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Abstract

Let G = (V,E) be a graph with vertex set V
and edge set E and let T be a subset of V . A
terminal path cover PC of G with respect to T is
a set of pairwise vertex-disjoint paths of G which
cover the vertices of G such that all vertices in
T are end vertices of paths in PC. The terminal
path cover problem is to find a terminal path
cover of G of minimum cardinality with respect to
T . The path cover problem is a special case of the
terminal path cover problem with T be empty.
In this paper, we show that the terminal path
cover problem on trees can be solved in linear time.
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1 Introduction

All graphs considered in this paper are finite

and undirected, without loops or multiple edges.

Let G = (V,E) denote a graph with vertex set

V and edge set E. Throughout this paper, let n

and m denote the numbers of vertices and edges of

graph G, respectively. The vertex and edge sets of

G are denoted by V (G) and E(G), respectively. A

∗This research was partly supported by the National
Science Council of Taiwan, R.O.C. under grant no. NSC96-
2221-E-324-024.

†Corresponding author’s e-mail: rwhung@cyut.edu.tw

path cover of a graph G is a collection of vertex-

disjoint paths P1 = (V1, E1), · · · , Pk = (Vk, Ek)

in G whose union is V (G), where Vi and Ei, for

1 ≤ i ≤ k, are the vertex and edge sets of path

Pi, respectively, i.e., Vi ∩ Vj = ∅ for i �= j and⋃
1≤i≤k

Vi = V (G). The path cover problem is to

find a path cover of a graph G of minimum car-

dinality, called the path cover number of G. It

is evident that the path cover problem for gen-

eral graphs is NP-complete since finding a path

cover, consisting of a single path, corresponds di-

rectly to the Hamiltonian path problem [9]. The

Hamiltonian path problem on some special classes

of graphs, including bipartite graphs [15], split

graphs [10], chordal bipartite graphs [19], strong

chordal split graphs [19], undirected path graphs

[2], and directed path graphs [20], has been shown

to be NP-complete. Hence the path cover problem

on these above classes of graphs and their super-

classes of graphs is also NP-complete. However, it

admits polynomial time algorithms when the input

is restricted to be in some special classes of graphs,

including trees [18], block graphs [25, 26], inter-
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val graphs [1, 4], circular-arc graphs [12], cographs

[6, 7, 14, 16], bipartite distance-hereditary graphs

[28], distance-hereditary graphs [13], bipartite per-

mutation graphs [23], and cocomparability graphs

[8]. The path cover problem has many practical

applications. For example, in order to establish

ring protocol [24], a computer network may be

augmented by some auxiliary edges so as to make

it Hamiltonian [11, 17]. It is easily verified that

the maximum number of additional edges needed

to make a network Hamiltonian is identical to the

path cover number of the network. Other notable

applications of the path cover problem are VLSI

designing, code optimization [3], mapping parallel

programs to parallel architectures [18, 22], arrang-

ing a group of persons to dinner [5], and program

testing [21].

In this paper, we would like to study the vari-

ant of the path cover problem, called the termi-

nal path cover problem. It is deserved to be men-

tioned that we are the first researchers proposing

the terminal path cover problem and then inves-

tigate its complexity on some graph classes. Let

p be a simple path of a graph G and let T be a

subset of V (G). The first and last vertices visited

by p are called the path-start and path-end of p,

respectively. Both of them are end vertices of p.

Note that p may contain only one vertex and in

this case the path-start and path-end of p are the

same vertex. A terminal path cover of a graph G

with respect to T is a path cover of G such that

all vertices in T are end vertices of paths in the

path cover. A minimum terminal path cover of G

with respect to T is a terminal path cover of G of

minimum cardinality. Denote by π(G, T ) the car-

dinality of a minimum terminal path cover of G

with respect to T . Given a graph G and a subset

T of V (G), the terminal path cover problem is to

find a terminal path cover of G of size π(G, T ).

We call T the terminal set of G, the vertices in

T the terminals, and the other vertices free ver-

tices. The path cover problem is a special case

of the terminal path cover problem with T = ∅.

By definition, the terminal path cover problem on

graph class C is NP-complete when the path cover

problem on C is NP-complete. But, it may not be

absolutely true that the terminal path cover prob-

lem on graph class C with T �= ∅ is polynomial

time solvable when the path cover problem on C

is polynomially solvable.

The terminal path cover problem can be applied

to the applications of the path cover problem in

which some vertices corresponding to the applica-

tions are restricted to be terminals. For example,

the terminal path cover problem can be applied to

the terminal VLSI layout problem in which elec-

tronic components are represented as vertices and

some vertices must be terminals, each terminal

path cover corresponds to a terminal VLSI layout.

Then, the problem is to find a minimum terminal

VLSI layout corresponding to a minimum terminal

path cover. It is also applicable in mapping par-

allel programs to parallel architectures as follows:

Consider a mapping between program units and

network of processors, where some program units

must be executed before other program units. The

capabilities of a given network of processors can be

increased by adding some auxiliary links among

the processors. The minimum set of edges needed

to augment a line-like network so that it can ac-
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commodate a parallel program with some program

units be run first is determined by a minimum ter-

minal path cover of the graph representation of the

program.

In this paper, we will solve the terminal path

cover problem on trees in O(n) time. Moran and

Wolfstahl solved the path cover problem on trees

in linear time [18]. Yan et al. solved the k-path

cover problem, which is a variant of the path cover

problem, on trees in linear time [27]. Our basic

idea for solving the terminal path cover problem

on trees is sketched as follows: Given a rooted

tree T and a terminal set T in T . We traverse

the nodes in T bottom-up. Thus, while visiting a

node, its children were already visited. Let v be a

node in T . Denote by Tv the subtree of T rooted at

v and Tv = T ∩ Tv. Initially, we set π(Tv, Tv) = 1

for each leaf v of T . Suppose that it is about to

process internal node υ with v1, v2, · · · , vκ being

its children in T . Then, we compute π(Tυ, Tυ) by

using π(Tvi
, Tvi

)’s, 1 ≤ i ≤ κ, no matter whether

υ is a terminal. By traversing the nodes of T once,

π(T, T ) is computed.

2 Preliminaries

Let p be a simple path in graph G. Denote the

set of vertices visited by p by V (p). Let v be a

vertex in G and V ′ be a subset of V (G). Denote

G−v by deleting v and edges incident to v from G

and denote by G− V ′ the graph obtained from G

by deleting all vertices of V ′ and edges incident to

any vertex of V ′. For two sets X and Y , let X−Y

denote the set of elements of X that are not in Y .

For two vertex-disjoint paths p1 = u1u2 · · ·u|p1|

v2
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Fig. 1: (a) A tree, and (b) a rooted tree of (a)
with root v2, where the terminals are drawn by
filled circles.

and p2 = v1v2 · · · v|p2| of G such that the path-

end of p1 and the path-start of p2 are adjacent, let

p1 → p2 denote the path u1u2 · · ·u|p1|v1v2 · · · v|p2|

which is said to be the concatenation of p1 and p2.

For a tree, we can arbitrarily pick a node in it as

root and then obatin a rooted tree. For instance,

Fig. 1(a) is a tree and Fig. 1(b) is its rooted tree

with root v2. In the rest of the paper, we assume

that the input tree is a rooted tree. Let T be a

rooted tree, v be a node in T , and let T be the

terminal set of T . The subtree of T rooted at node

v is denoted by Tv and let Tv = Tv ∩ T .

Given a rooted tree T and a terminal set T ,

we present an O(n)-time algorithm to solve the

terminal path cover problem. Let v be a vertex

of T . For simplicity, denote T − {v} by T − v

and T ∪ {v} by T + v in the rest of the paper.

We establish some basic lemmas to be used in the

next section.

Lemma 2.1. Assume that G is a graph with ter-

minal set T and v ∈ T . Then, π(G−v, T −v)+1 ≥

π(G, T ) ≥ π(G − v, T − v).

Proof . Let PC∗ be a minimum terminal path

cover of G − v with respect to T − v. Since PC∗

together with the path v forms a terminal path

cover of G with respect to T , |PC∗|+1 ≥ π(G, T )
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and, hence, π(G−v, T −v)+1 ≥ π(G, T ). On the

other hand, suppose that PC is a minimum termi-

nal path cover of G with respect to T . Consider

removing terminal v from PC. What results is

a set P̃C of vertex-disjoint paths which is clearly

a terminal path cover of G − v with respect to

T − v. Since the deletion of a terminal in PC

will decrease the number of paths by at most one

and v is an end vertex of a path in PC, we get

that |P̃C| = |PC| or |P̃C| = |PC| − 1. Since P̃C

is a terminal path cover of G − v with respect to

T − v, |P̃C| ≥ π(G − v, T − v). Thus, |PC| =

π(G, T ) ≥ |P̃C| ≥ π(G − v, T − v). Consequently,

π(G−v, T −v)+1 ≥ π(G, T ) ≥ π(G−v, T −v). �

Lemma 2.2. Assume that G is a graph with ter-

minal set T and v is a free vertex of G. Then, the

following statements hold:

(1) π(G − v, T ) + 1 ≥ π(G, T + v);

(2) π(G, T + v) ≥ π(G, T );

(3) π(G − v, T ) + 1 ≥ π(G, T + v) ≥ π(G − v, T );

(4) π(G, T ) ≥ π(G − v, T ) − 1.

Proof . Since a minimum terminal path cover of

G − v with respect to T together with the path

v forms a terminal path cover of G with respect

to T + v, π(G − v, T ) + 1 ≥ π(G, T + v). Since

a terminal path cover of G with respect to T + v

is a terminal path cover of G with respect to T ,

π(G, T + v) ≥ π(G, T ). On the other hand, sup-

pose that PC is a minimum terminal path cover of

G with respect to T + v. Consider removing ver-

tex v from PC. What results is a terminal path

cover P̃C of G − v with respect to T . Since the

deletion of a terminal in PC will decrease the num-

ber of paths by at most one and v is an end ver-

tex of a path in PC, we get that |P̃C| = |PC| or

|P̃C| = |PC|−1. Since P̃C is a terminal path cover

of G − v with respect to T , |P̃C| ≥ π(G − v, T ).

Thus, |PC| = π(G, T + v) ≥ |P̃C| ≥ π(G − v, T ).

Combining with Statement (1), we get that π(G−

v, T ) + 1 ≥ π(G, T + v) ≥ π(G − v, T ).

Finally, we prove Statement (4). Let PC be a

minimum terminal path cover of G with respect to

T . Consider removing vertex v from PC. What

results is a set PC∗ of vertex-disjoint paths which

is clearly a terminal path cover of G − v with re-

spect to T . Since the removal of a free vertex from

PC will increase the number of paths by at most

one, we get that |PC| + 1 ≥ |PC∗| ≥ π(G − v, T ).

Thus, π(G, T ) ≥ π(G − v, T ) − 1. �

3 The Terminal Path Cover Prob-
lem in Trees

In this section, let υ be a vertex in rooted tree

T , v1, v2, · · · , vκ be the children of υ in T , and

let Ti denote the terminal set of Tvi
for 1 ≤ i ≤

κ. By definition, Tvi
’s are pairwise disjoint for

1 ≤ i ≤ κ. By Lemma 2.1, if vi is a terminal

then either π(Tvi
, Ti) = π(Tvi

− vi, Ti − vi) + 1

or π(Tvi
, Ti) = π(Tvi

− vi, Ti − vi). Let vi → pi

be a path in a minimum terminal path cover of

Tvi
with respect to Ti such that vi �∈ Ti. If

π(Tvi
, Ti) = π(Tvi

− vi, Ti − vi) + 1, then pi = ∅;

otherwise, pi �= ∅. By Lemma 2.2, if vi is a free

vertex and π(Tvi
, Ti) = π(Tvi

, Ti + vi) then either

π(Tvi
, Ti) = π(Tvi

− vi, Ti) + 1 or π(Tvi
, Ti) =

π(Tvi
− vi, Ti). Suppose that vi is a free vertex.

π(Tvi
, Ti) = π(Tvi

, Ti + vi) implies that vi → pi

is a path in a minimum terminal path cover of
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Tvi
with respect to Ti, where pi may be empty.

If π(Tvi
, Ti) = π(Tvi

− vi, Ti) + 1, then pi = ∅;

otherwise, pi �= ∅.

We next define the subsets It, Jt, If of

{v1, v2, · · · , vκ} as follows:

It = {i|1 ≤ i ≤ κ, vi ∈ Ti, π(Tvi
, Ti) = π(Tvi

−

vi, Ti − vi) + 1},

Jt = {i|1 ≤ i ≤ κ, vi ∈ Ti, π(Tvi
, Ti) = π(Tvi

−

vi, Ti − vi)},

If = {i|1 ≤ i ≤ κ, vi �∈ Ti, π(Tvi
, Ti) = π(Tvi

, Ti +

vi)}.

By Lemma 2.1, It ∪ Jt = {i|1 ≤ i ≤ κ, vi ∈ Ti}.

By Statement (2) of Lemma 2.2, {i|1 ≤ i ≤ κ, vi �∈

Ti} − If = {i|1 ≤ i ≤ κ, vi �∈ Ti, π(Tvi
, Ti + vi) ≥

π(Tvi
, Ti) + 1}. That is, if vi is a free vertex and

i �∈ If then there exists no minimum terminal path

cover of Tvi
such that it contains a path with end

vertex vi.

Lemma 3.1. Assume that α �∈ It∪Jt∪If for 1 ≤

α ≤ κ and that Pα is a terminal path cover of Tvα

with respect to Tα satisfying that vα is an end ver-

tex of one path in Pα. Then, |Pα| ≥ π(Tvα
, Tα)+1.

Proof . By definition, vα is a free vertex. Con-

sider setting vα to become a terminal from Pα.

Since vα is an end vertex of a path in Pα, we

obtain a terminal path cover P̃α of Tvα
with re-

spect to Tα + vα such that |P̃α| = |Pα|. Then,

|P̃α| ≥ π(Tvα
, Tα + vα). Since α �∈ If , π(Tvα

, Tα +

vα) ≥ π(Tvα
, Tα) + 1 by Statement (2) of Lemma

2.2. Thus, |Pα| = |P̃α| ≥ π(Tvα
, Tα + vα) ≥

π(Tvα
, Tα) + 1. �

Lemma 3.2. Assume that υ is a free vertex with

children v1, v2, · · · , vκ in rooted tree T and that Ti

is the terminal set of Tvi
for 1 ≤ i ≤ κ. Then,

π(Tυ, Tυ) =




κ∑
i=1

π(Tvi
, Ti) − 1 , if |It ∪ If | ≥ 2;

κ∑
i=1

π(Tvi
, Ti) , if |It ∪ If | = 1;

κ∑
i=1

π(Tvi
, Ti) + 1 , otherwise.

Proof . For each 1 ≤ i ≤ κ, let Pi be a mini-

mum terminal path cover of Tvi
with respect to

Ti. Consider the case of |It ∪ If | ≥ 2. Let α

and β be in It ∪ If such that vα → pα ∈ Pα and

vβ → pβ ∈ Pβ , where pα and pβ may be empty.

Then,
⋃

1≤i≤κ

Pi − {vα → pα, vβ → pβ} ∪ {pα →

vα → υ → vβ → pβ} forms a terminal path

cover of Tυ of size
κ∑

i=1

π(Tvi
, Ti) − 1 with respect

to Tυ. Hence, π(Tυ, Tυ) ≤
κ∑

i=1

π(Tvi
, Ti) − 1.

By Statement (4) of Lemma 2.2, π(Tυ, Tυ) ≥

π(Tυ − υ, Tυ) − 1 =
κ∑

i=1

π(Tvi
, Ti) − 1. Thus,

π(Tυ, Tυ) =
κ∑

i=1

π(Tvi
, Ti) − 1 if |It ∪ If | ≥ 2. In

the following, assume that |It ∪ If | < 2.

Let PC be a minimum terminal path cover of Tυ

with respect to Tυ. A path in PC is called mixed

if it contains vertices in two different Tvi
’s. It is

easy to see that there is at most one mixed path in

PC. If a mixed path p exists in PC, let p be of the

form px → υ → py, where the path-end of px is

vx and the path-start of py is vy for 1 ≤ x, y ≤ κ.

Consider the following two cases:

Case 1: |It ∪ If | = 1. Let α be in It ∪ If such that

vα → pα ∈ Pα, where pα may be empty. Then,⋃
1≤i≤κ

Pi − {vα → pα} ∪ {υ → vα → pα} forms

a terminal path cover of Tυ with respect to Tυ.

Hence, π(Tυ, Tυ) ≤
κ∑

i=1

π(Tvi
, Ti). Next, we will

prove that π(Tυ, Tυ) ≥
κ∑

i=1

π(Tvi
, Ti).

First consider that there exists a mixed path p =

px → υ → py in PC. Since |It ∪ If | = 1, there ex-
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ists at least one of x, y such that it is not in It∪If .

Without loss of generality, assume that x �∈ It∪If .

Then, x ∈ Jt or (vx �∈ Tx and x /∈ If ). Let P̂x and

P̂y be the restrictions of PC to Tvx
− V (px) and

Tvy
− V (py), respectively. We then prove the fol-

lowing claim:

Claim (1): if x �∈ It ∪ If , then |P̂x| ≥ π(Tvx
, Tx).

Suppose x ∈ Jt. Then, vx ∈ Tx and px only con-

tains vx. Clearly, P̂x is a terminal path cover

of Tvx
− vx with respect to Tx − vx. Thus,

|P̂x| ≥ π(Tvx
− vx, Tx − vx). By definition of

Jt, π(Tvx
, Tx) = π(Tvx

− vx, Tx − vx). Hence,

|P̂x| ≥ π(Tvx
, Tx). Suppose vx �∈ Tx and x /∈ If .

Then, P̂x∪{px} forms a terminal path cover of Tvx

with respect to Tx such that vx is an end vertex of

path px. By Lemma 3.1, |P̂x|+ 1 ≥ π(Tvx
, Tx) + 1

and, hence, |P̂x| ≥ π(Tvx
, Tx). In either case,

|P̂x| ≥ π(Tvx
, Tx). Thus, Claim (1) is proved.

Since P̂y ∪ {py} is a terminal path cover of Tvy

with respect to Ty, |P̂y| + 1 ≥ π(Tvy
, Ty). Then,

κ∑
i=1

π(Tvi
, Ti) =

κ∑
i=1;i�=x,y

π(Tvi
, Ti) + (π(Tvx

, Tx) +

π(Tvy
, Ty)) ≤ |PC−{p}−P̂x−P̂y|+(|P̂x|+ |P̂y|+

1) = |PC|.

Next consider that there exists no mixed path

in PC. Let pυ = υ → pα be a path in PC,

where pα may be empty and the path-start of

pα is vα if pα �= ∅. If pα = ∅, then |PC| =

π(Tυ, Tυ) ≥
κ∑

i=1

π(Tvi
, Ti) + 1 and it contradicts

that π(Tυ, Tυ) ≤
κ∑

i=1

π(Tvi
, Ti). Thus, pα �= ∅.

Let P̂α be the restriction of PC to Tvα
− V (pα).

Since P̂α∪{pα} forms a terminal path cover of Tvα

with respect to Tα, |P̂α| + 1 ≥ π(Tvα
, Tα). Thus,

κ∑
i=1

π(Tvi
, Ti) =

κ∑
i=1;i�=α

π(Tvi
, Ti) + π(Tvα

, Tα) ≤

|PC − {pα} − P̂α| + |P̂α| + 1 = |PC|.

Case 2: |It ∪ If | = 0. In this case,
⋃

1≤i≤κ

Pi ∪

{υ} forms a terminal path cover of Tυ of size
κ∑

i=1

π(Tvi
, Ti) + 1 with respect to Tυ. Hence,

π(Tυ, Tυ) ≤
κ∑

i=1

π(Tvi
, Ti) + 1. Next, we will prove

that π(Tυ, Tυ) ≥
κ∑

i=1

π(Tvi
, Ti) + 1.

First consider that there exists a mixed path p =

px → υ → py in PC. Let P̂x and P̂y be the restric-

tions of PC to Tvx
− V (px) and Tvy

− V (py), re-

spectively. Since |It ∪ If | = 0, neither x nor y is in

It ∪ If . By Claim (1) in Case 1, π(Tvx
, Tx) ≤ |P̂x|

and π(Tvy
, Ty) ≤ |P̂y|. Then,

κ∑
i=1

π(Tvi
, Ti) =

κ∑
i=1;i�=x,y

π(Tvi
, Ti) + (π(Tvx

, Tx) + π(Tvy
, Ty)) ≤

|PC − {p} − P̂x − P̂y| + (|P̂x| + |P̂y|) = |PC| − 1.

Thus,
κ∑

i=1

π(Tvi
, Ti) + 1 ≤ |PC| = π(Tυ, Tυ).

Next consider that there exists no mixed path in

PC. Let pυ = υ → pα be a path in PC, where

pα may be empty and the path-start of pα is vα if

pα �= ∅. If pα = ∅, then |PC| ≥
κ∑

i=1

π(Tvi
, Ti) + 1.

Suppose pα �= ∅ below. Let P̂α be a restriction

of PC to Tvα
− V (pα). Since |It ∪ If | = 0, α �∈

It ∪ If . By Claim (1) in Case 1, π(Tvα
, Tα) ≤

|P̂α|. Then,
κ∑

i=1

π(Tvi
, Ti) =

κ∑
i=1;i�=α

π(Tvi
, Ti) +

π(Tvα
, Tα) ≤ |PC − {pυ} − P̂α| + |P̂α| = |PC| − 1.

Thus,
κ∑

i=1

π(Tvi
, Ti) + 1 ≤ |PC| = π(Tυ, Tυ). �

Lemma 3.3. Assume that υ is a terminal with

children v1, v2, · · · , vκ in rooted tree T and that Ti

is the terminal set of Tvi
for 1 ≤ i ≤ κ. Then,

π(Tυ, Tυ) =




κ∑
i=1

π(Tvi
, Ti) , if |It ∪ If | ≥ 1;

κ∑
i=1

π(Tvi
, Ti) + 1 , otherwise.

Proof . For each 1 ≤ i ≤ κ, let Pi be a mini-

mum terminal path cover of Tvi
with respect to

Ti. Consider that |It ∪ If | ≥ 1. Let α be in
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It ∪ If such that vα → pα ∈ Pα, where pα

may be empty. Then,
⋃

1≤i≤κ

Pi − {vα → pα} ∪

{υ → vα → pα} forms a terminal path cover

of Tυ of size
κ∑

i=1

π(Tvi
, Ti) with respect to Tυ.

Hence, π(Tυ, Tυ) ≤
κ∑

i=1

π(Tvi
, Ti). By Lemma 2.1,

π(Tυ, Tυ) ≥ π(Tυ − υ, Tυ − υ) =
κ∑

i=1

π(Tvi
, Ti).

Thus, π(Tυ, Tυ) =
κ∑

i=1

π(Tvi
, Ti) if |It ∪ If | ≥ 1. In

the following, assume that |It ∪ If | = 0. Clearly,⋃
1≤i≤κ

Pi ∪ {v} forms a terminal path cover of

Tυ of size
κ∑

i=1

π(Tvi
, Ti) + 1 with respect to Tυ.

Thus, π(Tυ, Tυ) ≤
κ∑

i=1

π(Tvi
, Ti) + 1. We can eas-

ily prove that π(Tυ, Tυ) ≥
κ∑

i=1

π(Tvi
, Ti) + 1 via

arguments similar to those for proving Case 2 of

Lemma 3.2 under that there exists no mixed path

in a minimum terminal path cover of Tυ. Thus,

π(Tυ, Tυ) =
κ∑

i=1

π(Tvi
, Ti) + 1 if |It ∪ If | = 0. �

It follows from Lemma 3.3 that the following

lemma can be easily verified:

Lemma 3.4. Assume that υ is a free vertex with

children v1, v2, · · · , vκ in rooted tree T and that Ti

is the terminal set of Tvi
for 1 ≤ i ≤ κ. Then,

π(Tυ, Tυ+υ) =




κ∑
i=1

π(Tvi
, Ti) , if |It ∪ If | ≥ 1;

κ∑
i=1

π(Tvi
, Ti) + 1, otherwise.

By definition of It and Jt, we should calculate

π(Tυ, Tυ) and π(Tυ − υ, Tυ − υ) if υ is a terminal.

Since Tvi
’s are pairwise disjoint for 1 ≤ i ≤ κ, the

following lemma is obvious:

Lemma 3.5. Assume that υ is a terminal with

children v1, v2, · · · , vκ in rooted tree T and that Ti

is the terminal set of Tvi
for 1 ≤ i ≤ κ. Then,

π(Tυ − υ, Tυ − υ) =
κ∑

i=1

π(Tvi
, Ti).

Based on Lemmas 3.2–3.5, given a rooted tree

T with terminal set T we present an O(n)-time al-

gorithm to compute π(T, T ) as follows: Initially,

let π(Tv, ∅) = 1 and π(Tv, {v}) = 1 for each leaf

v �∈ T ; and let π(Tv, {v}) = 1 and π(Tv −v, ∅) = 0

for each leaf v ∈ T . Our algorithm then tra-

verses the nodes of T in a bottom-up manner. For

each internal and free node υ with terminal set

Tυ, it computes π(Tυ, Tυ) and π(Tυ, Tυ +υ) by us-

ing Lemma 3.2 and Lemma 3.4, respectively. For

each internal and terminal node υ with terminal

set Tυ, it computes π(Tυ, Tυ) and π(Tυ−υ, Tυ−υ)

by using Lemma 3.3 and Lemma 3.5, respectively.

If the traversed node υ is the root of T , then it

outputs π(Tυ, Tυ). After visiting each node of T ,

π(T, T ) is calculated. For instance, given a rooted

tree T shown in Fig. 1(b) and a terminal set

T = {v5, v7, v10, v13, v15}, our algorithm outputs

π(T, T ) = 5.

Since the process on each node takes constant

time, our algorithm runs in O(n) time. Though we

only describe the algorithm to compute π(T, T )

for a rooted tree T with terminal set T , it can be

easily extended to find a minimum terminal path

cover of T with respect to T in the same time

bound. Hence, we conclude the following theorem.

Theorem 3.6. Given a rooted tree T and a ter-

minal set T , the terminal path cover problem on

T can be solved in O(n) time.

4 Concluding Remarks

The path cover problem on trees is linear solv-

able in [18]. However, the path cover problem is a

special case of terminal path cover problem with

7



terminal set be empty. In this paper, we solve

the terminal path cover problem on trees in O(n)

time. It is interesting to know whether the ap-

proach used in this paper can be applied to design

efficient algorithms for the terminal path cover

problem on other classes of graphs, such as block

graphs, Ptolemaic graphs and distance-hereditary

graphs which form the super-classes of trees.
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