 
1606 0.44 10→64 1991/01/03 
1608 0.49 10→44 1991/01/03 
1609 0.44 10→138 1991/01/03 
1611 0.41 10→62 1991/01/03 
1612 0.48 10→236 1993/05/08 
1613 0.48 10→136 1995/10/20 
1614 0.45 10→159 1997/10/01 
1615 0.55 10→29 1998/03/31 
1616 0.54 10→65 1997/05/19 
1617 0.44 10→244 1998/04/28 
1618 0.42 10→37 1998/06/23 

 
Table 3: Statistic of results of individual 

stock indices 
 

Group Name Persistent 
Correlation 

Antipersistent 
Correlation 

Random 
Correlation Total 

Cement 2 6 0 8 
Food 16 8 0 24 

Plastics 16 6 0 22 
Textiles 25 25 4 54 

Electric Machinery 20 15 0 35 
Appliance Cable 5 10 0 15 

Chemical 8 21 4 33 
Glass Ceramics 3 4 0 7 

Paper Pulp 3 2 2 7 
Steel Iron 9 12 2 23 

Rubber 1 8 0 9 
Automobile 1 3 0 4 

Electron 190 69 18 277 
Construction 11 20 2 33 

Transportation 6 11 0 17 
Tourism 1 4 1 6 

Banking Insurance 19 23 1 43 
Department Stores 3 8 1 12 

Other 16 20 2 38 
Total 355 275 37 667 

 
4.3 Comparison – Main Index vs. Individual 
Stock Index 
 

Finally, we compare the correlations between 
main index and individual indices. There are 355 
individual stock indices following the persistent 
correlation, 275 individual stock indices following 
the antipersistent correlation and 37 individual stock 
indices following the random correlation (see Table 
4.3). There are greater than half of individual stock 
indices following the same correlation with main 
index. So the results say that more than half of 
individual stock indices follow the same correlation 
with the main index. 

 
5. Conclusions and Future Works 
 

In pervious researches, DFA method is used to 
detect long-range power-law correlations in main 
indices. However, we wonder that if the results of 
DFA method in main indices will imply that group
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indices and individual stock indices will follow the 
same correlation with main indices? If not, it is 
necessary to detect long-range power-law 
correlations in individual stock indices for long-term 
investment. 

In this paper, we use DFA method to detect long-
range power-law correlations in the main index, 
group indices and individual stock indices and the 
experimental results show that the long-range power-
law correlations exist in the main index as similar as 
the previous researches and the long memory also 
exist in most listed companies of Taiwan stock 
market for the 5.0≠α .  

Besides, we found that the correlations detected 
from main index do not imply the same correlation of 
group indices and individual stock indices although 
there are greater than half of group indices and 
individual stock indices following the same 
correlation with the main index. We also found that 
there is no obvious relation between group indices 
and individual stock indices with their detected 
correlations. 

The DFA method can also substitute quadratic fit 
or higher order polynomial fit for linear fit )(nyt  (see 
Equation 8). This will be able to give different views 
for further researcher to detect long-range correlation 
in financial time series. Moreover, the persistent type 
series means that if the past signals have a positive 
increment, the future signals will be expected as 
positive and the antipersistent type series means that 
if the decreasing signals are in the past, the 
increasing signals will be in the future. According to 
the tow phenomenon, a forecasting system can be 
developed while how to implement it will be in the 
future works. 
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