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Abstract    
We study the improvement for the well-known 

Good-Turing smoothing and a novel idea of probability 
redistribution for unseen events is proposed. The 
smoothing method is used to resolve the zero count 
problem in traditional language models.  The cut-off  
value co for number of count is used to improve the Good-
Turing Smoothing.   The best k on various training data N 
are analyzed. 

Basically, there are two processes for 
smoothing techniques: 1)discounting and 2)redistributing. 
Instead of uniform assignment of probability used by 
several well-known methods for each unseen event we 
propose new concept of improvement for redistribution of 
smoothing method. Based on the probabilistic behavior of 
seen events, the redistribution process is non-uniform. The 
empirical results are demonstrated and analyzed for two 
improvements. The improvements discussed in the paper 
are apparent and effective for smoothing methods, 
especially on higher unseen event rate. 

Keywords: Language model, Smoothing method, 
Good-Turing, Cross entropy, Redistribution. 

1  Introduction 
Language models (LMs) [4], [16] have been 

successively used in many fields of application; speech 
recognition, word segmentation, information retrieval. In 
natural language processing (NLP), LMs can be used, for 
instance, to decide the correct target word sequence W. 
The conditional probability P(W), where W=w1w2w…wm is 
a possible translation of Str.                                                            

A language model can be regarded the probability 
distribution over events sequences that models how often 
each sequence occurs as a sentence. Chain rule of 
probability is used to decompose the probability 
calculation:    

 

 

                                                                            (1) 

1.1  n-gram Model 

 Due to the finite training corpora, the approximate 
probability of a given word by using the (n-1)th preceding 
words or tokens is employed to estimate.  

The probability model with various n can be written as:             

                                         (2) 
 
In many applications, the models for n=1, 2 and 3 are 

called unigram, bigram and trigram models [1], [6] and 
[11], respectively.   
      In Eq. (2), the probability for each event or token can 
be obtained by training the bigram model (for clarity, 
bigram model is illustrated). Therefore the probability of a 
word bigram will be written as: 
                                ,                                                   (3) 
 
where C(wi) is the count of word wi occurred in training 
corpus. The probability P of Eq. (3) is the relative 
frequency and such a method of parameter estimation is 
called maximum likelihood estimation (MLE).   

As shown in Eq. (3), C(‧) of event or word (in the 
paper) may be zero because of the limited training data 
and infinite resource language. It is hard for us to collect 
large enough data.  The potential issue of MLE is that the 
probability for unseen events is exactly zero. This is so-
called the zero-count problem . It is obvious zero count 
will lead to the zero probability of P(‧) in Eqs. (2) and 
(3). Furthermore, it will degrade the performance of LMs.  
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1.2 Smoothing Methods 

      The estimation of zero probability of certain event or 
object is unreliable and unfeasible for most applications, 
especially for language models. The smoothing techniques 
[2], [3], [12] and [13], are essential and employed by 
language mode to overcome the problems of traditional 
language models, as described above.  

There are many smoothing methods, such as Add-1, 
deleted interpolation [7], Good-Turing [5], Katz [8], etc. 
Among the smoothing methods, Good-Turing has been 
used extensively, used to decipher the German Enigma 
code during War II by I. J. Good and A. M. Turing [5]. 
There are several literatures discussing about smoothing 
methods, refrerring to papers of [2], [3], [9], [10], [11] [14] 
and [15].  We aim at the feature analysis on Good-Turing 
smoothing methodfor several language models in 
Mandarin text. 
1.3 Processes of Smoothing Methods  

The main idea of smoothing is to adjust the total 
probability of seen events to that of unseen events, leaving 
some probability mass (so-called escape probability, Pesc), 
for unseen events. Smoothing algorithms can be 
considered as discounting some counts of seen events in 
order to obtain the escape probability Pesc which will be 
assigned into the zero counts of unseen events. The 
adjustment of smoothed probability for all possibly 
occurred events involves discounting and redistributing 
processes: 
A). Discounting:  
   The probability of all seen and unseen events is summed 
to be 1 (unity). First operation of smoothing method is the 
discounting process, which discount the probability of all 
seen events. It means that the probability of seen events 
will be decreased a bit. In the process, there are two issues:  

1) How to discount the probability of seen events 
with different count c, c>=1. Whether the 
discounted probability from the seen events with 
count c is uniform or not will affect the 
performance of language models. 

2) The effectiveness between the size of escape 
probability and performance of language models.  

 
 The adjustment can be divided into two types: static 

and dynamic. Static smoothing methods, as most 

smoothing methods, discount the probability based on 
the frequency of events in trained corpus. However, 
dynamic smoothing method, i.e., cached-based 
language, discounts the probability based on the 
frequency of seen events in cache and trained corpus.  

B). Redistributing: 
   In this operation of smoothing algorithm, the escape 
probability discounted from all seen events will be 
redistributed to unseen events. The escape probability is 
usually shared by all the unseen events. That is, the escape 
probability is redistributed uniformly to each unseen event, 
Pesc/U, where U is the number of unseen events. On the 
other hand, each unseen event obtains same probability in 
uniform distribution.  

 The main issues in this process should be considered: 
1) How to redistribute the escape probability Pesc 

to each unseen event?  
2) Whether the incoming and all other unseen 

events be assigned same probability or not?  
     
The redistribution of most well known smoothing 

methods, such as Add-one, Absolute discounting, Good-
Turing, Delete interpolation, Back-off and Witten-Bell. 
The escape probability Pesc (or called probability mass for 
unseen events) is shared uniformly  by all unseen events. 
It is a possible factor that affects the performance of 
smoothing algorithm. There are little previous papers 
discussing how to redistribute the escape probability PESC, 
and how the different redistribution can improve the 
smoothing methods for language models.  

2  Improvement for Good-Turing  
     Smoothing 
2.1 Basic Idea of Good-Turing Smoothing 

Good-Turing method was first described by I. J. 
Good and A. M. Turing in 1953 [6], which was used to 
decipher the German Enigma code during World War II. 
Some previous works are in [3], [7] and [12]. Notation nc 
denotes the number of n-grams with exactly c count in the 
corpus. For example, n0 represent that the number of n-
grams with zero count and n1 means the number of n-
grams which exactly occur once in training data. 
Therefore, nc will be described as: 

                                                                                 (4) 
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where w denotes a bigram in training corpus. Based on 
Good-Turing smoothing, the redistributed count c*will be 
presented in term of nc, nc+1 and c as: 
      .                                                                             (5) 
     
 Note that the numerator in Eq. (3) will be substituted by 
c*  
for the bigram models as:  

                           .                                       (6) 
 
The probability of Eq. (6) is called Good-Turing 

estimator. Similarly, the revised count for bigrams can be 
derived from Eq. (5). As shown in Eq. (6), Good-Turing 
smoothing method just employs the bigram models to 
smooth the probability, rather than interpolating higher 
and lower order models (such as unigrams). Hence, Good-
Turing is usually a tool used by other smoothing methods. 

2.2 Issue of Good-Turing Smoothing 
     The idea of Good-Turing is described by Eq. (5). In 
training cprpus, the larger c, the smaller nc. Basically, 
count c increases while nc  decreases. In some counts, 
however, it is not always true, such as c=765~769. It is 
apparent that zero nc will leads to the zero Good-Turing 
estimator. Redistributed count c* is zero while nc is zero.  
Consequently, probability P will be zero.   
     Supposed that the incoming bigram bN+1 are the unseen 
bigram and seen bigram with count 2 on left and right 
column, respectively. Shown in Table 1, n50=68, n50=59 
while n50=64. The number n0 of unseen bigrams is 
decreased gradually while training data size N is increased. 
The number in grey cells are changed while the . 
Table 1 :when an event (bigram) occurs, the changes for 

some nc, nc+1 and c on N=1M and 1M+1 
Mandarin characters text.  

3 Improvements for Smoothing Method 
3.1 Improvement: Cut-off Count of Events 
       We can prove that Good-Turing estimator satisfy the 
total trainig data N derived by count c*as : 
 
 
   
The events with higher count are reliable and we need 
therefore to make no adjustment. In real applications, only 
the lower redistributed count c* are used to aviod the zero 
nc , which will lead zero probability also. Thus, the cut-off  
count ck  is needed.  As shown in [8], Katz suggest k for 
English will get better performance.The number of unseen 
events varies with the training data and affects the 
behavior and performance of smoothing techniques. The 
discounting c* is as follow: 

 
 
                                                                               (7) 
 

 
 
where k denotes the cut-off value. 

3.2 Best Cut-off Value  
In the most previous works of smoothing methods, 

they discussed the situation the possible event types B 
were much larger than the training data N 1)( <<N/B , 
such as words triigram models in English text or character 
triigrams in Mandarin. However, the situation 

1or  1 /B ≅>> N/BN  should be considered in certain 
applications. For instance, the event types B for Chinese 
character bigram is close to 1.69*108 while the training 
data size N, in general, is usually less than 1*108. In such 
case, the ratio of N/B is close to 1. 

The cut-off value co for event count is used to 
improve the Good-Turing Smoothing, as shown in 
previous section. The best co on various Training data N 
should be analyzed to obtain better improvement. 

3.3 The Redistributing Process 
       As described in Section 1.3, there are two main 
processes for smoothing methods; discounting and 
redistributing. Within the redistributed process, the escape 
probability Pesc (or so-called probability mass for unseen 
events) is shared uniformly by all unseen events for most 

count c nc count c nc 
0 168158426 765 2 
1 357056 766 0 
2 134394 767 9 
3 68092 768 3 
4 43983 769 0 
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smoothing methods, such as Add-one, Delete interpolation 
and Witten-Bells method A and C. In other words, each 
event obtain same smoothed probability Pesc/U. Based on 
the observation of behaviors for seen events, each event 
has its probability relying on the event frequency in the 
training corpus. It is obvious that the probability 
distrubition for each event is quite different. Therefore, It 
is unreasonable to assign same probability to each 
incoming unseen events.  
      An idea for redistributing escape probability Pesc  is 
that how many tokens read-in while the next new event 
will occur? It means the interval between two successive 
events varied with the training data N. Basically, the larger 
the training data N, the smaller the interval. It means that 
next new event will occur rapidly at smaller N while 
slowly at larger N. 
       As shown in Fig. 1, the figures draw the interval 
(offset) between two new successive events for two 
models; Chinese character word unigrams and bigrams. 
There are 100M (108) Chinese characters for source 
training data. The sentences in source are segmented into 
words and 65M (65*106) words are obtained. The length 
of word is 1.45 characters per word in average.    
 

Fig. 1: the interval (offset) between two successive events 
varied with training data; (top) word unigrams, 
(bottom) character bigrams. 

The recourse files are randomly selected and we 
obtain the offset diagrams. More than 100 training 
processes are implemented and then the final curve can be 
obtained in average. The regression curves Y1 and Y2 for 
Chinese word unigram and character bigram models can 
be described as follows: 
Y1 = 1E-10x3 - 4E-06x2 + 0.0307x - 39.825                     
Y2 = -1E-16x4 + 2E-11x3 - 6E-07x2 + 0.0058x - 3.7502 
where x and y denotes the data size the offset.  

The larger the training data N is, the larger the offset 
(interval) is.  It is apparent that the. The regression curves 
present the general interval of original intervals and its 
trend increased gradually. Note that the regression curves 
varied with N and flatter at the beginning and steeply at 
end of curves.  
       As described above, the regression curves from seen 
events can be used to demonstrate the interval of unseen 
events. Based on the curves derived from the seen events 
occurrence, we can furthermore derive the behaviors for 
estimating the probability assigning to the next incoming 
unseen event. Note that all the probability for seen and 
unseen events should be unity (1); which must satisfy the 
basic statistical condition. 
         Supposed that the interval yi on training data Ni, the 
distribution for all unseen events can be as follows:  
 
                                                                                    (8) 
 
where yi denotes the interval on location i in Fig. 2 and U 
denotes the types of unseen events. 1/yi  can be regared as 
the derivatives at yi and as the probability for unseen 
events.      
       The smoothed probability assigning to an unseen 
event Ui  is: 
                                                                                     (9) 
     Referring to Eqs (8) and (9), the total smoothed 
probability for all unseen events is Pesc. Therefore, the 
total probability for seen and unseen events can be 
calculated as unity. 

4  Evaluation  
4.1 Cross Entropy  

In the subsection, we introduce cross entropy, which 
has always been used to evaluate and compare different 
probabilistic model. For a testing data set T which 

 character bigram offset
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contains a set of events, e1,e2,…,em, the probability for the 
testing set P(T) can be described as: 

                                                                              (10) 
 
 where m denotes the number of events in testing set T 
and P(ei) denotes the probability of event ei, obtained 
from n-gram language model, assigning to event ei. 
     When we don’t know the actual probability 
distribution p that generated some data the cross entropy 
CH can be employed. For example, we use some M, 
which is a model of p. Therefore, the cross entropy CH of 
M on p can be regarded as: 

.    (11) 
 

4.2 Data Sets and Empirical Models  
      In the following experiments, two text sources are 
collected from the news texts and Academic balanced 
corpus (ASBC); the former and the later contain 100M 
and 10M Mandarin characters, respectively. We construct 
three models to evaluate the Cross entropy CE of 
smoothing methods discussed in the paper; Chinese 
character unigrams, bigrams and word unigrams model 
(word length is 1.45 characters in average). The entropy is 
calculated on various data size N in our experiments.  The 
number nc of first zero for event with count 0 on various 
N are shown in Table 2. 
Table 2: The first zero fz of nc in term of training size N 

for two models.  

 
     Based on the non-uniform distribution probability for 
unseen events, Fig. 2 and Fig. 3 display the cross entropy 
(CE), unseen event rates and improvements of different 
cut-off co on various N for word unigram and character 
bigram models respectively. The best cut-off co can be 
found on various N for both models. It is apparent that the 
best CE improvement reaches near 1.8% at N=0.5M, and 
the effectiveness decreases while the N is larger, as shown 
in Fig. 2. The best CE improvement reaches near 14.3% at 
N=1M, and the effectiveness decreases while the N is 
larger, as shown in Fig. 3. Both improvements can reach 
lower CE while the cut-off and non-distribution methods 

are used.  Two methods can improve better, especially on 
higher unseen event rate.  

 Figure 2: the cross entropy, unseen event rates and 
improvements on different cut-off co on 
various N for word unigram model. 

 

 
Figure 3: the cross entropy, unseen event rates and 

improvements on different cut-off co on 
various N  for character  bigram model. 

N, M 10 20 30 40 50 60 70 80 90 100
char. 
Bigram 

606 698 1014 520 310 446 249 277 283 389

N, M 0.5 1 2 4 8 16 32 64 

Word 
unigram 

177 230 287 418 455 620 778 817

,)()(
1
∏
=

=
m

i
iePTP

)...(log)...(1lim),( 321321 n
LW

nn
wwwwMwwwwp

n
MpCH ∑

∈
∞→

=

Cross entropy for uniword with uniform distribution

11.4

11.8

12.2

12.6

13

13.4

0.5 1 2 4 8 16 32 64

Training data N, M

C
r
o
s
s
 
e
n
t
r
o
p
y

k=5
k=8

k=10
k=15

k=20
k=25

k=fz

unseen event rate and CE improvement using regression curve for uniword

model

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

0.5 1 2 4 8 16 32 64

Training data N, M

P
e
r
c
e
n
t
a
g
e

unseen event rate

CE improvement

Cross Entropy wiwth different count cut-off for bigram models

based on uniform distribution

16.8

17.8

18.8

19.8

20.8

1 10 20 30 40 50 60 70 80 90 100

Training data N, M

C
r
o
s
s
 
e
n
t
r
o
p
y

k=5

k=10

k=15

k=20

k=25

k=fz

unseen event raate and CE improvement for bigram models

based on the regression curve

4.00%

9.00%

14.00%

19.00%

24.00%

29.00%

34.00%

39.00%

1 10 20 30 40 50 60 70 80 90 100

TRaining data N, M

p
e
r
c
e
n
t
a
g
e

unseen event rate

CE improvement

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

533



5 Conclusions 
In the paper, we study an improvement for the well-

known Good-Turing smoothing and propose a novel idea 
of probability redistribution for unseen events. The 
smoothing method is used to resolve the zero count 
problem in traditional language models.  The cut-off  co 
for event count is used to improve the zero nc issue of 
Good-Turing Smoothing.  The best co on various training 
data N is analyzed. 

Based on the probabilistic behavior of seen events, 
the redistribution process is non-uniform. The empirical 
results are demonstrated and analyzed for two 
improvements. The improvements discussed in the paper 
are apparent and effective for smoothing methods.   

We construct two models to evaluate the improvement 
methods discussed in the paper; Chinese word unigrams, 
character bigram model. The cross entropy can be reduced  
in these two models. Both improvements can reach lower 
CE while various cut-off co on different N and non-
distribution methods are used. Two methods can improve 
better, especially on higher unseen event rate. In other 
word, we can improve especially the CE for application 
with small training data N. The best CE improvement 
reaches 1.8% and 14.3% for word unigram and character 
bigram models. 
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