
Improve Software System Visualization
using Genetic Algorithm

Haw-Ching Yang and Cheng-Da Chang

Institute of System Information and Control, National Kaohsiung First University of Science and Technology,
Kaohsiung, Taiwan, R.O.C. Email: hao@ccms.nkfust.edu.tw

Abstract

Well visual effects for system facilitate user to overall
master the system relations. To enhance the current
visual effects, this work proposes a concrete mapping
and software metrics to reveal the relations’
characteristics such as size, association and coupling. To
adapt user’s dynamic viewing changes, the genetic
allocation algorithm with the allocation criteria are
developed to place the concretes by viewing constraints.
In addition, JOGL is adapted to realize the animation
functions. Finally, the cases study show that the
distinguishability of system is improved.
Keywords: Genetic Algorithm, Visualization, Software

Metric.

I. INTRODUCTION

With growth of software systems’ functions, users get
increasing burden to understand and master relations of
the systems. To ease the burden, effective visualization
for the relations of systems’ structures and relations has
proposed one of research topics [1..5]. However, these
visualizations were limited by the corresponding static
algorithms, which still failed to display the relations
adaptively by user’s view with well human factors
guaranteed.

In early time, Seesoft [1] expressed source codes of a
system by a two-dimensions mapping to show structures
of the source codes. For constraints from the few
expressions of Seesoft, sv3D [2] extended it and
proposes a three-dimensions mapping to display the
relations, which improved the visual effect. Currently,
even though UML is popular accepted in software
application domain, due to limited by object manually
allocated, there still exists complicated and confusing
relations from the 2D allocation. However, using the
associated 2D arrangement method [3] for object
allocation that was insufficient for the increasing
complicated degree of visualization. Hence, applying 3D

to show the relations of software system becomes
recommended [3][4][5].

To allocate objects in 3D, spring-embedded algorithm
[4] and approaching integrated GA method [6] were
significant methods to find the arbitrary positions by
objects. The visual effects of these two studies were
better than before; however, they lacked dynamic
viewing to reveal the further relation characteristics such
as cohesion [7] and coupling [8] in a system. Because
cohesion the number of private attributes and methods
represents the complex degree of one object, and
coupling the number of imports and exports of public
attributes and methods between objects expresses
complicated degree between objects. Among the
relations of system, the two characteristics decide the
effect of visualization, crucially [9]. 3D visualization for
object’s relations should include not only human effects
but also system characteristics [10][11].

Therefore, we propose the following methods to
improve the display issues of object’s relations:

 3D mapping of object structures to visualize the
relations;

 Criteria for judgment to fit dynamic viewing
requirement;

 An algorithm for allocation to reveal the relations’
characteristics; then,

the 3D concrete tool is proposed to generate interactive
3D objects supporting user observation and improving
relations searching efficiency.

The rest of this paper organizes as follows. Section II
explains the design of system workflow. Section III
presents data analysis of case study. The finial section
states the conclusions of this paper.

II. SYSTEM WORKFLOW

Essentially, this research proposes a visualization tool
to adapt to users’ viewing changes and expose the system
relations. After retrieving the relations of objects into the
corresponding files, the system workflow for the tool as

shown in Figure 1, the proposed 2GA (Genetic
Allocation Algorithm) is applied to decide the locations,
finally JOGL is adopted to realize the concrete objects.
The follows define the variables used in the workflow:

, ,τΛ =x x x xn S : set of concrete x,

xn : total number of x (={c, p, e, o}),

, ,,x x i i jo rτ = : relations of x,

={ | }x

x i xS s i τ∈ : dimension set of x,

,i jr : relation strength between i and j,

xH : location set for all x,

iωΩ = : weighting set of allocation criteria,

iθΘ = : allocation criteria set.

After collecting sources codes, class diagrams,
interfaces or ER models, we can retrieve their relations

xτ to represent the concretes including class, package,
entity and object represented by x with c, p, e and o,
respectively. Let set xΛ with relative information of
concretes that supports allocation algorithm GA2. In xΛ ,
relation strength ,i jr of a concrete represents the relative
characteristics with others, and a procedure to find its
value will be discussed later. Before relative allocation of
the concretes, we first define the objective function J
combining the criteria with weighting and viewing to
find the near optimal allocation xH and satisfy

1

min ()
r

k k
k

J ω θ
=

= ∑ . (1)

Hence, through package arrangement and object
allocation with minimization of the J, relative
locations xH of concretes now can be derived.

To locate the concretes in 3D, the relative
locations xH is insufficient for lacking reference points
for each concrete. Therefore, we first allocate the relative
package space PH by package, and then shift the concrete
object location OH according to its corresponding PH to
find a feasible location matrix[]

x
Η . Finally, according

to []
x

Η , the proposed tool generates concretes and
allocates positions by their corresponding elements of
[]

x
Η in 3D environment. Next, we will describe the

system workflow in details.

Concrete analysis
For the objects’ overlaps blocking available viewing

ranges, we define concrete mapping rules and four
allocation criteria to release the viewing constraints. If
the concrete target is described by the object-oriented
modeling [8], such as class, package and object the
mapping rules then are specified as follows:

 Class or object: represented by sphere whose size
is proportioned to LOC (Line of Codes).

 Package or class groups: depicted by cube that
includes the associated classes and objects.

 Relationship: represented by r and shown it using
cylinder whose diameter is determined from the
following relationship definitions [8]:

a) CAIC (Class-Attribute Import Coupling): counts
import attributes which one class refers to other
classes’.

b) CAEC (Class-Attribute Export Coupling):
accumulates export attributes which one class
provides to others.

c) CMIC (Class-Method Import Coupling): is
similar to CAIC, but it counts number of import
methods.

d) CMEC (Class-Method Export Coupling): likes
CAEC; however, it sums export methods.

If the concrete target comes from E-R model, the
entity is retreated as object and their key relations are
served as relationships; in contrast, foreign key belongs
to CAIC and primary key being referred is classified to
CAEC. According the mapping rules, set xΛ will denote
the further relation characteristics from the collected
targets.

Allocation criteria

In a same viewing space, increasing relations among
concretes will decrease distinguishability for their
complex and complicated intersections. To distinguish
different concretes, we propose four object allocation
criteria as follows:

 Allocation space & segment sum
If 1θ is the allowed number of space point,

lN is
maximum allowed layers, maximum allocation cardinal
per layer

aN , then we have

 2
1 al NN ×=θ . (2)

ΛO

ΛP

,Ω Θ

,Λ ΗP P

,Λ ΗO O

[]′′Η x

ωi

[] [],Λ Ηx x

[]′Η x

Figure 1. System workflow

In a limited visual space, toward (2) minimization can
limit the space explosion. Similar to 1θ , let 2θ be sum
of relation segments that represents corresponding
relation distances among concretes. Reducing 2θ make
visual effect better. However, there is trade-off between
both criteria and distinguishability.

 Sum of space and projecting intersection

For influenced by viewpoint, projective intersection
will confuse unrelated with correlated segments. To
reduce the intersection by viewpoint, we assume that 3θ
represent the total number of space intersections at the
specified view. To reduce misunderstanding of relation
between concretes, constraining 3θ is one of solutions.
Similar to space intersection, because the plane vertical
to the view called projecting plan filling with
intersections of projection, that is hard to avoid. Suppose

4θ stands for sum of the projecting segments whose
distances are shorter than a given range. Then as we
know, smaller 4θ gets better viewing effect.

With growth of system, relations of the system become
complicated and incomprehensible. To achieve better
distinguishability and well viewing effect, next we will
combine the four criteria with suitable weighting ω to
satisfy the objective function J.

Genetic Allocation Algorithm
To reduce the visual complication of concrete’s

relations, next will describe how to apply Genetic
Algorithm in this research. As shown in Figure 2, let
each binary vector (chromosome) represents a concrete
location (x, y, z). If we stepwise extend

lN and
aN , we

will find an enough space to allocate all concretes such
that give the default values of max () max ()= = ax y N
and max () = lz N . As shown in Figure 2, the fitness
ΦP is defined as:

-1

1

oT

p p i
i

ρ ρ
=

⎛ ⎞
Φ = ⎜ ⎟

⎝ ⎠
∑ (3)

∑
=

⋅=
R

i
iip

1
θωρ . (4)

where:
Pρ : objective value of pth population,

oT ：number of populations,
R ：number of criteria.

Given max times maxR and visual acceptance

ratio
3 /θ on with applying GA procedure, then we can

find the near-optimal allocation xH where x can be class,
entity or object, etc.

III. CASE STUDY

To realize the 3D concretes, we adopt Java with JOGL
to develop the visualization through JOGL (Java binding
OpenGL) interface that supports Java with shift, zoom,
rotation, and projection. In this research, model-view
matrix defined by OpenGL transforms position matrix
[]xΗ to both of model-view matrix and projection
matrix, which can construct the final position of
concretes in the 3D environment. To enhance the visual
effect, table 1 shows the concrete mappings. Comparison
with other researches, the proposed method 2GA owns
rather rich features for concrete visualization.

Table 1. Concrete mappings

Characteristics [6] [10] [4] This work
Concrete Particles Atom Shape Sphere
Concrete measure Blob size - Size Size
Concrete

association

Particle
clustering

Color Area Color cube

Concrete

relationship

Cylindrical
blob

Cons

Edge
color

Cylindrical
color

Relationship

strength

Potential
energy

-

Cylindrical
diameter

Allocation

Method

Hill-
climbing

Spring-
embedding

Genetic
algorithm

Multi view - Supported

lNaN

1θ > xn

cR

maxRRc >

Figure 2. 2GA flow chart

Case 1: There is a class diagram with 20 classes and 30
relations representing a small software system. Table 2
indicates that when one of criterion is chosen as the
minimization the objective function, only the
corresponding item can be optimized while others cannot,
i.e.

1
min ()θ minimizes the allowed space points to be 32,

however, the total number of projection intersection is
the biggest value in the results by different criteria.

Table 2. Results of minimization by criterion
Criteria

1
min ()θ

2
min ()θ

3
min ()θ

4
min ()θ

Space points 32 108 144 144

Segment Length 77.4 78.5 87.9 107.6

Space Intersection 10 9 0 0

Projecting
Intersection

72 51 55 26

Case 2: As shown in Figure 3(b), because the relations
between classes in different packages are featured by
their cylindrical diameters and colors, the visual result
can enhance the original distinguishability of Figure 3(a).

Case 3: This case presents a typical 3-teirs architecture
from the web site “The 13th National Conference on
Fuzzy Theory and Its Applications” held at Taiwan.
Figure 4(b) shows the middle tier includes most of
processing concretes, represented by spheres. For these
concretes are tiny and have similar sizes. That means
there exists some of improving space to reorganize and
to reduce the classes in the middle tier for better system
structure.

Case 4: For a typical application has tens of packages
and hundreds of files, this case discusses a Java-based
application Renew which is used to analyze
discrete-event systems, and it has 16 packages and 125
classes as shown in Figure 5(a). In such kind of
application, traditional jobs to modify some of classes
and keep aware of their relations between other classes
are difficult and complicated.

In this work, if we want to modify one of execution
functions, for example, class LateExecute in package
simulator. From the package view as shown in Figure
5(b), we can locate the simulator package at original and
find there are five associated packages using zooming
and rotating function of the tool. When we choose the
package and zoom inside it, target class LateExecute now
displays its corresponding classes that could be belonged
to other packages as show in Figure 5 (c) and (d).

IV. CONCLUSION

To reduce complicated visual relations between
concretes such as class, entity or objects, this work
integrates the concrete mappings and 2GA procedure, and
proposes a visual tool. With the near-optimal allocations
which are generated from 2GA procedure, and
arrangement criteria weightings which are specified by
user, this tool improves the distinguishability of the
concretes.

Acknowledgements

The authors would like to thank the National Science
Council of the Republic of China, Taiwan, for financially
supporting this research under Contact No.
NSC-95-2221-E-327-042-MY3.

Reference

[1] S. G. Eick, J. L. Steffen, and E. E. Sumner, Jr. , “Seesoft- A
Tool for Visualizing Line Oriented Software Statistics,”
IEEE Trans. on Software Eng., vol. 18, no. 11, pp.
957-968, Nov. 1992.

[2] L. F. Marcus and J. I. Maletic, “3D Representations for
Software Visualization,” ACM Symposium on Software
Visualization, San Diego, CA, pp. 27-36, 2003.

[3] K. L. Kroeker, “Seeing Data: New Methods for
Understanding Information”, IEEE Computer Graphics
and Applications, vol. 24, pp. 6-12, 2004.

[4] C. Lewerntz, and F. Simon, “Metrics-based 3D
Visualization of Large Object-Oriented Programs,” IEEE
proc. of the First Inter. workshop on Visualizing Software
for Understanding and Analysis, pp. 70-77, 2002.

[5] M. Lanza and S. Ducasse, “Polymetric Views-A
Lightweight Visual Approach to Reverse Engineering,”
IEEE Trans. on Software Eng., vol. 29, no. 9, pp. 782-795,
2003.

[6] J. Rilling and S. P. Muder, “3D Visualization Techniques
to Support Slicing-based Program Comprehension,” SDOS
Computer & Graphics 29, pp. 311-329, 2005.

[7] J. M. Bieman and B.-K. Kang, “Measuring Design-Level
Cohesion,” IEEE Trans. on Software Eng., vol. 23, no. 2,
pp. 111-124, 1998.

[8] L. C. Briand and J. Wüst, “Modeling Development Effort
in Object-Oriented Systems Using Design Properties,”
IEEE Trans. on Software Eng., vol. 27, no. 11, pp.
963-986, 2001.

[9] H.-C. Yang and F.-T. Cheng, “Architecture Adaptability
Evaluation for a Manufacturing Execution System,” in
Proc. of the 8th International Conference on Automation
Technology, pp. 67-72, May, 2005.

[10] B. A. Malloy and J. F. Power, “Using a Molecular
Metaphor to Facilitate Comprehension of 3D Object
Diagrams”, Proceedings of the 2005 IEEE symposium on
Visual Languages and Human-Centric Computing
(VL/HCC’05) Dallas, Texas, USA, pp. 233-240, 21-24
September 2005.

[11] T. Panas, R. Lincke, and W. Lowe, “Online-Configuration
of Software Visualizations with Viss3D,” Association of
Computing & Machinery, pp. 173-182, 2005.

Figure 3. 3 packages with 9 classes

Figure 4. 33 classes in 3 tiers

 (c)

Figure 5. 16 packages with 125 classes in 3 tiers

 (c)

LateExecutable

Binder

FinderCheckTimeFinder

ActionOccurrence

Conditionallnscription

EnumeratorInscription

InscriptionOccurrence

ClearArcOccurrence

AbortFinder

ActionExecutable

ActionInscription

ClearArc

DelayingInsertionFinder

ArcRemoveBinder

EnumeratorOccurrence

CollectingFinder

ChannelBinder

CreationOccurrence

Executable

TramsitionInscription Arc

EarlyExecutable

EnablednessFinder

RandomQueueFactory

SilentTracerFactory

EarlyConfirmer

TracerFactory ConsoleTracerFactory

CreationInscription

ClearArcExecutable

SearchQueueFactory

DownlinkOccurrence DeterministicQueueFactoryDownlinkInscription

ConsoleTracer

Tracer

ConditionalOccurrence

SilentTracer

RandomSearchQueueDeterministicSearchQueue SearchQueueData

ConstantTokenSource TokenSource ExpressionTokenSource

Manuallnscription

UplinkInscription
MultisetPlaceInstance

ExpressionInscription TransitionInscription PlaceInstance

FlexibleArc PlaceEventProducer
DelayedFieldOwner

CuardInscription OutputArcExecutable FIFOPlaceInstance

Place FiringCompleteExecutable

LateConfirmer FiringStarExecutable

ExcuteFinder Finder

ChannelTarget

NetInstance

UntestArcExecutable

NetInstanceImpl

RangeEnumeratorInscription EnumeratorInscription

TransitionInstance Triggerable Searchable

FlexibleOutArcExecutable

FlexibleArcOccurrence

InhibitorExcutable

InputArcExecutable

FlexibleInArcExcutable

InhibitorArcBinder

FlexibleArcBinder

ArcRemoveBinder
InputeArcBinder

 (a)

 (a)

(a) (b)

 (b)

 (d)

