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Abstract We present a robust method to classify 
swimming styles from live video based on the features 
extracted from the upper-body of the swimmer. In our 
approach, potential body parts are first extracted using a 
simple skin color model. The segmented regions are 
further analyzed to isolate the arm and shoulder blocks. 
Finally, a scoring system based on quantitative measures 
such as the slope, size, aspect ratio and the relative 
position of the body parts  is constructed to carry out the 
classification. Several enhancements to the original 
scoring system are developed and tested. Experimental 
results demonstrate the validity and efficiency of our 
proposed approach.  
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1. Introduction 
 

The analysis of human motion is a research domain that 
has received considerable attention from the computer 
vision community in the past decade [1].  Automatic 
processing of sports video that involves single or multiple 
players is, in particular, a heavily investigated subject due 
to general public’s interests in sport events.  In general, 
there are two distinct purposes for analyzing sports video: 
1) to organize and segment the raw footage into semantic 
units for easy indexing and retrieval, and 2) to perform 
qualitative or quantitative analysis of motion sequence to 
identify weak points and offer suggestions for 
improvement.  The former has long been known to be a 
key step in building multimedia database.  Video-content 
segmentation and highlight extraction has been an active 
research area [2].  More recently, leading international 
standard organizations (e.g., MPEG of ISO/IEC [3] and 
ATVEF [4]) have also started working actively on 
frameworks for organizing and storing such metadata.  
The latter is usually employed by a coach or professional 
athletes to improve skill and boost performance. For 
example, applied sports biomechanics concentrated on 
integrating the techniques from multiple disciplines such 
as physics, human anatomy, mathematics, computing and 

engineering to analyze movements of human motion in 
order to prevent injury and improve performance.  A 
swimming sport bio-mechanist can enhance a competitive 
swimmer’s performance by discovering the best breathing 
pattern, or examining whether the propulsion in 
swimming is due primarily to lift or drag.  Appropriate 
suggestions can then be made accordingly.  More 
generally, sports biomechanics involves the study of 
biomechanical properties of the movement of body parts, 
such as the arm moving cycle frequency, the angles of 
arm movement in each phase of a patterned motion. 

A major characteristic of sports motion is that inherent 
structure exists as a direct influence of the game rule or 
pre-defined exercise sequence.  We are not dealing with 
random movement.  Instead, domain-specific knowledge 
can usually be applied to aid the analysis.  For example, 
there are four swimming styles commonly swum in 
competitions.  Three of them are regulated by La 
Fédération Internationale de Natation (FINA, 
International Swimming Federation.).  They are: butterfly, 
backstroke, and breaststroke.  A fourth competition is for 
unregulated styles and is called freestyle.  During freestyle, 
it is possible to swim any style on this list.  Due to the 
superior speed, most swimmers choose front crawl for 
freestyle competitions.  For medley swimming, freestyle 
is any style except breaststroke, backstroke, and butterfly.  
As a result, the freestyle and front crawl are regarded as 
the same in our investigation. 

In [5], we have reported a classification scheme to 
recognize swimming motion under the following 
constraints: 1) the swimmer is sited in a FINA Olympic 
standard pool with distinct lane ropes, 2) the video is 
taken with an above-water camera looking down as the 
swimmer is approaching, and 3) there is only one 
swimmer within the camera’s field of view. While we 
have obtained satisfactory recognition results for all video 
clips that fit the above profile using the decision rules 
proposed in [5], we believe that the style classification 
system can be further enhanced. This paper attempts to 
extend and improve the performance of our formerly 
developed system. Specifically, we will formulate new 
classification rules and rebuild the associated scoring 
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mechanism to achieve better recognition results. 
Extensive experiments will be conducted to validate our 
claim. 

To recapitulate, our originally proposed approach 
consists of four stages, including color-based 
segmentation, connected component detection, regression 
analysis, and motion classification, as depicted in Fig. 1. 
The overall structure of the newly developed scheme 
remains the same. Nonetheless, we have made significant 
modifications to the ‘motion classification’ component to 
achieve superior outcome.  

 
The rest of this paper is organized as follows. In 

section 2, we briefly review the framework of the 
classification system and summarize the key ideas 
employed in each stage. Section 3 describes the proposed 
enhancements to the original classification scheme. 
Section 4 provides the experimental results and 
performance comparisons. Finally, concluding remarks 
are given in section.5. 

 

 
Figure 1. System framework. 

 
 
 

2. System Framework 
 
This section briefly reviews the four components of the 
classification system. A simple but effective segmentation 
method based on the hue value is first introduced. 
Candidate body parts are then isolated using connected 
component detection technique. Regression analysis is 
performed on the extracted regions. Finally, a scoring 
system based on the calculated data is developed to 
identify the type of motion.  
 

Color video is employed to enable robust segmentation 
of the human body parts. The specific environment of the 

swimming pool has made this process quite simple as the 
background is largely blue, which happens to be on the 
opposite side of the orange-yellow interval in the hue ring. 
(Refer to Fig. 2). Fig.3 shows a typical frame of the input 
video clip and its hue component. Fig. 4 demonstrates the 
result of retaining the pixels that have a hue value 
between 0.3-1.5, i.e., potential skin pixels. We have found 
this simple technique to work quite well for most video 
clips. It is possible to refine the segmentation process by 
taking into account the fact that the lane ropes is usually 
bright while the projected shadow appears dark. In 
addition, morphological filtering is applied to clean up 
isolated or disconnected regions. In most cases, less than 
10 blobs are left for processing in the next stage.  
 

 
Figure 2. The interval corresponding to possible skin pixels. 

 

 
(a)              (b) 

Figure 3. (a) Original color image (b) its hue component 
 

 
(a)              (b) 

Figure 4. (a) Segmented regions (b) detected connected 
components. 

 
 

After detecting the regions that could possibly be 
associated with the limbs, we need to identify the blobs 
that represent the arms. Depending on the swimming style 

Color based segmentation 

Connected component detection 

Regression analysis 

Motion classification 
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being exercised, one or two dominant blobs may exist. 
We employ the algorithm documented in [6] to detect 
connected components. Components that cross the 
left/right boundary or have size smaller than a pre-defined 
threshold are excluded from further consideration. At 
most two blobs are retained for regression analysis. 
 

The main purpose of performing regression analysis is 
to estimate the relative position of the limbs, which carries 
the key information in distinguishing different swimming 
styles [5]. We will rely heavily on the calculated slope of 
the blob to perform the classification. The correlation 
coefficient (R) measures how spread out the blob appears. 
It is used mainly to remove regions corresponding to the 
lane ropes, which usually possess large R values. Fig. 5 
shows the detected blobs along with their regression lines. 
 

 
 

Figure 5. Connected components and their regression lines. 
 

At this point, we are equipped with one or two 
dominant regions, the slope(s) of the regression lines, and 
the aspect ratio for each region. These features will 
constitute the basis for motion classification. 
 
3. Motion Classification 
 
As we have mentioned previously, swimming is a periodic 
motion that can be categorized into four stroke styles, 
namely, butterfly, backstroke, breaststroke, and freestyle.  
Each style depicts its unique combination of the 
movement of different body parts, including the arms, the 
legs, and the shoulder.  In order to better characterize and 
analyze each motion style, it is desirable to gather as 
much data as possible from both the water surface and 
underwater.  Our current settings, however, only supply 
the above-water video and thus only the upper body parts 
are visible in most image frames.  Limited by such 
constraints, the arm movements will constitute the key 
clues in distinguishing the different swimming styles.  
 

The resulting decision tree for classifying the motion 
sequence is depicted in Fig. 6. It differs from the original 
approach [5] in two important aspects: 1) a continuous 
scoring system is adopted to simplify the tree structure as 

well as increase the precision of the recognition results, 
and 2) a weighting factor is added to take into account the 
influence from the previous frames. Exploiting the 
relationship among successive image frames turns out to 
boost the performance of the classification system 
significantly. 

 
The weight assignment algorithm works as follows: 

Originally, all four styles receive a weight value of 1. The 
weights are first updated at the k+1 th frame according to:  

 

framesk  previous  thein scores daccumulate
framesk  in style specific for the scores  totalweight =   (1) 

 
The statistics obtained from our collection of swimming 
footage indicate that a complete cycle of the butterfly 
style takes about 28 frames. The estimates are 25 frames 
for backstroke, 30 frames for  breast stoke and  20 frames 
for freestyle. Since it only makes sense to relate the 
motion patterns within one cycle, k should be less than 20. 
In practice, k is usualy set between 5 and 10 to account for 
dropped frames.  
 

According to the decision tree depicted in Fig. 6, each 
frame in a video sequence may be associated with 0, 1, or 
21 styles. Let count[style] denote the number of frames 
that have been assigned to a specific style in the past k 
frames. Based on the assumption that the swimmer will 
maintain a fixed swimming style, we may incorporate the 
rules shown in Fig. 7 to further adjust the weighting factor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Fine-tuning the weight. 

                                                           
1 Butterfly and backstroke are indistinguishable in some frames. 

if (count[fly]>count[breast])         
 weight[breast]*=(1-weight[breast]); 

else if(count[back]> count[breast])       
weight[breast]*=(1-weight[back]); 

else if(count[free]> count[breast])     
weight[breast]*=(1-weight[free]); 

   else if(count [breast]> count[fly])       
weight[fly]*=(1-weight[breast]); 

   else if(count [breast]> count [back])       
weight[back]*=(1-weight[breast]); 

   else if(count[breast]>count[free])     
weight[free]*=(1-weight[breast]); 
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Figure 6. Linear decision tree and scoring system for swimming style classification. 

 
It should be noted that we are not using a machine 

learning approach such as neural networks on the outset 
for specific reasons.  Because swimming has pre-defined 
exercise sequences and the motion pattern is fixed for 
each style, the movements in each style usually will not 
differ significantly at every arm-movement cycle.  Such 
domain-specific knowledge allows us to implement 
empirical rules to aid the analysis.  Experimental results 
verify that the use of a rule-based system is sufficient.  On 
the other hand, black-box approaches usually call for a 
large amount of training data, and is not guaranteed to 
offer better performance. Training time and collection of 
‘representative’ samples raise other concerns. 
 
4. Experimental Results and Discussions 
 
In this section, we present experimental results applying 
the proposed method to classify motion patterns from 
video sequences in real-time. We also compare the 
performance of the different revisions to the original 
technique.  

4.1. Experimental results 
 
The database contains swimming footage download 

from http://swim.ee. About 50 video clips that fit the 
profile discussed in section 1 are selected. A total of 8552 
image frames (approximately 285 minutes of video) are 
employed for the testing. We first apply the original 
technique to do the classification and compute the 
percentage of frames that have received correct labels. 
The results are listed in the second column of Table 1. We 
then initiate the first revision: using linear scoring system 
instead of the discrete one. The results are given in the 
third column. In most situations we have seen comparable 
or better recognition rates by incorporating continuous 
scoring. Column 4 summarizes the result of applying only 
the second revision: bringing in a weighting factor (with 
k=10). The improvements are much more pronounced in 
this case. The recognition rates have increased 8-20%. 
Combined effects of these two revisions are shown in 
column 5 of Table 1. Not surprisingly, the integrated 
approach has improved the overall recognition rates even 
further.  
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Table 1. Comparison of the recognition rates with different 

decision rules. 
 

  original 
(1)  

linear 
score 

(2) 
weighting 

factor 
(1)+(2)

Butterfly 64.04% 74.84% 78.18% 86.73%
Back 
stroke 88.42% 85.69% 96.85% 97.51%

Breast 
stroke 60.99% 57.64% 80.51% 78.77%

Freestyle 58.59% 63.87% 77.79% 93.18%

Average 68.01% 70.51% 83.33% 89.05%
 

The data in Table 1 are obtained by analyzing every 
frame in a video clip. To study how the proposed 
algorithm works on slower machines, we have also 
conducted experiments by 1) randomly dropping frames 
and 2) analyzing only 3 frames per second. The results 
depicted in Table 2 have clearly demonstrated the efficacy 
and robustness of the motion classification scheme. 

 
 
Table 2. Comparison of the recognition rates with different 

frame rates. 
 

 
Analyze 

all 
frames 

Randomly 
dropping 
frames 

Analyze 3 
frames/sec

Butterfly 86.73% 90.07% 82.02% 

Back stroke 97.51% 95.98% 88.52% 

Breast stroke 78.77% 77.62% 66.07% 

Freestyle 93.18% 84.37% 68.36% 

Average 89.05% 87.01% 76.24% 
 
 

4.2. Discussions 
With our proposed algorithm, we get 100% correct 
classification results when the swimming footage is 
analyzed frame-by-frame. (Using a majority vote principle, 
the classification will always be correct if the 
corresponding style receives over 50% of the total scores.) 
Repeated experiments indicate that if the frame rate is 
over 17 frames, all the classification results are still 
correct.  However, when the frame rate has been reduced 
to 3, misclassification will occur. This is mainly due to the 
incorporation of the weighting factor, which exercises 
some form of ‘inertia’ in accordance with the properties of 
the previously analyzed frames.  In the 3 frames/sec mode, 
the effect of noisy or misclassified frames may be 

amplified, resulting in adverse influence on the following 
video frames.  Since butterfly and breaststroke are 
indistinguishable in some frames, the score may be 
distributed to both styles in a butterfly clip.  In most 
breaststroke frames, we will not be able to see the 
swimmer's arms.  Instead, the shoulder is detected, 
forming a rectangle which is very similar to the arm 
region in freestyle. As a result, the scores for breaststroke 
and freestyle are complementary. These phenomena are 
clearly depicted in Fig. 8.  
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 Figure 8.  Statistics for breaststroke when analyzing 3 frames 
per second. 

 
5. Conclusions 
 
In this paper, we have presented an efficient and robust 
approach to classify swimming style using features 
extracted from the upper body parts. Based on the slope 
and aspect ratio of each candidate blob, the characteristics 
of various motion styles can be revealed. The proposed 
decision tree and scoring system prove to work well for 
video clips satisfying proper constraints. 
 

Nonetheless, swimming videos come in many different 
flavors. The research reported in this paper resolves only a 
subset of all possible input patterns. For example, the 
current system will experience difficulties with video clips 
that are either too short or contain medley (mixed styles). 
Future work includes the detection of ‘turn’ to enable 
analysis of mixed swimming modes as well as the 
development of new rules to classify video taken from 
various view angles. 
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