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Abstract 

OLAP queries are complex and 

time-consuming and hence materializing 

data cube is a commonly used technique to 

reduce response time. To our knowledge, 

most previous OLAP cube implementation 

techniques apply a static view selection 

algorithm on the search lattice. These static 

methods first treat each node in the lattice as 

an undividable unit and then pick some of 

them for materialization. Pre-computing 

some nodes without being aware of which 

nodes are actually accessed at run time 

would seriously impact both response time 

and available space. We propose to further 

partition nodes in the lattice into subcubes 

into each of which multiple OLAP queries 

via a dynamic materialization algorithm can 

be mapped. Experiments show that the 

locality effects do exist in OLAP queries, 

and our dynamic method keeps a reasonable 

performance even though the available 

space is very limited and is practical for 

OLAP query processing. 
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1. Introduction 

Data warehousing and On-line 

Analytical Processing (OLAP) technologies 

[4] have been one of the most important 

decision support systems in recent years. 

Inherently, OLAP queries are complex and 

time-consuming; hence materialization is a 

commonly used technique to reduce 

response time. To the best of our knowledge, 

applying view selection algorithms on the 

search lattice in advance is a common 

practice in most previous data cube 

implementation techniques. These static 

methods first treat each node in the lattice as 

an undividable unit and then pick some 

nodes for materialization. Furthermore, they 

depend heavily on some sampling 

techniques [11] to estimate the view size 

which is not practical in implementation. 

Typically, generation of an OLAP cube 

can be accomplished by repeatedly 

computing group-bys based on the 

dimension levels, and the result forms a 

search lattice [12]. Note that the OLAP cube 

generated this way does not cover all 

aggregations it may have because a cube 

operation [8] can be further applied on the 

nodes in the lattice. Our experiments [6] on 

the APB-1 benchmark database show that 

the OLAP cube grew from 8 to 37 times as 

the size of the base fact table. The 

experimental result about growth ratio of the 

OLAP cube based on different 

implementations is shown in Figure 1. 

The experimental result indicates that 

the density causes similar effects on both 

implementations even though the cube 

operation is not applied on each node in the 
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lattice. Although currently we do not yet 

consider other factors that may impact the 

size of the OLAP cube including number of 

dimensions, cardinality and of levels of each 

dimension, we believe that density is 

intuitive and most representative factor in 

investigating the issues regarding the OLAP 

cube implementation and maintenance. 

Not only few nodes in the lattice are 

accessed but a small portion within each 

accessed node is used. Therefore, careless 

materialized view selection strategies (or 

algorithms) may result in exhausting 

available system space with useless 

aggregations. Our experiments [6] also 

exhibit that only 13% nodes in the lattice are 

accessed in APB-1 Benchmark queries, and 

the accessed regions are much smaller than 

their corresponding nodes. 

1.1. Proposed solution 

With those issues mentioned above, we 

propose defining a finer but not too fine 

partition, subcube, for OLAP 

implementations. A finer partition 

contributes to more efficient space 

utilization than the whole node in the lattice. 

Experiments show that OLAP queries 

cluster only on some nodes in the lattice and 

hence it is critical that we select the right set 

to materialize. A partition that is not too fine 

allows potential locality effects, i.e. multiple 

OLAP queries can be mapped to the same 

subcube. Although part of subcube is 

sufficient to answer individual query, 

materializing the whole subcube introduce 

the possibility of reuse. 

Instead of pre-computing some views 

for materialization, i.e. static method, 

without being aware of which views are 

actually accessed at run time, we also 

propose developing a dynamic view 

selection algorithm to materialize subcubes 

from existing ones. Generally, the algorithm 

materializes each accessed subcube as long 

as the available space is sufficient. While the 

space is exhausted, the algorithm should 

replace those subcubes with least reuse 

frequency based on certain replacement 

strategy. 

1.2. Paper organization 

The rest of the paper is organized as 

follows. In Section 2 we review current and 

past research activities related to the work 

presented here. Then in Section 3, we 

introduce the subcube framework to explain 

how to partition a node in the lattice into 

subcubes for materialization. We also 

illustrate how multiple queries can be 

mapped to the same subcube and the 

dynamic algorithm is provided to pick a set 

of subcubes for materialization. In Section 4 

experimental results show that our subcube 

frame is almost immune to the change of 

density. Finally, we present our conclusions 

in Section 5. 
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Figure 1. Growth ratio of different 

implementations 
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2. Related Work 

Previous studies related to OLAP 

implementations deal with two major 

problems at different levels. Research 

investigating the problem of how to compute 

an OLAP cube efficiently belongs to 

memory level, and has developed two major 

approaches including top-down and 

bottom-up [1, 15, 2, 3, 10], while those 

research on the problem of how to store an 

OLAP cube efficiently belongs to storage 

level, and has designed many algorithms to 

select the right set of view to materialize [12, 

2, 7, 9, 14]. The most representative one is 

the greedy algorithm introduced in [12] 

choosing a near-optimal subset of views, 

while their heavy dependence on some 

sampling techniques [11] to estimate the 

view size which we think is not practical in 

implementation. In this paper, we propose a 

better partition for materialization and a new 

technique for estimation of a view size. 

Through materializing subcubes, queries 

benefited from the results of previous are 

made possible. 

3. The Subcube Framework 

We can roughly view a subcube as the 

result of a drill-down operation to a cell (i.e. 

subcube cell) on each dimension it may have. 

There are two advantages in doing so. First 

the unit for materialization can be reduced 

from a node in a lattice to a finer partition – 

a subcube. Second the drill-down operation 

on each dimension will not result in a 

partition that is too fine as well as take 

potential locality effects into consideration. 

Before we illustrate the subcube framework, 

we introduce the query cell notation for 

representing OLAP queries concisely. 

3.1. The query cell notation 

Typically OLAP queries examine the 

aggregations (measures) in several different 

contexts (via slicer attributes) and from 

several different angles (by group-by 

attributes). We use the following example to 

demonstrate what information is specified in 

an OLAP query and how an answer to a 

query can be viewed as a result of 

drill-down operation to a cell. 

Example 3.1 Consider the query description 

of Channel Sales Analysis (i.e. Query 1) 

defined in APB-1 benchmark queries [13]. 

For the sake of clarity, the query has been 

slightly modified to omit some details not 

directly related to our discussion. This query 

shows units sold and dollar sales for a given 

channel by product, customer and time 

dimensions. The functional query definition 

is listed below. 

 get UNITS SOLD, DOLLAR SALES 

 by PRODUCT = children_of(prod) 

 by CUSTOMER = children_of(cust) 

 by TIME = children_of(time) 

 where CHANNEL = chan 

Note that the member_name in 

parentheses is a parameter denoting a data 

member regarding a certain dimension, and 

children_of() denotes its child data members. 

The above query can be represented as a 

4-tuple (prod, cust, chan, time) in our 

notation. The underlined elements are 

group-by attributes used to specify along 

which dimensions the measures are analyzed 

in the query. The element not underlined is 

slicer attribute used to restrict which data 

member of a certain dimension is extracted. 

We assume that all measures are analyzed in 

each query, so there is no need for us to 

specify measures in our query notation. 

For an n-dimensional data cube, a 

query cell is an n-tuple representing an 
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OLAP query. Each slicer attribute 

contributes to an element of the n-tuple, and 

those dimensions involved in group-by are 

marked by an underlines in corresponding 

slicer attribute. 

Since the chan is identified as slicer 

attributes, and prod, and cust and time are 

involved in group-by clause, then according 

to our notation the above query will be 

represented as the query cell (prod, cust, 

chan, time). Note that a cell containing a 

range value as a data member would be 

divided into multiple query cells (e.g. the 6 

months sales from 9501 through 9506, 

specified as 9501-9506, is divided into two 

data members 1995Q1 and 1995Q2 in 

separate query cells). 

Simply put, our goal is to keep query 

representation simple for discussion as well 

as be used to dynamically identify the 

correlation among multiple queries which 

would be beneficial in materialization. Our 

practice is to define a subcube based on 

multiple correlated queries (in query cell 

notation) as an undividable unit for 

materialization. Owing to the fact that one 

materialized subcube could be reused by 

multiple queries for multiple times, the total 

query cost will be effectively reduced. We 

describe the process of query cell mapping 

in the following subsection. 

3.2. Mapping of query cells 

Though we represent an OLAP query 

as a query cell, how can we obtain some 

useful clues for materialization from queries? 

Our practice is to moderately enlarge the 

queried aggregations to one of more 

subcubes. That is to say we define the 

subcube as an undividable unit for 

materialization and users’ queries are 

transformed into queries on one or more 

subcubes. Although we may have 

materialized some aggregations not yet be 

used, we do take the potential of locality 

effects into consideration. 

Strictly speaking a query cell may 

access a portion of a certain subcube or 

multiple subcubes (if range value is used). 

Through materializing the whole subcube(s) 

it raises the possibility of reuse since 

multiple query cells may queried to the same 

subcube(s). Owing to the fact subcubes are 

further partitions of a node in the lattice, 

intrinsically subcubes can be classified 

according to the node it belongs to, namely 

subcube class represented by scClassm,n,o,p. 

The subscripts denote the corresponding 

dimension levels (the formal definition is 

provided in the next subsection) and the 

larger the value is the more detailed is the 

subcube class. Take APB-1 Benchmark 

database for example, the number of levels 

of Product, Customer, Channel and Time 

dimensions are 7, 3, 2 and 3, respectively. 

And we also adopt product, customer, 

channel and time as the dimension order in 

describing the subcube classes. Then 

scClass(7,3,2,3) means the most detailed node 

in which data members belong to Code, 

Store, Base and Month levels, respectively. 

Similarly, scClass(4,2,1,2) denotes constituent 

member of the cells within it belong to 

Family, Retailer, Top and Quarter levels, 

respectively. The complete relation schemas 

of APB-1 Benchmark database are listed 

below (the subscripts denote corresponding 

dimension level numbers). 

 SalesFact(Code, Store, Base, Month, 

UnitsSold, DollarSales) 

 ProdDim(Code7, Class6, Group5, Family4, 

Line3, Division2, Top1) 

 CustDim(Store3, Retailer2, Top1) 

 ChanDim(Base2, Top1) 

 TimeDim(Month3, Quarter2, Year1) 

Subcubes are finer partitions of a node 
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in the lattice, therefore we need to devise a 

notation similar to the way to represent 

query cells to define subcubes. The notation 

we used to represent a subcube is called 

subcube cell similar to the query cell except 

it has superscripts in each constituent data 

members to denote the dimension levels of 

the ultimate subcube. Generally, accepting a 

query cell it is then mapped by the the 

CellMapping procedure (defined in 

following subsection) into a subcube cell to 

define the ultimate subcube. Due to the fact 

that the same n-tuple can be used to define 

multiple subcubes in various subcube 

classes, to avoid ambiguity it is necessary to 

retain the superscripts in the query cell. We 

take following example to illustrate how 

multiple query cells would query to the 

same subcube. 

Example 3.2 Consider that there are two 

dimensions sales fact is analyzed. Two 

queries (Taipei2, 2003013) and (Breeze3, 

2003Q12) are issued consecutively (the 

subscripts used here denote corresponding 

level numbers). According to the query cell 

notation, both cells drill-down to the most 

detailed aggregations, i.e. scClass(Store, month), 

by CellMapping procedure; besides, with the 

parent-child relationships exist: 

Taipei2-Breeze3 and 2003Q12-2003013, then 

both cells will be mapped to the same 

subcube cell (Taipei, 2003Q1). In other 

words, the subcube sc(Taipei
3
, 2003Q1

3
) is 

referenced by both query cells. The query 

cells mapping process is illustrated in Figure 

2 and the formal definitions of CellMapping 

procedure is explained in following 

subsection. 

3.3. The subcube 

Although the terms “data cube” and 

“OLAP cube” are commonly used and even 

interchangeable in the literature 

investigating multidimensional databases or 

OLAP systems, we take a different view. 

Basically, we regard the data cube as the 

result of a cube operation [8], while the 

OLAP cube is the union of applying cube 

operation on each node in a cube lattice 

[12]. 

Definition 3.1 [The Data Cube] A data 

cube is the result set of the cube operator. 

For an n-dimension data cube, the cell is an 

(n+m)-tuple in the form of (d1, d2, …, dn, 

f1(*),f2(*),…, fm(*)), where 

• Each di is either a value from the 

domain of dimension levels of the i-th 

Dimension or an ALL values; 

• Each fj(x) is a value generated by the 

aggregate function defined on the 

data cube. 

If the cardinality of the n attributes are C1, 

C2, …, Cn, then the number of cells of the 

n-dimensional data cube is at most 
∏

=

+

n

i

iC
1

)1(
, 

and the number of super-aggregates (i.e. 

those cells containing ALLs) is 
∏∏

==

−+

n

i

i

n

i

i CC

11

)1(
. 

In real-life applications, hierarchies 

exist in dimensions and underlie two 

important querying operations: drill-down 

 

Figure 2. Two query cells are maped to the 

same subcube sc(Taipei
3
, 2003Q1

3
) 
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and roll-up. Based on the dependency 

relation ≤  [12], each GB form a cube 

lattice. 

Definition 3.2 [The Cube Lattice] Given n 

dimensions D1, D2,…, Dn and each with a 

set of dimension levels (hierarchy) 

 { }1

1
2
1

1
11 ,...,, 

h
lllL = , 

 { }2

2
2
2

1
22 ,...,, 

h
lllL = , 

 … 

 { }nh
nnnn lllL ,...,, 21=  respectively. 

Then the set { }nLLLL ×××= ...21 and 

dependence relation ≤  forms a Cube 

Lattice ≤,L  with nLLL ∗∗∗ ...21  nodes. 

Definition 3.3 [The Node Operations] 

Given an n-dimensional fact f and the 

corresponding cube lattice ≤,L , for each 

element Llll n ∈),...,,( 21 , the set of its 

constituent elements { }nlll ,...,, 21  can be 

used to compute group-by and cube 

operations from f denoted by ),...,,( 21 nlllGB  

and ),...,,( 21 nlllCB . 

Each node of an n-dimensional cube 

lattice is an n-tuple, and its constituent 

elements can be used as group-by attributes 

to generate the node value. The computation 

is first joining the fact table with each 

dimension tables then grouping it by its 

constituent elements. 

Definition 3.4 [The Node Value] Given an 

n-dimensional cube lattice ≤,L , for each 

element Llll n ∈),...,,( 21 , the corresponding 

node in the lattice is denoted by 

),...,,( 21 nlllNode  or ),...,,( 21 nlllscClass , and its 

value is the result of cube operation 

applying on it. 

Since each node of the cube lattice is 

further partitioned into subcubes, to better 

express the concepts regarding the subcube, 

a node in the lattice is usually referred to as 

a subcube class represented by scClass in 

our discussion. 

Definition 3.5 [The OLAP Cube] Given an 

n-dimensional cube lattice ≤,L  with q 

nodes, the OLAP cube is the union of q data 

cubes. 

CBOLAP(L)=

{ }LssCBsCBsCB iq ∈∀∪∪∪   )(...)()( 21  

Generally, an OLAP query is a subset of 

a subcube. To be benefited from potential 

locality effects, not only the result of an 

OLAP query is materialized but the entire 

subcube. We demonstrate how a query cell 

is mapped into a subcube, and how a 

materialized subcube can be used to answer 

multiple queries in following example. 

Before we formally define the subcube, 

some useful functions are listed below. 

• level(x): returns the level name of x. 

• child_level(x): returns the child level 

name of x. 

• parent(x): returns the parent name of 

x. 

Definition 3.6 [The Subcube] Given an 

CBOLAP(L) and a query cell (c1, c2,…, cn), the 

corresponding subcube is represented by 

( )nl

n

ll
ssssc ,...,, 21

21
, where  

• 




=
.underlinednot   if )(

;underlined is  if 

xcparent

cc
s

i

ii

i  

• 




=
.underlinednot   if )(

;underlined is  if )(_

ii

ii

i
cclevel

cclevelchild
l  

and its values is a subset of a data cube 

),...,,( 21 nlllCB , where each cell share the 

same parent-child relationship. 

( ) ({
mn

l

n

ll
aaacccssssc n ,...,,,',...',',...,, 212121

21 =  

)}nisparentc ii ,...,2,1),(' =∀=  

3.4. The SUBCUBING algorithm 

We develop a dynamic algorithm 

Subcubing based on our subcube framework. 

Generally, Algorithm Subcubing 
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materializes each accessed subcube as long 

as space is available. If the remaining space 

is not sufficient, the algorithm repeatedly 

replaces the old subcube that has the least 

reuse frequency until space become 

sufficient again to materialize a newly 

accessed subcube. There are some variables 

used in the algorithm to facilitate the 

materialization processing: The variable sp 

denotes the size of available space allocated 

and it shrinks with time. To determine the 

least recently used subcube, we use the 

variable frq to keep track of the reuse 

frequency for each materialized subcube. In 

addition, the variable bnf is used to denote 

the potential benefit it may has. The unit for 

materialization in the algorithm is individual 

subcube, and it always keeps the most 

frequently used subcubes in storage as long 

as the remaining available space is 

sufficient. 

4. Experimental Results 

We have implemented the dynamic 

algorithm we developed and the greedy 

algorithm developed in [12] for comparison. 

The system used is a Pentium 4 2.8G Hz 

with 2GB DDR 400 SDRAM, running 

Microsoft Windows 2000 Server and SQL 

Server 2000. The algorithm was 

implemented using Microsoft Visual Basic 

6.0 and ActiveX Data Model (ADO). We 

also implemented the greedy algorithm [12] 

for comparison.  

4.1. The sample data 

The sample data used in our 

experiments is produced by APB-1 OLAP 

Benchmark Release II File Generator. The 

common parameters used in these 

experiments are: channel = 10, number of 

users = 100 (for enough query streams). 

Besides, the densities are 0.1, 1.0 and 5.0, 

respectively. To exactly compute the size of 

each subcube class, we materialize complete 

subcube classes in advance instead of using 

some sampling techniques [11]. Then we 

analyze the queries mixed of 4 types (only 

these queries are considered directly related 

to our Sales cube). We list below the query 

cells used in our experiment with minor 

modification to the original version. 

� Query 1: (?product, ?customer, ?channel, ?time) 

� Query 2: (?product, ?customer, totalchannl, ?time) 

� Query 3: (?product, ?customer, ?channel, 

1995Q1-1996Q2) divided into two query cells: 

(?product, ?customer, ?channel, 1995Q1) 

and (?product, ?customer, ?channel, 1996Q1) 

� Query 4: (?product, ?customer, ?allchannel, ?time) 

4.2. Results 
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Experimental results show that our 

method partitioning subcube classes into 

subcubes is almost immune from density. 

The subcube reuse ratios in individual 

subcube classes at different density are 

shown below in Figure 3, Figure 4 and 

Figure 5.  

We compare the hit rates with the static 
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Figure 6. The comparison between dynamic and 
static algorithms ( at density = 0.1). 

Table 1. The greedy algorithm selection 
sequence 

Subcube 

Classes 

Order Cardinality 

scClass(7,3,2,3) 1 13,122,000 

scClass(7,3,2,2) 2 4,374,000 

scClass(6,3,2,2) 3 3,802,908 

scClass(3,3,2,3) 4 1,028,088 

scClass(5,3,2,2) 8 3,188,358 

scClass(4,3,2,3) 9 4,991,364 

scClass(4,3,2,2) 11 1,663,788 

scClass(5,3,1,3) 16 2,410,452 

scClass(3,3,2,2) 20 342,696 

scClass(4,3,1,3) 22 614,430 

scClass(6,3,1,3) 23 4,580,136 

scClass(7,3,1,2) 29 3,961,080 

scClass(3,3,1,3) 33 125,460 
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method, i.e. Greedy Algorithm, as shown in 

Figure 6. The results show that 

pre-computing some views without being 

aware of the actual usage at run time 

performs poorly. Note that with the 

additional space larger than 1.5 times as 

large as the size of base fact the hit rate no 

longer increase. According to our 

experiments, the dynamic algorithm we 

developed can rapidly determine the right 

set of subcube to materialize without 

consuming excess additional space. While 

the static Greedy algorithm [9] needs 4 

times additional space selecting 33 subcube 

classes to cover the most reused top 5: 

scClass(3,3,1,3), scClass(3,3,2,2), scClass(3,3,2,3), 

scClass(4,3,2,2), scClass(7,3,1,2). The pick order 

of Greedy algorithm is shown Table 1. 

5. Conclusions and Future Works 

We have investigated the problem of 

further partitioning the subcube class into 

subcubes in order to raise its reusability. We 

experimented on the APB-1 Benchmark 

database and emphasized the need to handle 

the serious situation that most OLAP queries 

focus only on certain subcube classes and 

sometimes even a small portion within a 

subcube class. We also developed one 

dynamic view selection algorithm to rapidly 

determine frequently used subcubes. 

Through moderately enlarge the size of 

aggregations queried to subcube(s) potential 

locality effects are taken into consideration, 

and at the same time reusability is made 

possible. We believe that the subcube 

framework will also apply to other OLAP 

data models. We are currently committed to 

developing subdube-based query processing, 

and part of the work appeared in [5]. 
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