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Abstract- This paper presents two novel algorithms 
for deductive games. First, a k-way-branching 
algorithm, taking advantage of a clustering 
technique, is able to efficiently obtain an optimal 
strategy in the worst case and a near-optimal 
strategy in the expected case for a typical deductive 
game “Bulls and Cows.” Second, a pigeonhole-
principle-based backtracking algorithm has been 
successfully applied to efficiently reduce the search 
space for the game. By using the algorithms, we not 
only obtain the lower bound on number of guesses 
required for the game in the worst case, but also 
derive the main theorem: 7 guesses are necessary 
and sufficient for the “Bulls and Cows” in the worst 
case. This is the first paper to prove the exact bound 
of this problem.  
 
1. Introduction 
 

Deductive games are two-player games of 
imperfect information. Player I, called the 
codemaker, chooses a secret code. Player II, called 
the codebreaker, does not know the choice player I 
made and has to guess the secret code. After each 
guess, the codebreaker gets a hint about the accuracy 
of the guess from the codemaker. The goal of 
codebreaker is to discover the secret code, based on 
the hints, in the smallest number of guesses. Merelo 
et al. [10] formulated the problem as a combinatorial 
optimization problem. It bears some resemblance to 
other combinatorial problems, such as circuit testing, 
differential cryptanalysis, on-line models with 
equivalent queries, and additive search problems. 
Consequently, any conclusion of this kind of 
deductive game may be applied, although probably 
not directly, to any of these problems, as well as to 
any other combinatorial optimization problem.  

Over the past three decades, much research has 
been done on this kind of game. Knuth [1] stressed 
two games of this kind, Mastermind and “Bulls and 
Cows,” and demonstrated a strategy for the 
Mastermind game that requires at most five guesses 
in the worst case and 4.478 in the expected case. 
Later, Irving [2] and Nerwirth [3] used sophisticated 
heuristic strategies to improve the bounds in the 

expected case to 4.369 and 4.364, respectively. 
Finally, Koyama and Lai [4] used a recursive 
backtracking method to determine the optimal 
strategy for Mastermind, where the expected number 
of guesses is 4.34. Also, variants of the Mastermind 
game have been studied in [5, 6], and [7]. 
Furthermore, in [8, 9] and [10], the authors used 
evolutionary algorithms and genetic algorithms to 
solve related problems. Roche [11] analyzed the 
generalized Mastermind and obtained asymptotical 
bounds under some conditions. Kabatianski and 
Thorpe [12] investigated the Mastermind game and 
its related applications based on coding theory. More 
recently, a graph-partition approach was introduced 
to determine the optimal strategies for various games 
with two-digit secret code [14, 15, 16]. 

The rule of “Bulls and Cows” [1] (or called AB 
game in Asia) is described as follows. The 
codemaker chooses a secret code, e.g., (s1, s2, s3, s4), 
consisting 4 digits out of 10 symbols, whereas 
repetition of symbols is prohibited. Hence, the set of 
possible codes is the number of permutations, 
P(10,4)= 10*9*8*7=5040. After each guess (g1, g2, 
g3, g4) made by the codebreaker, the codemaker 
responds with a pair of numbers [A, B], where A is 
the number of “direct hits,” i.e., the number of 
positions j such that sj=gj, and B is the number of 
“indirect hits,” i.e., the number of positions j such 
that sj≠gj but sj=gk for some position k≠ j. For 
example, if the secret code is (1, 2, 3, 4), then the 
responses for the guesses (3, 1, 5, 4), (3, 1, 4, 5) are 
[1, 2], [0, 3], respectively. The goal of the 
codebreaker is, based on the responses, to minimize 
the number of guesses needed, and to find the secret 
code.  

Since the search space for “Bulls and Cows” is 
extremely large, in the past no optimal strategy for 
the game has yet been found. In this paper, we 
develop new and systematic optimization approaches, 
pigeonhole-principle-based backtracking and k-way-
branching approaches, to discover an optimal 
strategy for the game in the worst case and a near-
optimal strategy in the expected case.  
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This paper is organized as follows. In Section 2 
we describe the properties of the deductive games. 
Section 3 develops the k-way-branching algorithm 
for the “Bulls and Cows.” Also, we apply the k-way-
branching algorithm to the Mastermind game and 
compare our results with previously published 
results. In Section 4, we introduce an extended 
pigeonhole principle and demonstrate the 
pigeonhole-principle-based backtracking approach 
to determine the minimal number of guesses required 
for “Bulls and Cows” in the worst case. Section 5 
presents our conclusions. 
 
2. Properties of deductive games 
 

In this section, we introduce some properties of 
deductive games by a simple number guessing game, 
denoted 1×n games. We will show how to determine 
the numbers of guesses required in the expected and 
the worst case for the game. By means of this 
comparatively simple work, we present some 
fundamental concepts that can be applied to develop 
optimal strategies for generalized deductive games. 

Fig. 1. A game tree for a 1×16 game, where the 
binary search strategy is used. 

In the 1×n games, the codemaker chooses a 
secret number S, S∈{0, 1, 2,... , n-1}. After each 
guess gi made by the codebreaker, the codemaker 
responds with a hint Hi , Hi∈{<, =, >}, three 
elements of which refer to S<gi, S=gi, and S>gi, 
respectively. The goal of the codebreaker is, based 
on the hints, to minimize the number of guesses 
required, and to find the secret number. Obviously, 
the guessing process for this game can be translated 
into a search problem. We can obtain the optimum 
strategy for this game by using the binary search 
technique. In order to demonstrate how to calculate 
the number of guesses required in the worst and 
expected cases for 1×n games, we illustrate the 
binary search strategy by means of a 1×16 game, the 
game tree for which is shown in Fig. 1. From this 
strategy, we can easily obtain the following two 
observations, which can be applied to analyze 
arbitrary deductive games. 

Observation 1. The number of guesses required in 
the worst case for a game is H, where H is the height 
of the game tree, i.e., the length of a longest path 

from the root to a leaf in the game tree. For example, 
H=5 in Fig. 1. 

Observation 2. The number of guesses required in 
the expected case for a game is L/n, where L is the 
external path length [13] of the game tree, i.e., the 
sum of the distances from the root to each leaf in the 
game tree. For example, in Fig. 1, L= 1*1 +2*2 +3*4 
+4*8+5*1=54 and the number of guesses required in 
the expected case is L/n=54/16 =3.375.  

From Observations 1 and 2, we should minimize 
the height H and the external path length L of the 
game tree to find the optimum strategy for a game in 
the worst and expected cases, respectively. 

 
3. k-way-branching (KWB) approaches 
 

For a game tree with height H and branching 
factor b, the search space is bH. As the value b 
becomes larger, the game tree will become too huge 
to deal with. The fundamental idea of our k-way-
branching algorithm is to reduce the search space 
from bH to kH. For example, the search space for 
“Bulls and Cows” is reduced from (14*5040)7 to 
(14*k)7.  

The KWB algorithm can be implemented by a 
modified exhaustive depth-first search on the game 
tree. The main modification to depth-first search is 
that at each visited node we consider only k guesses 
that are most likely to obtain the optimal strategy, 
instead of all possible guesses. We use a heuristic 
procedure, shown in Fig. 2, to select the k guesses. 
That is, we only explore the k “most likely” best 
guesses and ignore the other (5040–k) guesses at 
each stage. Depending on the execution time and 
space allowed, we can increase k to obtain results 
that are getting closer to the optima. 

The heuristic procedure in Fig. 2 is based on the 
heuristics used in [1], which chooses the guess that 
minimizes the maximum number of remaining 
candidates at each stage. However, our strategy 
improves on the heuristics in two ways. First, we 
consider the distribution of all remaining candidates 
in each class, rather than only the largest class. 
Second, we expand k most-likely-best guesses at 
each stage to get more promising results. To choose 
the “k most likely” best guesses, we introduce an 
efficient clustering technique, hash collision group 
(HCG). 

Hash collision group (HCG). We classify the 
guesses into different HCGs by a given hash 
function. As an example of our procedure, if two 
guesses result in the same distribution of the 
numbers of remaining candidates for the 14 response 
c l a s s e s ,  t h e y  w i l l  b e 

Table 1. The numbers of the remaining candidates of the 14 response classes after the first guess. 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

518



1. Perform each of all the 5040 possible guesses on the 
visited node. 
Then, all the possible candidates in the visited node 
will be partitioned into 14 response classes after each 
guess. Let the numbers of remaining candidates of the 
14 response classes resulted from each of the guesses 
be Cg,1, Cg,2, …, Cg,14, 1 ≤ g ≤ 5040. 

2. Hash each of the 5040 sequences, Cg = 〈 Cg,1, Cg,2, …, 
Cg,14 〉, 1 ≤ g ≤ 5040, to a nonincreasing sequence, C’g

= 〈 C’g,1, C’g,2, …, C’g,14 〉, and classify the 5040 C’gs 
into Hash Collision Groups (HCGs). 

3. Choose k representative HCGs with higher average 
distribution.  
That is, select k HCGs with the smallest |C’g|s, where 
|C’g| denotes a measurement function of C’g; i.e., 
|C’r|=|C’s| denotes C’r,i = C’s,i, 1≤ i ≤14, and 
|C’r|<|C’s| denotes C’r,1 <C’s,1 ,or (C’r,i = C’s,i and C’r,j 

<C’s,j), 1≤ i <j for some j ≤ 14. 
4. Choose a representative guess from each 

representative HCG, by the following rule: 
If a guess hits one of possible candidates, then choose 
it as the representative guess, else arbitrarily choose a 
guess from each HCG.   

Fig. 2. A heuristic procedure to choose k best 
guesses at each node in a game tree 

 
classified as the same HCG. More specifically, let 
the numbers of remaining candidates of the 14 
response classes after a guess g be Cg= 〈Cg,1, 
Cg,2, …,Cg,14〉. We define the hash function: 

Hash ( Cg= 〈Cg,1, Cg,2, …,Cg,14〉) = ( C’g= 〈C’g,1, 
C’g,2, …,C’g,14 〉), where C’g,1≥ C’g,2≥  …≥C’g,14. 

That is, the hash function sorts the original sequence 
Cg into a nonincreasing sequence C’g. For example, 
Table 1 shows the number of remaining candidates 
of the 14 response classes after the first guess g = (0, 
1, 2, 3). We have Cg=〈1, 24, 6, 72, 180, 8, 216, 720, 
480, 9, 264, 1260, 1440, 360〉 and C’g=〈1440, 1260, 
720, 480, 360, 264, 216, 180, 72, 24, 9, 8, 6, 1〉. If 
two nonincreasing sequences C’r and C’s are the 
same, that is, C’r,1=C’s,1, C’r,2=C’s,2, …, and 
C’r,14=C’s,14, then guess r and guess s are classified 
into the same HCG. 
Experimental Results. To estimate how well the k-
way-branching algorithm can perform, we first apply 
it to the game of Mastermind, which is a smaller 
game, since the optimum strategy for the game has 
been determined in [4]. Then the experimental 
results for the game of interest, “Bulls and Cows,” 
will be given. 
A. Mastermind. For the Mastermind game, Knuth [1] 
used a heuristic strategy that chooses the guess that 
minimizes the maximum number of the remaining 
possibilities at every stage, for which the number of 
guesses required in the expected case is 4.478. 
 

Neuwirth [3] used a sophisticated heuristic method 
to improve the bound to 4.364, which is the best 
“heuristic” strategy in literature. Finally, Koyama 
and Lai [4] used a recursive backtracking method to 
determine the optimum result, 4.34. However, its run 
time could be several days but has not been reported. 

A comparison of the previous results and our 
results is shown in Table 2. Our results were 
obtained by running our program on a Pentium III 
750 MHz computer. As seen in Table 2, when k=1, 
our result is within 97.38 % of optimum and is better 
than the result [1] in the expected case. Moreover, 
when k=40, our results outperform the best results of 
previous heuristic strategy [3]. In addition, observing 
the bottom row of Table 2, even when k=40, the 
execution time is still acceptable, so our KWB 
algorithm is quite efficient. 
B. “Bulls and Cows”: By using the efficient KWB 
algorithm, we obtain a near-optimal strategy for the 
game, where the number of guesses is 26605/5040≒
5.279 in the expected case and 7 in the worst case 
when k=5. (The program was run on a Pentium III 
750 MHz computer for about 40 minutes.) That is, 
the program can build a game tree with height H=7 
and external path length L=26605. 
Table 2. Comparison of our results and previous 
results for the Mastermind game. 

 
4. Pigeonhole-principle based 

backtracking 
 

In this section, we will demonstrate a computer-
aided verification method to solve the problem: the 
minimum number of guesses required for “Bulls and 
Cows” in the worst case. To make the backtracking 
algorithms more efficient, we introduce an extended 
pigeonhole principle in Lemma 1. The principle can 
be applied to the situation where pigeonholes have 
different volumes. Let the set of the volumes V={v1, 
v2, v3, …, vn} and a proper subset of V, V’={v’1, v’2, 
v’3, …, v’k}, where 1≤k<n, i.e., V’⊂V. We have the 
following lemma. 

Lemma 1. (Extended pigeonhole principle) If m 
pigeons occupy n pigeonholes with different 
volumes and m > , then there exists one i

k
i v'1∑ =
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pigeonhole with at least ⎡(m- )/(n-k)⎤ pigeons 
roosting in it, where 1≤k<n. 

i
k
i v'1∑ =

Proof. Given m > , we divide the proof into 
two cases:  

i
k
i v'1∑ =

Case 1. If pigeons fill up the k pigeonholes whose 
respective volumes belong to V’, then (m-

) remaining pigeons have to be 
distributed among the other (n-k) 
pigeonholes.  

i
k
i v'1∑ =

Case 2. Otherwise, there are more than (m- ) 
remaining pigeons that have to be 
distributed among the other (n-k) 
pigeonholes. 

i
k
i v'1∑ =

Therefore, by the generalized pigeonhole principle, 
in both cases there exists one pigeonhole with at 
least ⎡(m- )/(n-k)⎤ pigeons roosting in it. This 
completes the proof. ■ 

i
k
i v'1∑ =

We now derive the total number of guesses 
required to hit two remaining candidates in Lemma 2. 
This lemma not only can be applied to arbitrary 
games of this kind but also is useful to derive the 
exact bound for “Bulls and Cows.” 

Lemma 2. If a subtree remains only two candidates, 
then the minimum external path length L and the 
minimal height H of the game tree will be increased 
by 3 and 2, respectively. 

Proof. We will illustrate the result with an example, 
and omit the detailed proof here. If there are only 
two candidates in a subtree, it is obvious that the 
optimal strategy is to guess one of the candidates 
first and then guess the other. For example in Fig.1, 
if there are only two remaining candidates, say, 14 
and 15, in the subtree that contains nodes 14 and 15, 
an optimal strategy is to guess 14 first and then 15. 
Hence, the L will be increased by 1 (for guessing 14) 
+ 2 (for guessing 15) = 3, and H will be increased by 
2 (for guessing 15). ■ 

At the first guess for “Bulls and Cows,” without 
losing the generality, we can guess any one, say (g1, 
g2, g3, g4), of the 5040 possible codes. All of these 
guesses result in the same distribution of the 
remaining candidates since all of the guesses are 
equivalent. The distribution is shown in Table 1 of 
Section 3, where the size of each class can easily be 
calculated. For example, after the first guess 
(0,1,2,3), the size of class [3,0] is 24 because the 
remaining candidates in class [3,0] are (0,1,2,y), 
(0,1,y,3), (0,y,2,3), and (y,1,2,3), where y ∈ 
{4,5,6,7,8,9}, i.e., unused digits. Note that the size of 
each class shown in Table 1 is the maximum 
possible size during the game-guessing process 
because we obtained it from partitioning all 5040 
possible candidates. Obviously, during the following 
game-guessing process, at any stage each class [3,0] 
will not have more than 24 remaining candidates. 

Therefore, the sizes of the 14 classes can be 
considered to be the volumes of the corresponding 
14 pigeonholes. Now we will apply the extended 
pigeonhole principle to prove that there exists one 
response class that contains at least some amount of 
the remaining candidates at each stage. 

Lemma 3. (Lower bound Lemma) The height of the 
game tree for “Bulls and Cows” is at least 6. 
Proof. As shown in Table 1, after the first guess, 
class [0,1] contains 1440 remaining candidates. After 
the second guess, the numbers of these 1440 
candidates classified to the six classes [4,0], [3,0], 
[2,2], [2,1], [1,3], and [0,4] are at most 1, 24, 6, 72, 8, 
and 9, respectively, as shown in Table 1. Hence, at 
least one class other than the six classes contains at 
least ⎡[1440-(1+24+6+8+9+72)]/(14-6)⎤ = 165 
remaining candidates after the second guess.  

In a similar way, we can obtain the result that at 
least one class contains more than ⎡[165- (1+6+8+9)] 
/(14-4)⎤ = ⎡14.1⎤ =15 remaining candidates after the 
third guess.  

After the fourth guess, since there are 14 classes, 
at least one class contains at least ⎡15/14⎤ = 2 
remaining candidates.  

Finally, by Lemma 2, we need one and two extra 
guesses to hit these 2 remaining candidates, 
respectively. Therefore, at least 6 guesses are 
required in the worst case, and hence the height of 
the game tree for “Bulls and Cows” is at least 6. ■ 

The above lemma only shows a looser lower 
bound 6 for this problem. Now we demonstrate the 
pigeonhole-principle-based backtracking for 
verifying that the height of the game tree is at least 7. 
Fig. 3 shows the verification procedure, the 
correctness of which will be proven in Lemma 4. 

 
1. Do a depth-first search of the worst-first search 

tree as illustrated in Fig. 4.  
 2. After each guess, the procedure backtracks to the 

node’s parent, or stops and outputs “fail!”, 
according to the following 4 cases, where the 
notation |[A,B]max| denotes the number of the 
remaining candidates in [A,B]max. 
Case 1. After the 3rd guess, if | [A,B]max | ≥ 165, 

then backtrack.      
Case 2. After the 4th guess, if | [A,B]max | ≥15, 

then backtrack.    
Case 3. After the 5th guess, if | [A,B]max | ≥ 2, 

then backtrack.     
Case 4. After the kth guess, k≤5, if | [A,B]max | = 

1, then the procedure stops and outputs 
“fail!”.    

 3. If the procedure terminates and Case 4 has never 
happened, then outputs “pass!” 
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Fig. 3. The verification procedure. 

 

Lemma 4. If the output of the verification procedure 
is “pass!”, then seven guesses are necessary for 
“Bulls and Cows” in the worst case.  
Proof. The main idea to prove this lemma is that the 
height of the game tree is at least 7. The four 
conditions used in Step 2 of the verification 
procedure are from Lemma 3. That is, only for Case 

4, the height of the game tree would be less than or 
equal to 6. In this situation, the procedure would 
stop and output “fail!” On the other hand, after the 

fifth guess, if there exists a class with 2 remaining 
candidates, then the height of the game tree would 
be 5+2=7. In the same way, we can derive the 
constraints for Cases 1, 2, and, 3. If all strategies are 
constrained by Cases 1, 2, and 3, then the height of  
the game tree would be at least 7. That is, the 

Fig. 4. The worst-first search tree 
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number of guesses is at least 7 for “Bulls and Cows” 
in the worst case. ■ 

Now, we can obtain the exact bound of the 
minimal number of guesses required for the “Bulls 
and Cows” in the worst case, as shown in the 
following Theorem. 

Theorem 1. Seven guesses are necessary and 
sufficient for the “Bulls and Cows” in the worst case. 
Proof. Necessary. “Bulls and Cows” has 
successfully passed the verification procedure shown 
in Fig. 3, in which the numbers of backtrackings 
caused by Cases 1, 2, 3 and 4 were 407528, 
3254981544, 59149440, and 0, respectively. The 
verification program was run on a Pentium III 750 
computer for about two days. From Lemma 4, we 
conclude that seven guesses are necessary for “Bulls 
and Cows” in the worst case. 
Sufficient. In Section 3, the program, a k-way-
branching, has built a game tree with height H=7 and 
external path length L=26605 for “Bulls and Cows”. 
From Observation 1, we conclude that seven guesses 
are sufficient for “Bulls and Cows” in the worst case.  

5. Conclusions 

In this paper, we propose new algorithms for 
deductive games and have successfully applied it to 
solve “Bulls and Cows.” By using the k-way-
branching algorithm, we can obtain an optimal 
strategy in the worst case and a near-optimal strategy 
in the expected case. The near-optimal result can 
approach the optimal solution by increasing the 
parameter k. Furthermore, we introduce the extended 
pigeonhole principle and have applied it to 
effectively reduce the search space of the problem. 
Therefore, we are able to determine the minimum 
number of guesses required for “Bulls and Cows” in 
the worst case. 

We use the concept of hash collision groups in 
our KWB algorithm because the k groups can be 
efficiently obtained and near-optimal results can be 
achieved even using a small value for k. Depending 
on the characteristics of each problem, the critical 
issue is how to define the most adaptive hash 
collision groups for the problem in hand. The 
proposed algorithms can be applied to related 
problems. We hope this paper will prompt 
researchers to study other related problems.  
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