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 Abstract - A model of fuzzy control based on 
Generalized Fuzzy Automata (GFA) is proposed. The 
fuzzy controllers based on the GFA theory control 
plants with words since system states, inputs, and 
outputs are encoded in linguistic terms when 
modeling with GFAs. Therefore, the behavior of a 
control system is described with words. 
Mathematically we prove that GFA realize general 
fuzzy feedback controls. This novelty provides 
implementation, no matter in hardware or software, 
of fuzzy feedback controllers in a systematic, unified, 
effective, and objective paradigm. The properties of 
the rule base including fuzzy rules and membership 
functions of the controller are objectively defined 
without much subjective domain expertise involved. 
The proofs also demonstrate how fuzzy feedback 
control with words is performed. 
 
Keywords: Fuzzy Automata, Fuzzy Feedback 
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1. Introduction 

 
Fuzzy feedback controls appear in many areas. 

Most of the environments of the control problems are 
with uncertainties. For example, a simple heating 
problem where the temperature of the plant is 
required to be consistent with specified variations. In 
classical control, to identify a system one need to 
know exactly all parameters such as mass of plant, 
environment temperature, and material properties 
exist in the system. However, in many cases this is 
not possible. Even though a system is identified, non-
linear characteristics make the design of the 
controller difficult. Therefore, many articles present 
fuzzy feedback controllers as the solutions for both 
uncertainties and non-linearities [1, 6]. In these 
articles, a fuzzy feedback controller is equivalent to a 
fuzzy rule base where linguistic terms are 
characterized by membership functions. Domain 
expert gives the membership functions and the fuzzy 
rules. However, there is still a gap to control with 
words. The gap exists in where there is no unified 
behavioral description about the whole control 
systems including the environment and controller 
itself. Without the unified behavioral description 

model when suffering another control problem, the 
fuzzy control system need to be re-designed by 
consulting the domain expert. In this paper we adopt 
the generalized fuzzy automata (GFA) theory [2] to 
deal with behavioral descriptions in words of control 
systems. 

Automata theory is essential in computer science. 
Behavior of an automaton presents behavior of a 
computation such as that of a controller. 
Mathematically, we said that a Moore typed 
automaton realize a controller iff the behavior of the 
automaton is an input-state homomorphism of the 
behavior of the controller. Behaviors of a specific 
class of automata are usually studied categorically [3, 
4, 5]. Instead of categorically studying properties of 
the GFA automata, in this paper we show that for a 
general feedback control system there is a GFA 
automaton behaves the same. That is, for each 
feedback control problem, there exists an automaton 
in the GFA category realizes it.  

This paper is organized as follows. In Section II, 
the words as controls and the class of generalized 
fuzzy automata are defined. For the generic 
realization of fuzzy control, in Section III, we prove 
algebraically that there exists an isomorphism, that is, 
a GFA automaton, of the control. In Section IV, 
examples and the design flow of a fuzzy feedback 
control is demonstrated. The conclusions are given in 
Section V. 
 
2. Generalized Fuzzy Automata 
 

In this section we define the objects and 
modules in generalized fuzzy automata (GFA). 
 
2.1. Algebraic Structure of Words 

 
We now study the algebraic structure of the 

words used in the GFA automata. The words are used 
in control systems. We first define the groupoid of 
the words. Since for each word there is a 
corresponding fuzzy set that interprets it, a set of 
words is regarded as level 2 fuzzy set. 

Definition 1 (Groupoid of words) Let Ln(X) be a 
level-n fuzzy set with universe X(n-1). A word w of Σ 
is a linguistic term associated with a fuzzy subset and 

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

895



a membership function µw(x) of Σ. A groupoid L2(Σ)* 

of words is a Kleen’s closure over level-2 fuzzy set 
L2(Σ) of words with universe Σ. That is, 

L2(Σ) ={w| w is a word of Σ}, 
(∀w1∈ L2(Σ))(∀w2∈ L2(Σ))[w1·w2 = w1w2], 
w0 = ε and (∀w1∈ L2(Σ))[w1 ε = ε w1= w1], and 
L2(Σ)* ={w| w is a word of Σ}* = ( )20

( ) i

i
L

∞

=
∪ Σ  

□ 
Note that the power set 2Σ⊆ L2(Σ) since ∀2x∈2Σ is a 
special fuzzy subset of Σ such that the membership 
grade of each element is 1. That is, 
 ( )( )2 ( ) 1pp x p xµΣ  ∀ ∈ ∈ = 

  

Moreover, the closure Σ*⊆L2(Σ)* since for classically 
defined strings s1 and s2 we have 
(∀s1∈Σ*)(∀s2∈ Σ*)[s1·s2 = s1s2]. This is based on the 
fact that if (∃n∈)[s1= s11s12s13,…,s1n] and (∃m∈)[s2 
= s21s22s23,…,s2m], then s1i and s2j are special fuzzy 
sets, called singletons, in L2(Σ). In Definition 1, 
extension principle for the concatenation operator “·” 
is not applied because it is not required in GFA 
automata. The abstraction in Definition 1 is very 
important such that we can show that fuzzy 
computing based on GFA is massively parallel and 
any fuzzy computation is a super composition using 
t-norms and s-norms (t-co-norm). A sequence of 
fuzzy input X(t) along time t is a member of L2(Σ)*.  
 
2.2. Definition of the Generalized Fuzzy 
Automata 

 
In this section, with groupoid of words we 

define the GFA in Definition 2. Following that we 
then define the transition caused by an input 
sequence in Definition 3. In the following we use 
height-bounded observations (HBOs)[2], each of 
which is extended from an LR fuzzy set (α, m, β)LR -- 
an normalized and convex observation operations O 
on a fuzzy set [1] with limited height h and is re-
denoted (α, m, β, h). An observed input X(t) and an 
observed state S(t) at time t are then denoted (αX(t), 
mX(t), βX(t), hX(t)) and (αS(t), mS(t), βS(t), hS(t)) 
respectively. 

Definition 2. (Generalized Fuzzy Automata): A 
generalized fuzzy automaton is a quintuple GFA 
M(δ, Σ, U, S0, F, T), where each of the state 
transitions {δ(Xr(t), Sr(t), dTr)|r ∈ } is a set of 
transition fuzzy rules defined as 
 

Rule r: 
“IF, at time t, the observed input is  

Xr(t)= (αXr(t), mXr(t), βXr(t), hXr(t)) 
AND the observed state is 

Sr(t) = (αSr(t), mSr(t), βSr(t), hSr(t)) 
THEN about dTr later, the state will become  

Sr
*(t+ dTr)  

= (αSr*(t+ dTr), mSr*(t+ dTr), βSr*(t+ dTr), 
hSr*(t+ dTr))” 

  (1) 
The element Σ is the set of fuzzy inputs; U is the 
universe of fuzzy states and is a crisp set. By 
denoting the support of a fuzzy set M with σ(M), we 
have U as follows: 
 ( ) ( )( ){ }0 0ˆ

ˆ ˆ,
X

U S S Xσ σ δ
∗∈Σ

⊆ ∪ ∪  (2) 

In addition, S0 is the initial fuzzy state, F denoting the 
set of finals is a crisp subset of U, and T is the 
universe of fuzzy time ticks, which are denoted as 
dTs and specified in the transition rules, that is 
 T ⊆ {dT | (∃ S(t) ⊆U)(∃ S(t+dT) ⊆U)[S(t+dT) 
= δ(X(t), S(t))]}.  (3) 
One can easily verify that any fuzzy state S is a 
subset of U since σ(S) ⊆ U. The inputs, states, and 
fuzzy time ticks are also called L-fuzzy sets [9] with 
co-domain a complete lattice. 

□ 
Definition 3. ( δ̂ ): Let XXX ˆˆ ′= ∈L2(Σ)* is an input 

sequence whose last input fuzzy set is X, then δ̂  is 
defined recursively by 

 ( )( )ˆ ˆ, ,ˆ X X Sδδ δ ′=  (4) 

where δ is the transition defined in (1). 
□ 

By Definition 2, a GFA is a variable structured 
(time varying) automaton, which performs 
computation in parallel. At each time stamp with 
observed state S(t) and input X(t), there would be 
more than one transition rules have nonzero firing 
levels, the matching degrees of premises of transition 
rules. When t-norm and its co-norm are expressed as 
multiplication and addition in , one can easily show 
that δ is linear and such that a GFA becomes linear 
automaton. 

 
3. Fuzzy Feedback Control Realization 

 
We develop from the fuzzy feedback control 

model introduced in [1] for realization. The controller 
for this model was proven making the fuzzy feedback 
control system definitely attainable [1] even in a 
noisy environment producing uncertain observations. 
The control set used in [1] is a crisp set {u}={-1, 0, 
1}. We generalize the control sequences into 
groupoid L2(Σ)* and the model is then further 
generalized using GFA theory.  

Definition 4. (One-dimensional Fuzzy Feedback 
Control System[1]) An one-dimensional Fuzzy 
Feedback control system (1-D FFCS) has uncertain 
fuzzy state with support [ξ1, ξ2], the observer O, and 
the control set L2(Σ) = {u} = {N, Z, P}. The control is 
also uncertain and we only know that 

u = N, -r <dξ1/dt < dξ2/dt < -l < 0 
u = Z, dξ1/dt = dξ2/dt = 0 
u = P, 0 < l < dξ1/dt < dξ2/dt < r 

The goal state, which is also called the reference, is 
[g1, g2]. 
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□ 
Lemma 1. (Realization of 1-D FFCS) Given any 

one-dimensional fuzzy feedback control system with 
groupoid L2(Σ)* of control words and e the required 
precision constraints, that is, e is the range that the 
observed final state is contained in [g1, g2], there is a 
GFA automaton realizes it. 
Proof: 

Let at time t the support of the observed state is 
[k1(t), k2(t)]. We prove the lemma by constructing a 
GFA. Construct a GFA M(δ, Σ, U, S0, F, T) where 

U = ∪ [ξ1(t), ξ2(t) ], ∀t 
S0=(α(0), s(0), β(0), 1) 

The transition function δ  is defined as follows. Let 
k1(t) = s(t) - α(t), k2(t) = s(t) + β(t), and α(t), β(t) are 
real crisp numbers such that s(t) ∈ [k1(t), k2(t)] ⊆ U. 
Without lost of generality, let s(t) = λk1(t)+(1-λ)k2(t) 
for some λ∈(0, 1), τ1 = (k1-g1)/r, and τ2 = (g2-k2)/r. 
We have the transition function δ as the following 
fuzzy rules: 

Rule 1:  
IF u = N AND O(S(t)) = (α(t), s(t), β(t), 1) 
THEN τ1 later S(t+τ1) = (α(t) - le/r, s(t)+λle/r, 
β(t), 1). 

Rule 2:  
IF u = P AND O(S(t)) = (α(t), s(t), β(t), 1) 
THEN τ2 later S(t+τ2) = (α(t), g2-β(t), g2, 1). 

Rule 3:  
IF u = Z AND O(S(t)) = (α(t), s(t), β(t), 1) 
THEN state = (α(t), s(t), β(t), 1). 

The remaining components of M are 
Σ = σ(N∪P∪Z), universe of the input words, 
F = [g1, g2], and  
T = {dt}={τ1, τ2}. 

Start from t, within duration dt, M fires state 
transition from S(t) to S(t+dt) to the matching degree 
µ (firing strength). We observe that O(S(t+dt)) = 
O·(α(t+dt), s(t+dt), β(t+dt), µ), the support of fuzzy 
set O(S(t+dt)) becomes [k1(t+dt), k2(t+dt)]. Since 
 s(t+dt)-α(t+dt) = k1(t+dt) ≥ ξ1(t) ≥ k1(t) + le/r 
  (5) 
and 
 s(t+dt)+β(t+dt) = k2(t+dt) ≤ ξ2(t) ≤ g2,  (6) 
The support of the observed state [k1(t+dt), k2(t+dt)] 
is contained in the system state [ξ1(t), ξ2(t)]. 
Therefore, we have the input-state homomorphism of 
the 1-D FFCS. 

Q.E.D. 
 

Lemma 1 reveals that the generic fuzzy feedback 
control system is “described” with words. The 
control u used in transition rules is generalized into 
L2(Σ) whose members are words. In GFA theory, the 
additional timing interval component T provides 
more flexible and accurate descriptions of the 
dynamics of uncertain FFCSs. The generalization of 
1-D FFCSs into multi-dimensional ones is given in 
Definition 5. 

Definition 5. (Generalized FFCS) A generalized 
n-D FFCS has control set a subset of L2(Σ(n)) whose 
members are L-fuzzy [9] sets and L is a complete 
lattice. For a member j of L2(Σ(n)) and L = [0, 1], the 
membership function is a mapping 
 ( )

1

: [0,1]
n

n
j

i

µ
=

Σ = Σ →∏  (7) 

□ 
Note that the automaton used in Lemma 1 is an 

algebraic representation of fuzzy control system 
rather than of a controller. However, if a GFA 
automaton recognizes an uncertain system, the output 
function of the GFA is just the controller. The design 
of the feedback controller is an output function η: U 

 Σ. 
Theorem 1. (Design of FFCS controllers) Given 

a GFA M(δ, Σ, U, S0, F, T) realizing an FFCS, there 
exists a fuzzy rule base which is an output function of 
M such that M is attainable and the rule base acts as a 
controller of the FFCS. 
Proof: 

We can easily prove the theorem by constructing 
a fuzzy rule base that outputs control words 
corresponding to state fuzzy sets such that M is 
attainable. As feedback, the state space U of M is the 
domain of the output function η and the co-domain is 
Σ, that is, the rule base is a mapping η: U  Σ. 
Suppose that the supports of a state fuzzy set S(t) at 
time t and the final state fuzzy set F are [k1(t), k2(t)] 
and [g1, g2] respectively, then we construct the rule 
base η as follows: 
 

Rule 1: 
IF error(S(t)) is negative  
THEN u is P=(αP, mP, βP, 1) 

Rule 2: 
IF error(S(t)) is zero  
THEN u is Z=(αZ, mZ, βZ, 1) 

Rule 3: 
IF error(S(t)) is positive  
THEN u is N=(αN, mN, βN, 1) 

 
, where error(S(t)) = (k1(t) + k2(t) - g1 - g2), and P, Z, 
N are words in L2(Σ). The membership functions of 
the fuzzy words negative, zero, positive, P, Z, and N 
are:  

negative(s) = 1 for s < 0; 
zero(s) = 1 for s = 0; 
positive(s) = 1 for s > 0; 
P(u) = 1 iff u =mP; 
Z(u) = 1 iff u =mZ; 
N(u) = 1 iff u =mN. 

According to the rule base, when the support of 
O(S(t)) is [k1(t), k2(t)] with k1(t) < g1 and k2(t) < g2, 
such that error(S(t)) is negative, by applying positive 
u with degree µ = negative(error(S(t))) during time 
interval [t, t + dt] with dt = (g2-k2(t))/r, the support of 
O(S(t+dt)) becomes [k1(t)+le/r, k2(t)]. When the 
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support of observed state S(t), O(S(t)), is [k1(t), k2(t)] 
with k1(t) > g1 and k2(t) > g2, such that error(S(t)) is 
positive, by applying negative u with degree µ = 
positive(error(S(t))) during time interval [t, t + dt] 
with dt=(k1(t)-g1)/r the support of O(S(t+dt)) 
becomes [k1(t), g2]. According to Lemma 1 and 
(5)(6), the support of S(t) will fall in F, that is, the 
rule base of the controller makes the FFCS attains the 
goal. 

Q.E.D. 
 

 In multidimensional cases, control base variables 
u’s and state base variables s’s are vectors. The 
description of multidimensional FFCSs and design of 
respective controllers can also be developed similar 
to Lemma 1 and Theorem 1. One important property 
concluded from Theorem 1 is that if a FFCS is 
properly described with words (with a GFA) under 
constraints – the maximum state moving rates l and r, 
and the precision constraint e, a stable fuzzy feedback 
controller is designed. In other words, if l, r, and e 
are learned from input-output observations, a 
corresponding controller with a very simple rule-base 
can be automatically generated. 
 
4. Examples 
 
 In this section two examples show how a control 
system is “recognized” and described by respective 
GFAs. In the second example, a non-linear control 
problem is given and we demonstrate how a 
controller for this plant is designed according to 
Lemma 1 and Theorem 1. We do not concentrate on 
performances of the controller speed and error issues 
but try to demonstrate how difficult control problems 
are easily modeled with the GFA. 
  
4.1. Example 1 -- Fuzzy Temporal Knowledge 
System 
 
We take the first example the same as in articles 
[7][8]. The example is a complex fuzzy rule: “If the 
holdup in the buffer drum increases (P1), and about 
one minute later the reactor pressure decreases (P2) 
and the regenerator temperature increases (P3), and 
the regenerator pressure and reactor temperature all 
decrease about two minutes later than the holdup in 
the buffer drum increases (P4 and P5), then a 
regenerator slide valve closes about one minute 
earlier than the holdup in the buffer increases, with 
confidence 0.95 (P6).” From the statements with the 
propositions P1, P2, …, P6, we rewrite the rule 

IF P1 AND P2*dT1 AND P3*dT1 AND P4*dT2 
AND P5*dT2 THEN P6*dT3 

where “*” is the ∨∧ composition. Construct GFA 
M(δ, Σ, U, S0, {f}, T) where U = union of supports of 
S0, S1, S2, S3, and f, δ(P4∧P5, S3, dT2) = f, δ(P2∧P3, S2, 
dT1)= S3, δ(P1, S1, dT1)= S2, δ(P6, S0, dT3) = S1, L2(Σ) 

= {P1, P2∧P3, P4∧P5, P6}, F = support of f and T = 
{dT1, dT2, dT3}. In this case, T is the L2(t) and its 
members are fuzzy numbers dT1=“about one minute,” 
dT2 = “about two minutes”, and dT3 = -“about one 
minute”. The observation bound is 0.95. Therefore, 
GFA M realizes the fuzzy temporal knowledge 
system. Next step to design a FFCS controller, we are 
required to design a fuzzy rule base with conclusion 
parts the propositions in L2(Σ). 
 
4.2. Example 2 -- Controller Design for Non-
linear Plant 
 
 We use the plant in [6] as the second example. 
The relationship of plant’s output y and input u is 
represented by the equation y" + y’ + ln y = u. There 
is a design flow to design a controller for this plant 
according Lemma 1 and Theorem 1. First, as Fig. 1, 
we use a simple square wave with amplitudes 
minimum –1 and maximum +1, and observe the 
corresponding output slope for every pulse of the 
square wave. The maximum slope of the output 
defines r and the minimum one defines l. For 
stability, the time step size of the controller is chosen 
smaller than e/r. As Fig. 2, the upper curve is the 
output by applying the lower curve (square wave). 
Then, values for l = 0.5, and r = -1.125 are then 
respectively measured from the maximum and 
minimum changing rate of the output curve and the 
step timing e/r are set 0.008 ≈ 0.01/1.125. In 
“words,” we describe the FFCS as follows: if control 
is –1, the output will drop down at rate no more than 
r while if control is +1, the output will turn to 
increase at rate no lower than l. According to Lemma 
1, we then define level 2 fuzzy set L2(Σ) = {~+1, ~0, 
~-1} of fuzzy numbers with (α, m, β) parameter 
triplexes (0.5, +1, 0.5), (0.5, 0, 0.5), and (0.5, -1, 
0.5). These are fuzzy words adopted as conclusions 
in the output function η, a controller’s fuzzy rule 
base. Similar to the ones defined in the proof of 
Theorem 1, the premise parts’ membership functions 
are defined as 

negative(s) = 1 iff error < -0.001; 
zero(s) = 1 iff error = 0; 
positive(s) = 1 iff error > +0.001; 

Consequently, the fuzzy rule base that is very simple 
is as Fig. 3. The left side is the premise part while the 
right part is the conclusion part. The implication 
method adopts minimum operation. The aggregation 
method adopts maximum operation. Defuzzification 
uses centroid calculation. Then, we have the whole 
FFCS as Fig. 4. The reference is a time-varying 
signal, which is a sum of DC offset 1.6 and AC sine 
wave. There are two scopes for observing the 
simulation results. The one “Scope u” is for 
observing control signal while “Scope for state S(t) 
and goal” is for the reference signal and output of the 
FFCS system. The simulation result is given in Fig. 
5(a), where one can see that at first the output of the 
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system (lower curve) and the reference (upper curve) 
are distinguishable while some seconds later, they are 
almost overlapped with each other, in other words, 
the control sequence of words attains the goal. From 
Fig. 5(b), initially the output of the controller is at 
full level +1 while after that the system output tracks 
the reference variation; the control output goes with 
value fall in [-0.8, +0.8]. 
 
 

 
Fig. 1. Observing behavior of the plant. 

 
 

 
Fig. 2. The square wave (lower) as test 

pattern and the output responding curve 
(upper) of the nonlinear plant. 

 
 

 
Fig. 3. Snapshot of the fuzzy rule base 

executing inference for producing control 
signal. 

 
 

 
Fig. 4. The whole FFCS system with two 

reference sources and scopes. 
 

 
Fig. 5 (a) 

 

 
Fig. 5 (b) 

 
Fig. 5. (a) The output signal of the system 
(initially the lower one) and the reference 

signal (initially the upper one.) and (b) Output 
control of the controller. 

 
From the simulations above, if a measurement of 

a plant/environment is properly described with a 
GFA automaton, even without much domain 
knowledge a well performance controller for a 
nonlinear FFCS is implemented with a very simple 
fuzzy rule base. 

 
5. CONCLUSION 
 
 In this paper, we develop generalized fuzzy 
automata (GFA) model for fuzzy feedback control 
systems (FFCS). The control system is described and 
controlled with words. The set of sequences of 
control words is a groupoid over level 2 fuzzy set. 
The descriptions of the FFCS are the transition rules 
of the GFA. According to the GFA, we can then 
define its output function as the feedback controller. 
Mathematically we prove that GFA realize general 
fuzzy feedback controls. This novelty provides 
implementation, no matter in hardware or software, 
of fuzzy feedback controllers in a systematic, unified, 
and effective paradigm. The proofs also demonstrate 
how fuzzy feedback control with words is performed. 
There exist generic and simple rule base for fuzzy 
feedback control problems. Examples show that 
control with words based on GFA theory is feasible. 
The future works include studies of language 
properties and more applications of the GFA theory. 
The applications such as learning algorithms based 
on GFA for automatic controller generation and 
generic word model for optimum control are to be 
studied. 
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