
 1

Maintaining OLAP Cubes via Subcubes

Huei-Huang Chen

Dept. of Information Management,

Tatung University, Taipei, R.O.C.
hhchen@ttu.edu.tw

Kuo-Wei Ho
Dept. of Electronic Engineering,

De Lin Inst. of Tech., Taipei County, R.O.C.

kwho@dlit.edu.tw

Abstract

OLAP queries are complex and

time-consuming and hence materializing

data cube is a commonly used technique to

reduce response time. To our knowledge,

most previous OLAP cube implementation

techniques apply a static view selection

algorithm on the search lattice. These static

methods first treat each node in the lattice as

an undividable unit and then pick some of

them for materialization. Pre-computing

some nodes without being aware of which

nodes are actually accessed at run time

would seriously impact both response time

and available space. We propose to further

partition nodes in the lattice into subcubes

into each of which multiple OLAP queries

via a dynamic materialization algorithm can

be mapped. Experiments show that the

locality effects do exist in OLAP queries,

and our dynamic method keeps a reasonable

performance even though the available

space is very limited and is practical for

OLAP query processing.

Keywords: OLAP, data cube, subcube

1. Introduction

Data warehousing and On-line

Analytical Processing (OLAP) technologies

[4] have been one of the most important

decision support systems in recent years.

Inherently, OLAP queries are complex and

time-consuming; hence materialization is a

commonly used technique to reduce

response time. To the best of our knowledge,

applying view selection algorithms on the

search lattice in advance is a common

practice in most previous data cube

implementation techniques. These static

methods first treat each node in the lattice as

an undividable unit and then pick some

nodes for materialization. Furthermore, they

depend heavily on some sampling

techniques [11] to estimate the view size

which is not practical in implementation.

Typically, generation of an OLAP cube

can be accomplished by repeatedly

computing group-bys based on the

dimension levels, and the result forms a

search lattice [12]. Note that the OLAP cube

generated this way does not cover all

aggregations it may have because a cube

operation [8] can be further applied on the

nodes in the lattice. Our experiments [6] on

the APB-1 benchmark database show that

the OLAP cube grew from 8 to 37 times as

the size of the base fact table. The

experimental result about growth ratio of the

OLAP cube based on different

implementations is shown in Figure 1.

The experimental result indicates that

the density causes similar effects on both

implementations even though the cube

operation is not applied on each node in the

 2

lattice. Although currently we do not yet

consider other factors that may impact the

size of the OLAP cube including number of

dimensions, cardinality and of levels of each

dimension, we believe that density is

intuitive and most representative factor in

investigating the issues regarding the OLAP

cube implementation and maintenance.

Not only few nodes in the lattice are

accessed but a small portion within each

accessed node is used. Therefore, careless

materialized view selection strategies (or

algorithms) may result in exhausting

available system space with useless

aggregations. Our experiments [6] also

exhibit that only 13% nodes in the lattice are

accessed in APB-1 Benchmark queries, and

the accessed regions are much smaller than

their corresponding nodes.

1.1. Proposed solution

With those issues mentioned above, we

propose defining a finer but not too fine

partition, subcube, for OLAP

implementations. A finer partition

contributes to more efficient space

utilization than the whole node in the lattice.

Experiments show that OLAP queries

cluster only on some nodes in the lattice and

hence it is critical that we select the right set

to materialize. A partition that is not too fine

allows potential locality effects, i.e. multiple

OLAP queries can be mapped to the same

subcube. Although part of subcube is

sufficient to answer individual query,

materializing the whole subcube introduce

the possibility of reuse.

Instead of pre-computing some views

for materialization, i.e. static method,

without being aware of which views are

actually accessed at run time, we also

propose developing a dynamic view

selection algorithm to materialize subcubes

from existing ones. Generally, the algorithm

materializes each accessed subcube as long

as the available space is sufficient. While the

space is exhausted, the algorithm should

replace those subcubes with least reuse

frequency based on certain replacement

strategy.

1.2. Paper organization

The rest of the paper is organized as

follows. In Section 2 we review current and

past research activities related to the work

presented here. Then in Section 3, we

introduce the subcube framework to explain

how to partition a node in the lattice into

subcubes for materialization. We also

illustrate how multiple queries can be

mapped to the same subcube and the

dynamic algorithm is provided to pick a set

of subcubes for materialization. In Section 4

experimental results show that our subcube

frame is almost immune to the change of

density. Finally, we present our conclusions

in Section 5.

0

5

10

15

20

25

30

35

40

0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Density

G
ro

w
th

 F
a

c
to

r GB CB

Figure 1. Growth ratio of different

implementations

 3

2. Related Work

Previous studies related to OLAP

implementations deal with two major

problems at different levels. Research

investigating the problem of how to compute

an OLAP cube efficiently belongs to

memory level, and has developed two major

approaches including top-down and

bottom-up [1, 15, 2, 3, 10], while those

research on the problem of how to store an

OLAP cube efficiently belongs to storage

level, and has designed many algorithms to

select the right set of view to materialize [12,

2, 7, 9, 14]. The most representative one is

the greedy algorithm introduced in [12]

choosing a near-optimal subset of views,

while their heavy dependence on some

sampling techniques [11] to estimate the

view size which we think is not practical in

implementation. In this paper, we propose a

better partition for materialization and a new

technique for estimation of a view size.

Through materializing subcubes, queries

benefited from the results of previous are

made possible.

3. The Subcube Framework

We can roughly view a subcube as the

result of a drill-down operation to a cell (i.e.

subcube cell) on each dimension it may have.

There are two advantages in doing so. First

the unit for materialization can be reduced

from a node in a lattice to a finer partition –

a subcube. Second the drill-down operation

on each dimension will not result in a

partition that is too fine as well as take

potential locality effects into consideration.

Before we illustrate the subcube framework,

we introduce the query cell notation for

representing OLAP queries concisely.

3.1. The query cell notation

Typically OLAP queries examine the

aggregations (measures) in several different

contexts (via slicer attributes) and from

several different angles (by group-by

attributes). We use the following example to

demonstrate what information is specified in

an OLAP query and how an answer to a

query can be viewed as a result of

drill-down operation to a cell.

Example 3.1 Consider the query description

of Channel Sales Analysis (i.e. Query 1)

defined in APB-1 benchmark queries [13].

For the sake of clarity, the query has been

slightly modified to omit some details not

directly related to our discussion. This query

shows units sold and dollar sales for a given

channel by product, customer and time

dimensions. The functional query definition

is listed below.

 get UNITS SOLD, DOLLAR SALES

 by PRODUCT = children_of(prod)

 by CUSTOMER = children_of(cust)

 by TIME = children_of(time)

 where CHANNEL = chan

Note that the member_name in

parentheses is a parameter denoting a data

member regarding a certain dimension, and

children_of() denotes its child data members.

The above query can be represented as a

4-tuple (prod, cust, chan, time) in our

notation. The underlined elements are

group-by attributes used to specify along

which dimensions the measures are analyzed

in the query. The element not underlined is

slicer attribute used to restrict which data

member of a certain dimension is extracted.

We assume that all measures are analyzed in

each query, so there is no need for us to

specify measures in our query notation.

For an n-dimensional data cube, a

query cell is an n-tuple representing an

 4

OLAP query. Each slicer attribute

contributes to an element of the n-tuple, and

those dimensions involved in group-by are

marked by an underlines in corresponding

slicer attribute.

Since the chan is identified as slicer

attributes, and prod, and cust and time are

involved in group-by clause, then according

to our notation the above query will be

represented as the query cell (prod, cust,

chan, time). Note that a cell containing a

range value as a data member would be

divided into multiple query cells (e.g. the 6

months sales from 9501 through 9506,

specified as 9501-9506, is divided into two

data members 1995Q1 and 1995Q2 in

separate query cells).

Simply put, our goal is to keep query

representation simple for discussion as well

as be used to dynamically identify the

correlation among multiple queries which

would be beneficial in materialization. Our

practice is to define a subcube based on

multiple correlated queries (in query cell

notation) as an undividable unit for

materialization. Owing to the fact that one

materialized subcube could be reused by

multiple queries for multiple times, the total

query cost will be effectively reduced. We

describe the process of query cell mapping

in the following subsection.

3.2. Mapping of query cells

Though we represent an OLAP query

as a query cell, how can we obtain some

useful clues for materialization from queries?

Our practice is to moderately enlarge the

queried aggregations to one of more

subcubes. That is to say we define the

subcube as an undividable unit for

materialization and users’ queries are

transformed into queries on one or more

subcubes. Although we may have

materialized some aggregations not yet be

used, we do take the potential of locality

effects into consideration.

Strictly speaking a query cell may

access a portion of a certain subcube or

multiple subcubes (if range value is used).

Through materializing the whole subcube(s)

it raises the possibility of reuse since

multiple query cells may queried to the same

subcube(s). Owing to the fact subcubes are

further partitions of a node in the lattice,

intrinsically subcubes can be classified

according to the node it belongs to, namely

subcube class represented by scClassm,n,o,p.

The subscripts denote the corresponding

dimension levels (the formal definition is

provided in the next subsection) and the

larger the value is the more detailed is the

subcube class. Take APB-1 Benchmark

database for example, the number of levels

of Product, Customer, Channel and Time

dimensions are 7, 3, 2 and 3, respectively.

And we also adopt product, customer,

channel and time as the dimension order in

describing the subcube classes. Then

scClass(7,3,2,3) means the most detailed node

in which data members belong to Code,

Store, Base and Month levels, respectively.

Similarly, scClass(4,2,1,2) denotes constituent

member of the cells within it belong to

Family, Retailer, Top and Quarter levels,

respectively. The complete relation schemas

of APB-1 Benchmark database are listed

below (the subscripts denote corresponding

dimension level numbers).

 SalesFact(Code, Store, Base, Month,

UnitsSold, DollarSales)

 ProdDim(Code7, Class6, Group5, Family4,

Line3, Division2, Top1)

 CustDim(Store3, Retailer2, Top1)

 ChanDim(Base2, Top1)

 TimeDim(Month3, Quarter2, Year1)

Subcubes are finer partitions of a node

 5

in the lattice, therefore we need to devise a

notation similar to the way to represent

query cells to define subcubes. The notation

we used to represent a subcube is called

subcube cell similar to the query cell except

it has superscripts in each constituent data

members to denote the dimension levels of

the ultimate subcube. Generally, accepting a

query cell it is then mapped by the the

CellMapping procedure (defined in

following subsection) into a subcube cell to

define the ultimate subcube. Due to the fact

that the same n-tuple can be used to define

multiple subcubes in various subcube

classes, to avoid ambiguity it is necessary to

retain the superscripts in the query cell. We

take following example to illustrate how

multiple query cells would query to the

same subcube.

Example 3.2 Consider that there are two

dimensions sales fact is analyzed. Two

queries (Taipei2, 2003013) and (Breeze3,

2003Q12) are issued consecutively (the

subscripts used here denote corresponding

level numbers). According to the query cell

notation, both cells drill-down to the most

detailed aggregations, i.e. scClass(Store, month),

by CellMapping procedure; besides, with the

parent-child relationships exist:

Taipei2-Breeze3 and 2003Q12-2003013, then

both cells will be mapped to the same

subcube cell (Taipei, 2003Q1). In other

words, the subcube sc(Taipei
3
, 2003Q1

3
) is

referenced by both query cells. The query

cells mapping process is illustrated in Figure

2 and the formal definitions of CellMapping

procedure is explained in following

subsection.

3.3. The subcube

Although the terms “data cube” and

“OLAP cube” are commonly used and even

interchangeable in the literature

investigating multidimensional databases or

OLAP systems, we take a different view.

Basically, we regard the data cube as the

result of a cube operation [8], while the

OLAP cube is the union of applying cube

operation on each node in a cube lattice

[12].

Definition 3.1 [The Data Cube] A data

cube is the result set of the cube operator.

For an n-dimension data cube, the cell is an

(n+m)-tuple in the form of (d1, d2, …, dn,

f1(*),f2(*),…, fm(*)), where

• Each di is either a value from the

domain of dimension levels of the i-th

Dimension or an ALL values;

• Each fj(x) is a value generated by the

aggregate function defined on the

data cube.

If the cardinality of the n attributes are C1,

C2, …, Cn, then the number of cells of the

n-dimensional data cube is at most
∏

=

+

n

i

iC
1

)1(
,

and the number of super-aggregates (i.e.

those cells containing ALLs) is
∏∏

==

−+

n

i

i

n

i

i CC

11

)1(
.

In real-life applications, hierarchies

exist in dimensions and underlie two

important querying operations: drill-down

Figure 2. Two query cells are maped to the

same subcube sc(Taipei
3
, 2003Q1

3
)

 6

and roll-up. Based on the dependency

relation ≤ [12], each GB form a cube

lattice.

Definition 3.2 [The Cube Lattice] Given n

dimensions D1, D2,…, Dn and each with a

set of dimension levels (hierarchy)

 { }1

1
2
1

1
11 ,...,,

h
lllL = ,

 { }2

2
2
2

1
22 ,...,,

h
lllL = ,

 …

 { }nh
nnnn lllL ,...,, 21= respectively.

Then the set { }nLLLL ×××= ...21 and

dependence relation ≤ forms a Cube

Lattice ≤,L with nLLL ∗∗∗ ...21 nodes.

Definition 3.3 [The Node Operations]

Given an n-dimensional fact f and the

corresponding cube lattice ≤,L , for each

element Llll n ∈),...,,(21 , the set of its

constituent elements { }nlll ,...,, 21 can be

used to compute group-by and cube

operations from f denoted by),...,,(21 nlllGB

and),...,,(21 nlllCB .

Each node of an n-dimensional cube

lattice is an n-tuple, and its constituent

elements can be used as group-by attributes

to generate the node value. The computation

is first joining the fact table with each

dimension tables then grouping it by its

constituent elements.

Definition 3.4 [The Node Value] Given an

n-dimensional cube lattice ≤,L , for each

element Llll n ∈),...,,(21 , the corresponding

node in the lattice is denoted by

),...,,(21 nlllNode or),...,,(21 nlllscClass , and its

value is the result of cube operation

applying on it.

Since each node of the cube lattice is

further partitioned into subcubes, to better

express the concepts regarding the subcube,

a node in the lattice is usually referred to as

a subcube class represented by scClass in

our discussion.

Definition 3.5 [The OLAP Cube] Given an

n-dimensional cube lattice ≤,L with q

nodes, the OLAP cube is the union of q data

cubes.

CBOLAP(L)=

{ }LssCBsCBsCB iq ∈∀∪∪∪)(...)()(21

Generally, an OLAP query is a subset of

a subcube. To be benefited from potential

locality effects, not only the result of an

OLAP query is materialized but the entire

subcube. We demonstrate how a query cell

is mapped into a subcube, and how a

materialized subcube can be used to answer

multiple queries in following example.

Before we formally define the subcube,

some useful functions are listed below.

• level(x): returns the level name of x.

• child_level(x): returns the child level

name of x.

• parent(x): returns the parent name of

x.

Definition 3.6 [The Subcube] Given an

CBOLAP(L) and a query cell (c1, c2,…, cn), the

corresponding subcube is represented by

()nl

n

ll
ssssc ,...,, 21

21
, where

•

=
.underlinednot if)(

;underlined is if

xcparent

cc
s

i

ii

i

•

=
.underlinednot if)(

;underlined is if)(_

ii

ii

i
cclevel

cclevelchild
l

and its values is a subset of a data cube

),...,,(21 nlllCB , where each cell share the

same parent-child relationship.

() ({
mn

l

n

ll
aaacccssssc n ,...,,,',...',',...,, 212121

21 =

)}nisparentc ii ,...,2,1),(' =∀=

3.4. The SUBCUBING algorithm

We develop a dynamic algorithm

Subcubing based on our subcube framework.

Generally, Algorithm Subcubing

 7

materializes each accessed subcube as long

as space is available. If the remaining space

is not sufficient, the algorithm repeatedly

replaces the old subcube that has the least

reuse frequency until space become

sufficient again to materialize a newly

accessed subcube. There are some variables

used in the algorithm to facilitate the

materialization processing: The variable sp

denotes the size of available space allocated

and it shrinks with time. To determine the

least recently used subcube, we use the

variable frq to keep track of the reuse

frequency for each materialized subcube. In

addition, the variable bnf is used to denote

the potential benefit it may has. The unit for

materialization in the algorithm is individual

subcube, and it always keeps the most

frequently used subcubes in storage as long

as the remaining available space is

sufficient.

4. Experimental Results

We have implemented the dynamic

algorithm we developed and the greedy

algorithm developed in [12] for comparison.

The system used is a Pentium 4 2.8G Hz

with 2GB DDR 400 SDRAM, running

Microsoft Windows 2000 Server and SQL

Server 2000. The algorithm was

implemented using Microsoft Visual Basic

6.0 and ActiveX Data Model (ADO). We

also implemented the greedy algorithm [12]

for comparison.

4.1. The sample data

The sample data used in our

experiments is produced by APB-1 OLAP

Benchmark Release II File Generator. The

common parameters used in these

experiments are: channel = 10, number of

users = 100 (for enough query streams).

Besides, the densities are 0.1, 1.0 and 5.0,

respectively. To exactly compute the size of

each subcube class, we materialize complete

subcube classes in advance instead of using

some sampling techniques [11]. Then we

analyze the queries mixed of 4 types (only

these queries are considered directly related

to our Sales cube). We list below the query

cells used in our experiment with minor

modification to the original version.

� Query 1: (?product, ?customer, ?channel, ?time)

� Query 2: (?product, ?customer, totalchannl, ?time)

� Query 3: (?product, ?customer, ?channel,

1995Q1-1996Q2) divided into two query cells:

(?product, ?customer, ?channel, 1995Q1)

and (?product, ?customer, ?channel, 1996Q1)

� Query 4: (?product, ?customer, ?allchannel, ?time)

4.2. Results

 8

Experimental results show that our

method partitioning subcube classes into

subcubes is almost immune from density.

The subcube reuse ratios in individual

subcube classes at different density are

shown below in Figure 3, Figure 4 and

Figure 5.

We compare the hit rates with the static

0

10

20

30

40

50

60

33
13

33
22

33
23

43
13

43
22

43
23

53
13

53
22

53
23

63
13

63
22

63
23

73
12

73
13

73
22

73
23

Subcube Calsses

R
e

u
s

e
 R

a
te

 (
%

)

N=100

N=80

N=60

N=40

N=20

Figure 3. Subcube reuse ratio at density = 0.1

0

10

20

30

40

50

60

33
13

33
22

33
23

43
13

43
22

43
23

53
13

53
22

53
23

63
13

63
22

63
23

73
12

73
13

73
22

73
23

Subcube Calsses

R
e

u
s

e
 R

a
te

 (
%

)

N=100

N=80

N=60

N=40

N=20

Figure 4. Subcube reuse ratio at density = 1.0

0

10

20

30

40

50

60

33
13

33
22

33
23

43
13

43
22

43
23

53
13

53
22

53
23

63
13

63
22

63
23

73
12

73
13

73
22

73
23

Subcube Calsses

R
e

u
s

e
 R

a
te

 (
%

)

N=100

N=80

N=60

N=40

N=20

Figure 5. Subcube reuse ratio at density = 5.0

0

5

10

15

20

25

30

35

40

0.1 0.25 0.5 0.75 1.0 1.25 1.5 2.0 3.0 5.0

Additional Space

H
it

 R
a

te
 (

%
)

Dynamic Static

Figure 6. The comparison between dynamic and
static algorithms (at density = 0.1).

Table 1. The greedy algorithm selection
sequence

Subcube

Classes

Order Cardinality

scClass(7,3,2,3) 1 13,122,000

scClass(7,3,2,2) 2 4,374,000

scClass(6,3,2,2) 3 3,802,908

scClass(3,3,2,3) 4 1,028,088

scClass(5,3,2,2) 8 3,188,358

scClass(4,3,2,3) 9 4,991,364

scClass(4,3,2,2) 11 1,663,788

scClass(5,3,1,3) 16 2,410,452

scClass(3,3,2,2) 20 342,696

scClass(4,3,1,3) 22 614,430

scClass(6,3,1,3) 23 4,580,136

scClass(7,3,1,2) 29 3,961,080

scClass(3,3,1,3) 33 125,460

 9

method, i.e. Greedy Algorithm, as shown in

Figure 6. The results show that

pre-computing some views without being

aware of the actual usage at run time

performs poorly. Note that with the

additional space larger than 1.5 times as

large as the size of base fact the hit rate no

longer increase. According to our

experiments, the dynamic algorithm we

developed can rapidly determine the right

set of subcube to materialize without

consuming excess additional space. While

the static Greedy algorithm [9] needs 4

times additional space selecting 33 subcube

classes to cover the most reused top 5:

scClass(3,3,1,3), scClass(3,3,2,2), scClass(3,3,2,3),

scClass(4,3,2,2), scClass(7,3,1,2). The pick order

of Greedy algorithm is shown Table 1.

5. Conclusions and Future Works

We have investigated the problem of

further partitioning the subcube class into

subcubes in order to raise its reusability. We

experimented on the APB-1 Benchmark

database and emphasized the need to handle

the serious situation that most OLAP queries

focus only on certain subcube classes and

sometimes even a small portion within a

subcube class. We also developed one

dynamic view selection algorithm to rapidly

determine frequently used subcubes.

Through moderately enlarge the size of

aggregations queried to subcube(s) potential

locality effects are taken into consideration,

and at the same time reusability is made

possible. We believe that the subcube

framework will also apply to other OLAP

data models. We are currently committed to

developing subdube-based query processing,

and part of the work appeared in [5].

6. References

[1] S. Agrawal, R. Agrawal, P.M.

Deshpande, J.F. Naughton, R.

Ramakrishnan, and S. Sarawagi. “On

the Computation of Multidimensional

Aggregates,” In VLDB, pp. 506-521,

1996.

[2] E. Baralis, S. Paraboschi, and E.

Teniente, “Materialized View Selection

in a Multidimensional Database,” In

VLDB, pp. 156-165, 1997.

[3] K. Beyer and R. Ramakrishnan,

“Bottom-up Computation of Sparse and

Iceberg Cubes,” In SIGMOD, pp.

359-370, 1999.

[4] S. Chaudhuri and U. Dayal, ”An

Overview of Data Warehousing and

OLAP Technology,” In SIGMOD

Record, Vol. 26, No. 1, pp. 65-74, 1997.

[5] H.-H. Chen, K.-W. Ho, and C.-L.

Shiou, “An Implementation for

Subcube-based Query Processing,”

Proceedings of International Computer

Symposium, 2004.

[6] H.-H. Chen and K.-W. Ho,

“Implementation Data Cubes via

Subcubes,” Proceedings of the

International Database Engineering

and Applications Symposium, 2004.

[7] H. Gupta, “Selection of Views to

Materialize in a Data Warehouse,” In

ICDT, pp. 98-112, 1997.

[8] J. Gray, A. Bosworth, A. Layman, and

H. Pirahesh, “Data Cube: A Relational

Aggregation Operator Generalizing

Group By, Cross-Tab, and Sub-Totals,”

In ICDE, pp. 152-159, 1996.

[9] H. Gupta, V. Harinaryan, A. Rajaraman,

and J.D. Ullman, “Index Selection for

OLAP,” In ICDE, pp. 208-218, 1997.

[10] J. Han, J. Pei, G. Dong, and K. Wang,

“Efficient Computation of Iceberg

Cubes with Complex Measures,” In

SIGMOD, pp. 1-12, 2001.

 10

[11] P.J. Haas, J.F. Naughton, S. Seshadri, L.

Stokes, “Sampling-Based Estimation of

the Number of Distinct Values of an

Attribute,” In VLDB, pp. 311-320, 1995.

[12] V. Harinarayam, A. Rajaraman, and

J.D. Ullman, “Implementing Data

Cubes Efficiently,” In SIGMOD, pp.

205-216, 1996.

[13] OLAP Council, “OLAP Council APB-1

Benchmark Specification,” White

Paper, 1998.

[14] A. Shukla, P. M. Deshpande, and J.

F. Naughton, “Materialized View

Selection for Multidimensional

Datasets,” In VLDB, pp. 488-499,

1998.

[15] Y. Zhao, P. Deshpande, J. F.

Naughton, “An Array-based

Algorithm for Simultaneous

Multidimensional Aggregates,” In

SIGMOD, pp. 159-170, 1997.

