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Abstract 

Well visual effects for system facilitate user to overall 
master the system relations. To enhance the current 
visual effects, this work proposes a concrete mapping 
and software metrics to reveal the relations’ 
characteristics such as size, association and coupling. To 
adapt user’s dynamic viewing changes, the genetic 
allocation algorithm with the allocation criteria are 
developed to place the concretes by viewing constraints. 
In addition, JOGL is adapted to realize the animation 
functions. Finally, the cases study show that the 
distinguishability of system is improved.  
Keywords: Genetic Algorithm, Visualization, Software 

Metric. 

 
I. INTRODUCTION 

With growth of software systems’ functions, users get 
increasing burden to understand and master relations of 
the systems. To ease the burden, effective visualization 
for the relations of systems’ structures and relations has 
proposed one of research topics [1..5]. However, these 
visualizations were limited by the corresponding static 
algorithms, which still failed to display the relations 
adaptively by user’s view with well human factors 
guaranteed. 

In early time, Seesoft [1] expressed source codes of a 
system by a two-dimensions mapping to show structures 
of the source codes. For constraints from the few 
expressions of Seesoft, sv3D [2] extended it and 
proposes a three-dimensions mapping to display the 
relations, which improved the visual effect. Currently, 
even though UML is popular accepted in software 
application domain, due to limited by object manually 
allocated, there still exists complicated and confusing 
relations from the 2D allocation. However, using the 
associated 2D arrangement method [3] for object 
allocation that was insufficient for the increasing 
complicated degree of visualization. Hence, applying 3D 

to show the relations of software system becomes 
recommended [3][4][5]. 

To allocate objects in 3D, spring-embedded algorithm 
[4] and approaching integrated GA method [6] were 
significant methods to find the arbitrary positions by 
objects. The visual effects of these two studies were 
better than before; however, they lacked dynamic 
viewing to reveal the further relation characteristics such 
as cohesion [7] and coupling [8] in a system. Because 
cohesion the number of private attributes and methods 
represents the complex degree of one object, and 
coupling the number of imports and exports of public 
attributes and methods between objects expresses 
complicated degree between objects. Among the 
relations of system, the two characteristics decide the 
effect of visualization, crucially [9]. 3D visualization for 
object’s relations should include not only human effects 
but also system characteristics [10][11]. 

Therefore, we propose the following methods to 
improve the display issues of object’s relations: 

 3D mapping of object structures to visualize the 
relations; 

 Criteria for judgment to fit dynamic viewing 
requirement; 

 An algorithm for allocation to reveal the relations’ 
characteristics; then,  

the 3D concrete tool is proposed to generate interactive 
3D objects supporting user observation and improving 
relations searching efficiency. 

The rest of this paper organizes as follows. Section II 
explains the design of system workflow. Section III 
presents data analysis of case study. The finial section 
states the conclusions of this paper. 
 

II. SYSTEM WORKFLOW 

Essentially, this research proposes a visualization tool 
to adapt to users’ viewing changes and expose the system 
relations. After retrieving the relations of objects into the 
corresponding files, the system workflow for the tool as 



shown in Figure 1, the proposed 2GA  (Genetic 
Allocation Algorithm) is applied to decide the locations, 
finally JOGL is adopted to realize the concrete objects. 
The follows define the variables used in the workflow: 

, ,τΛ =x x x xn S : set of concrete x, 

xn : total number of x (={c, p, e, o}), 

, ,,x x i i jo rτ = : relations of x,  

={ | }x

x i xS s i τ∈ : dimension set of x,  

,i jr : relation strength between i and j, 

xH : location set for all x, 

iωΩ = : weighting set of allocation criteria, 

iθΘ = : allocation criteria set. 

After collecting sources codes, class diagrams, 
interfaces or ER models, we can retrieve their relations 

xτ  to represent the concretes including class, package, 
entity and object represented by x with c, p, e and o, 
respectively. Let set xΛ  with relative information of 
concretes that supports allocation algorithm GA2. In xΛ , 
relation strength ,i jr  of a concrete represents the relative 
characteristics with others, and a procedure to find its 
value will be discussed later. Before relative allocation of 
the concretes, we first define the objective function J 
combining the criteria with weighting and viewing to 
find the near optimal allocation xH and satisfy  
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Hence, through package arrangement and object 
allocation with minimization of the J, relative 
locations xH of concretes now can be derived. 

To locate the concretes in 3D, the relative 
locations xH is insufficient for lacking reference points 
for each concrete. Therefore, we first allocate the relative 
package space PH by package, and then shift the concrete 
object location OH according to its corresponding PH to 
find a feasible location matrix[ ]

x
Η . Finally, according 

to [ ]
x

Η , the proposed tool generates concretes and 
allocates positions by their corresponding elements of 
[ ]

x
Η in 3D environment. Next, we will describe the 

system workflow in details.  
 

Concrete analysis 
For the objects’ overlaps blocking available viewing 

ranges, we define concrete mapping rules and four 
allocation criteria to release the viewing constraints. If 
the concrete target is described by the object-oriented 
modeling [8], such as class, package and object the 
mapping rules then are specified as follows: 

 Class or object: represented by sphere whose size 
is proportioned to LOC (Line of Codes). 

 Package or class groups: depicted by cube that 
includes the associated classes and objects. 

 Relationship: represented by r and shown it using 
cylinder whose diameter is determined from the 
following relationship definitions [8]: 

a)  CAIC (Class-Attribute Import Coupling): counts 
import attributes which one class refers to other 
classes’. 

b)  CAEC (Class-Attribute Export Coupling): 
accumulates export attributes which one class 
provides to others. 

c)  CMIC (Class-Method Import Coupling): is 
similar to CAIC, but it counts number of import 
methods. 

d)  CMEC (Class-Method Export Coupling): likes 
CAEC; however, it sums export methods. 

If the concrete target comes from E-R model, the 
entity is retreated as object and their key relations are 
served as relationships; in contrast, foreign key belongs 
to CAIC and primary key being referred is classified to 
CAEC. According the mapping rules, set xΛ will denote 
the further relation characteristics from the collected 
targets. 

 
Allocation criteria 

In a same viewing space, increasing relations among 
concretes will decrease distinguishability for their 
complex and complicated intersections. To distinguish 
different concretes, we propose four object allocation 
criteria as follows: 

 Allocation space & segment sum 
If 1θ  is the allowed number of space point,

lN  is 
maximum allowed layers, maximum allocation cardinal 
per layer

aN , then we have  

      2
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Figure 1. System workflow 



In a limited visual space, toward (2) minimization can 
limit the space explosion. Similar to 1θ , let 2θ  be sum 
of relation segments that represents corresponding 
relation distances among concretes. Reducing 2θ  make 
visual effect better. However, there is trade-off between 
both criteria and distinguishability.  

 
 Sum of space and projecting intersection   

For influenced by viewpoint, projective intersection 
will confuse unrelated with correlated segments. To 
reduce the intersection by viewpoint, we assume that 3θ  
represent the total number of space intersections at the 
specified view. To reduce misunderstanding of relation 
between concretes, constraining 3θ  is one of solutions. 
Similar to space intersection, because the plane vertical 
to the view called projecting plan filling with 
intersections of projection, that is hard to avoid. Suppose 

4θ   stands for sum of the projecting segments whose 
distances are shorter than a given range. Then as we 
know, smaller 4θ  gets better viewing effect. 

With growth of system, relations of the system become 
complicated and incomprehensible. To achieve better 
distinguishability and well viewing effect, next we will 
combine the four criteria with suitable weighting ω to 
satisfy the objective function J.  

 

Genetic Allocation Algorithm 
To reduce the visual complication of concrete’s 

relations, next will describe how to apply Genetic 
Algorithm in this research. As shown in Figure 2, let 
each binary vector (chromosome) represents a concrete 
location (x, y, z). If we stepwise extend 

lN and
aN , we 

will find an enough space to allocate all concretes such 
that give the default values of max ( ) max ( )= = ax y N  
and max ( ) = lz N . As shown in Figure 2, the fitness 
ΦP is defined as: 
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where: 
Pρ : objective value of pth population, 

oT ：number of populations, 
R ：number of criteria. 

 
Given max times maxR and visual acceptance 

ratio
3 /θ on  with applying GA procedure, then we can 

find the near-optimal allocation xH  where x can be class, 
entity or object, etc. 
 

III. CASE STUDY 

To realize the 3D concretes, we adopt Java with JOGL 
to develop the visualization through JOGL (Java binding 
OpenGL) interface that supports Java with shift, zoom, 
rotation, and projection. In this research, model-view 
matrix defined by OpenGL transforms position matrix 
[ ]xΗ to both of model-view matrix and projection 
matrix, which can construct the final position of 
concretes in the 3D environment. To enhance the visual 
effect, table 1 shows the concrete mappings. Comparison 
with other researches, the proposed method 2GA  owns 
rather rich features for concrete visualization. 

Table 1. Concrete mappings 

Characteristics [6] [10] [4] This work
Concrete Particles Atom Shape Sphere 
Concrete measure Blob size - Size Size  
Concrete 

association 

Particle  
clustering 

Color Area Color cube 

Concrete 

relationship 

Cylindrical 
blob  

Cons 
 

Edge 
color 

Cylindrical 
color  

Relationship 

strength 

Potential 
energy  

- 
 

Cylindrical 
diameter 

Allocation 

Method 

Hill- 
climbing 

Spring- 
embedding  

Genetic 
algorithm  

Multi view - Supported 

lNaN

1θ > xn

cR

maxRRc >

 
Figure 2. 2GA  flow chart 



Case 1: There is a class diagram with 20 classes and 30 
relations representing a small software system. Table 2 
indicates that when one of criterion is chosen as the 
minimization the objective function, only the 
corresponding item can be optimized while others cannot, 
i.e.

1
min ( )θ minimizes the allowed space points to be 32, 

however, the total number of projection intersection is 
the biggest value in the results by different criteria.   

Table 2. Results of minimization by criterion  
Criteria 

1
min ( )θ  

2
min ( )θ  

3
min ( )θ  

4
min ( )θ

Space points 32 108 144 144

Segment Length 77.4 78.5 87.9 107.6

Space Intersection 10 9 0 0

Projecting 
Intersection 

72 51 55 26

 
Case 2: As shown in Figure 3(b), because the relations 
between classes in different packages are featured by 
their cylindrical diameters and colors, the visual result 
can enhance the original distinguishability of Figure 3(a).  

 
Case 3: This case presents a typical 3-teirs architecture 
from the web site “The 13th National Conference on 
Fuzzy Theory and Its Applications” held at Taiwan. 
Figure 4(b) shows the middle tier includes most of 
processing concretes, represented by spheres. For these 
concretes are tiny and have similar sizes. That means 
there exists some of improving space to reorganize and 
to reduce the classes in the middle tier for better system 
structure.   

 
Case 4: For a typical application has tens of packages 
and hundreds of files, this case discusses a Java-based 
application Renew which is used to analyze 
discrete-event systems, and it has 16 packages and 125 
classes as shown in Figure 5(a). In such kind of 
application, traditional jobs to modify some of classes 
and keep aware of their relations between other classes 
are difficult and complicated.  

In this work, if we want to modify one of execution 
functions, for example, class LateExecute in package 
simulator. From the package view as shown in Figure 
5(b), we can locate the simulator package at original and 
find there are five associated packages using zooming 
and rotating function of the tool. When we choose the 
package and zoom inside it, target class LateExecute now 
displays its corresponding classes that could be belonged 
to other packages as show in Figure 5 (c) and (d).   

IV. CONCLUSION 

To reduce complicated visual relations between 
concretes such as class, entity or objects, this work 
integrates the concrete mappings and 2GA procedure, and 
proposes a visual tool. With the near-optimal allocations 
which are generated from 2GA procedure, and 
arrangement criteria weightings which are specified by 
user, this tool improves the distinguishability of the 
concretes.  
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Figure 3. 3 packages with 9 classes 
 

 

 

Figure 4. 33 classes in 3 tiers 
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Figure 5. 16 packages with 125 classes in 3 tiers 
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