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Abstract 

In this paper, we study the pancyclic properties 
of the WK-Recursive networks. We show that a 
WK-Recursive network with amplitude W and level L 
is vertex-pancyclic for W ≥ 6. That is, each vertex on 
them resides in cycles of all lengths ranging from 3 to 
N, where N is the size of the interconnection network. 
On the other hand, we also investigate the 
m-edge-pancyclicity of the WK-Recursive network. 
We show that the WK-Recursive network is strictly 
3×2L-1-edge-pancyclic for W ≥ 7 and L ≥ 1. That is, 
each edge on them resides in cycles of all lengths 
ranging from 3×2L-1 to N; and the value 3×2L-1 
reaches the lower bound of the problem. 

Keyword: Pancyclicity, Interconnection networks, 
WK-Recursive networks. 

1. Introduction 

In massively parallel MIMD systems, the 
topology plays a crucial role in issues such as 
communication performance, hardware cost, 
potentialities for efficient applications and fault 
tolerant capabilities [9, 16].  A topology named 
WK-Recursive network has been proposed [24].  The 
topology has many attractive properties, such as high 
degree of regularity, symmetry and efficient 
communication. Particularly, for any specified 
number of degree, it can be expanded to an arbitrary 
size level without reconfiguring the edges. Because it 
demonstrates many attractive properties, researchers 
have devoted themselves to various issues of the 
WK-Recursive networks, such as broadcasting 

algorithms [12], topological properties [18, 14] and 
communication [8]. 

Paths and cycles are popular interconnection 
networks owing to their simple structures and low 
degree. Moreover, many parallel algorithms have 
been devised on them [16, 17, 19]. Many literatures 
have discussed how to embed cycles and paths into 
various topologies [3, 5, 16]. A cycle with length s is 
denoted by Cs, where s ≥ 3. A graph is Hamiltonian if 
it embeds a Hamiltonian cycle that contains each 
vertex exactly once [7]. In other words, that a graph 
is Hamiltonian implies that it embeds the maximal 
cycle. However, in the resource-allocated systems, 
each vertex may be allocated with or without a 
resource [4, 10]. Thus, it makes sense to discuss how 
to join a specific pair of vertices with a Hamiltonian 
path in such systems. For example, let X and Y be 
two vertices in a resource-allocated system, where the 
former and the latter are assigned with an input 
device and an output device, respectively. If we find a 
Hamiltonian path joining the pair of vertices, we can 
utilize the whole system to perform the systolic 
algorithm on a linear array [19]. A graph is 
Hamiltonian-connected if there is a Hamiltonian path 
joining each pair of vertices. No wonder that there are 
many researchers discussing the 
Hamiltonian-connectivity of various interconnection 
networks [6, 20]. 

On the other hand, to execute a parallel 
program efficiently, the size of the allocated cycle 
must accord with the problem size of the program. 
Thus, many researchers study the problem of how to 
embed cycles of different sizes into an 
interconnection network. A graph is pancyclic if it 
embeds cycles of every length ranging from 3 to N, 
where N is the size of the graph [2]. A graph is 
m-pancyclic if it embeds cycles of every length 
ranging from m to N, where 3 ≤ m ≤ N. Clearly, an 
m-pancyclic graph must be Hamiltonian. In a 
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heterogeneous computing system, each vertex and 
each edge may be assigned with distinct computing 
power and distinct bandwidth, respectively [22]. Thus, 
it is meaningful to extend the pancyclicity to the 
vertex-pancyclicity and the edge-pancyclicity [1, 11, 
15]. A graph is vertex-pancyclic (edge-pancyclic) if 
each vertex (edge) lies on cycles of every length 
ranging from 3 to N. Clearly, each edge-pancyclic 
graph must be vertex-pancyclic. 

The concepts of the vertex-pancyclicity and the 
edge-pancyclicity are generalized to the 
m-vertex-pancyclicity and the m-edge-pancyclicity 
[21]. A graph is said to be m-vertex-pancyclic 
(m-edge-pancyclic) if each vertex (edge) lies on 
cycles of all lengths ranging from m to N. Obviously, 
every m1-vertex-pancyclic (m1-edge-pancyclic) graph 
must be m2-vertex-pancyclic (m2-edge-pancyclic), 
where N ≥ m2 ≥ m1. A graph is strictly 
m-vertex-pancyclic (m-edge-pancyclic) if it is not 
(m-1)-vertex-pancyclic ((m-1)-edge-pancyclic) but 
m-vertex-pancyclic (m-edge-pancyclic); that is, the 
value m reaches the lower bound of the problem. 
Clearly, every m-edge-pancyclic graph is 
m-vertex-pancyclic. A graph G with N vertices is 
panconnected if for each pair of distinct vertices X, Y 
and for any integer d(X, Y) ≤ l ≤ N-1, there exists a 
path of length l in G connecting X and Y, where d(X, 
Y) is the distance between X and Y in G [6]. 

A WK-Recursive network with amplitude W 
and level L is denoted by a WK(W, L). Vecchia and 
Sanges have shown that a WK(W, L) is Hamiltonian 
for W ≥ 3 [24]. Fernandes et al. have shown that a 
WK(W, L) is pancyclic for W ≥ 5 [13]. However, to 
the best of our knowledge, there exists no article 
addressing the m-vertex-pancyclicity and the 
m-edge-pancyclicity of the WK(W, L). In this paper, 
we show that a WK(W, L) is vertex-pancyclic for W ≥ 
6. The WK(W, L) network is strictly 
7-vertex-pancyclic, for 5 ≥ W ≥ 4 and L ≥ 2. On the 
other hand, we also prove that the WK(W, L) is 
strictly 3×2L-1-edge-pancyclic for W ≥ 7 and L ≥ 1. 

The rest of this paper is organized as follows. 
In Section 2, we present some notations and 
background that will be used throughout this paper. 
In Section 3, we study the pancyclicity and the 
m-vertex-pancyclicity of the WK-Recursive network. 
In Section 4, we investigate the m-edge-pancyclicity 
of the WK-Recursive network. Conclusions are given 
in Section 5. 

2. Notations and background 

A WK(W, L) can be recursively constructed. A 
WK(W, 0) is a vertex with W free edges. A WK(W, 1) 
is a W-vertex complete graph that is denoted by a KW. 
Each vertex has one free edge and W-1 edges that are 
used for connecting to the other vertices. Clearly, a 

WK(W, 1) has W vertices and W free edges. A WK(W, 
H) consists of W copies of WK(W, H-1) as 
supervertices and the W supervertices are connected 
as a KW, where 2 ≤ H ≤ L. By induction, it is easy to 
see that a WK(W, L) has WL vertices and W free 
edges. Consequently, for any given amplitude W, 
WK-Recursive networks can be expanded to any 
arbitrary level L without reconfiguring the edges. In 
Figure 1, the structures of a WK(4, 0), a WK(4, 1), a 
WK(4, 2) and a WK(4, 3) are illustrated. 

The following addressing scheme for a WK(W, 
L) is described in [23]. After fixing an origin and an 
orientation (clockwise or counterclockwise), for each 
WK(W, 1) subnetwork, every vertex is labeled with 
an index digit d1 ∈ {0, 1, …, W-1}. Likewise, for 
each WK(W, H) subnetwork, every WK(W, H-1) 
subnetwork is labeled with an index dH ∈ {0, 1, …, 
W-1}, where 2 ≤ H ≤ L. Hence, each vertex of a 
WK(W, L) is labeled with an unique address 
dLdL-1…d2d1 as illustrated in Figure 1. Likewise, a 
subnetwork of a WK(W, L) can be represented by a 
string of L symbols over set {0, 1, …, W-1} ∪ {*}, 
where * is a “don't care” symbol. That is, each 
WK(W, H) subnetwork of a WK(W, L) can be 
denoted by dLdL-1…dH+1(*)H, where (*)H represents H 
consecutive *’s. For example, in a WK(4, 3), 0** is 
the subnetwork {0d2d1 | 0 ≤ d2 ≤ 3 and 0 ≤ d1 ≤ 3 }. 

For a subnetwork dLdL-1…dH+1(*)H in a WK(W, 
L), a vertex with address dLdL-1…dH+1(dH)H is called a 
corner vertex of dLdL-1…dH+1(*)H. For example, in a 
WK(4, 3), 000, 011, 022 and 033 are corner vertices 
of 0**. Specifically, the vertex dLdL-1…dH+1(dH)H is 
called the dH-corner of dLdL-1…dH+1(*)H. For example, 
in a WK(4, 3), 033 is called 3-corner of 0**. In this 
paper, an edge within a WK(W, 1) subnetwork is 
called an inner-cluster edge. 

Definition 1. The inner-cluster edges of vertex 
dLdL-1…d2d1 are defined as (dLdL-1…d2d1, 
dLdL-1…d2h), where 0 ≤ h ≤ W-1 and d1≠ h. 

For example, in a WK(5, 3), (002, 000), (002, 
001), (002, 003) and (002, 004) are inner-cluster 
edges of the vertex 002. Clearly, each vertex has W-1 
inner-cluster edges in a WK(W, L).  An edge 
connecting two WK(W, H) subnetworks, where 1 ≤ H 
≤ L-1, is called an inter-cluster edge and specifically 
a level-H edge. 

Definition 2. The level-H inter-cluster edge of vertex 
dLdL-1…dH+1(dH)H, where dH+1≠ dH, is defined as 
(dLdL-1…dH+1(dH)H, dLdL-1…dH(dH+1)H ). 

For example, in a WK(4, 3), (022, 200) is a 
level-2 edge. Observe that each vertex except the 
corner vertices (dL)L has exactly one inter-cluster 
edge in a WK(W, L). Each corner vertex (dL)L of a 
WK(W, L) has no inter-cluster edge but a free edge. 

In this paper, the outline graph of a WK(W, L), 
denoted by an OG(WK(W, L)), is to take each WK(W, 
1) subnetwork as a supervertex. As stated before, a 
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WK(W, L) can be constructed recursively. If each 
WK(W, 1) subnetwork of a WK(W, L) is taken as a 
supervertex, the  WK(W, L) will be transformed to a 
WK(W, L-1). Moreover, each original level-1 
inter-cluster edge will be an inner-cluster edge in the 
WK(W, L-1); and each original level-J inter-cluster 
edge will be a level-(J-1) inter-cluster edge in the 
WK(W, L-1), where L-1 ≥ J ≥ 2. We have the 
following proposition. 

Proposition 1. An OG(WK(W, L)) is a WK(W, L-1). 

As illustrated in Figure 2, the OG(WK(4, 3)) is 
a WK(4, 2). Because an OG(WK(W, L)) is a WK(W, 
L-1); and each vertex of the WK(W, L-1) has W-1 
inner-cluster edges, thus we have 

Proposition 2. In each WK(W, 1) subnetwork of a 
WK(W, L), there exist W-1 level-1 edges and at most 
one higher level edge. 

3. The Pancyclicity and the 
Vertex-Pancyclicity of a 
WK-Recursive Network 

In this section, we will discuss the pancyclicity 
and the vertex-pancyclicity of the WK-Recursive 
network. Suppose that vertices U1, U2, …, UW locate 
in a common WK(W, 1) subnetwork. Because a 
WK(W, 1) subnetwork is a KW, (U1, UW) forms a path 
of length 1. The vertex Uj is called an appending 
vertex, where 2 ≤ j ≤ W-1. Clearly, appending vertices 
can be appended one by one to the path. That is, (U1, 
U2, …, Ui , UW) forms a path of length i, where 1 ≤ i 
≤ W-1. Recall that OG(WK(W, L)) is obtained from 
WK(W, L) by taking each WK(W, 1) subnetwork as a 
supervertex. Suppose that there is a cycle of length l, 
denoted by (V0*, V1*, V2*, …,Vl-1*), in the 
OG(WK(W, L)) as illustrated in Figure 3. Clearly, 
there exists an inter-cluster edge connecting 
consecutive two WK(W, 1) supervertices in the cycle. 

Since each vertex has one inter-cluster edge at 
most, we can find two vertices Si and Di in each 
supervertex Vi*, where   0 ≤ i ≤ l-1, such that they 
are incident to the inter-cluster edges connecting to 
V(i-1) mod l* and V(i+1) mod l*, respectively. Obviously, (S0, 
D0, S1, D1,… , Sl-1, Dl-1) forms a cycle of length 2l. In 
each supervertex Vi*, there are W-2 appending 
vertices. Totally, there exist (W-2)l appending 
vertices. Thus, we have the following lemma. 

Lemma 1. If there exists a cycle of length l in the 
OG(WK(W, L)), a WK(W, L) embeds cycles of all 
lengths ranging from 2l to Wl. 

Theorem 2. A WK(W, L) is pancyclic for W ≥ 5. 

Proof. We will prove the theorem by induction on L. 

For L = 1, a WK(W, 1) is a KW. Clearly, it embeds 
cycles of all lengths ranging from 3 to W, where W ≥ 
5. 

Hypothesis:  Suppose that a WK(W, k) is pancyclic. 

Induction Step: Recall that OG(WK(W, k+1)) is a 
WK(W, k) network. By the hypothesis, we know that 
a WK(W, k) embeds cycles of all lengths ranging 
from 3 to Wk. Thus, by Lemma 1, a   WK(W, k+1) 
can embed  

  {Cs| 6 ≤ s ≤ 3 W } (for 3 WK(W, 1) supervertices) 
∪ {Cs| 8 ≤ s ≤ 4 W } (for 4 WK(W, 1) supervertices) 
…, 
∪ {Cs| 2n ≤ s ≤ n W } (for n WK(W, 1) supervertices) 
∪ {Cs| 2(n+1) ≤ s ≤ (n+1) W } (for n+1 WK(W, 1) 
supervertices) 
…, 
∪ {Cs| 2Wk ≤ s ≤ WkW =Wk+1} (for Wk WK(W, 1) 
supervertices). 

Clearly, nW is always greater than 2(n+1) for W 
≥ 5 and n ≥ 3. Thus, a WK(W, k+1) can embed {Cs| 6 
≤ s ≤ W k+1}. By the recursive structure of the 
WK-Recursive Network, the WK(W, 1) is a subgraph 
of a WK(W, k+1) for k ≥ 1. Thus, we know that a 
WK(W, k+1) can embed     {Cs| 3 ≤ s ≤ W} ∪ {Cs| 
6 ≤ s ≤ W k+1} = {Cs| 3 ≤ s ≤ W k+1}, where W ≥ 5.  

This extends the induction and completes the 
proof.                               Q. E. D. 

Although, in fact, the above theorem has been 
shown by Fernandes et al. [13], our proof is much 
easier and clearer. Moreover, we will discuss the 
m-vertex-pancyclicity and the m-edge-pancyclicity of 
a WK(W, L) upon the above discussion. 

In the following, we investigate the 
m-pancyclicity of a WK(4, L). Obviously, a WK(4, 1) 
embeds C3 and C4. By Lemma 1, a WK(4, 2) can 
embed {Cs| 6 ≤ s ≤ 12 }∪{Cs| 8 ≤ s ≤ 16 } = {Cs| 6 ≤ 
s ≤ 16 }. Suppose that a WK(4, k) can embed {Cs| 6 ≤ 
s ≤ 4k } for k ≥ 3. Likewise, a WK(4, k+1) can embed 
{Cs| 12 ≤ s ≤ 24 } ∪ {Cs| 14 ≤ s ≤ 28 } ∪…∪ {Cs| 
2(4k-1) ≤ s ≤ 4(4k-1) } ∪ {Cs| 2×4k ≤ s ≤ 4×4k = 4k+1 } 
= {Cs| 12 ≤ s ≤ 4k+1}. By the recursive structure of a   
WK(W, L), the WK(4, 2) is a subgraph of a WK(4, L) 
for L > 2. Thus, a WK(4, k+1) can embed {Cs| 6 ≤ s ≤ 
16} ∪ {Cs| 12 ≤ s ≤ 4k+1} = {Cs| 6 ≤ s ≤ 4k+1}. Thus, 
we have 

Lemma 3. A WK(4, L) is 6-pancyclic, where L ≥ 2. 

Then, the m-pancyclicity of a WK(3, L) is 
studied. Because a WK(3, 1) is nothing but a C3, a 
WK(3, 2) can embed {Cs| 6 ≤ s ≤ 9} by Lemma 1. 
We have 

Corollary 4. A WK(3, 2) is 6-pancyclic. 

A WK(3, 3) can embed {Cs| 12 ≤ s ≤ 27}. 
Similarly, if a WK(3, k) can embed {Cs| 12 ≤ s ≤ 3k}, 
where k ≥ 3, a WK(3, k+1) can embed {Cs| 12 ≤ s ≤ 
27} ∪ {Cs| 24 ≤ s ≤ 3k+1 } = {Cs| 12 ≤ s ≤ 3k+1 }. Thus, 
we have 

Lemma 5. A WK(3, L) is 12-pancyclic for L ≥ 3. 
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In the following, we investigate the 
vertex-pancyclicity and the m-vertex-pancyclicity of 
a WK(W, L).  

Lemma 6. If each WK(W, 1) supervertex resides in a 
cycle of length l in the OG(WK(W, L)), each vertex 
of a WK(W, L) resides in cycles of all lengths ranging 
from 2l+1 to Wl. 
Proof. Suppose that an arbitrary vertex X of a WK(W, 
L) reside in the supervertex V0* of the OG(WK(W, 
L)). By the hypothesis, there exists a cycle, denoted 
by (V0*, V1*, V2*, …, Vl-1*), of length l containing 
V0* in the OG(WK(W, L)). As illustrated in Figure 3, 
there exists an inter-cluster edge connecting 
consecutive two WK(W, 1) supervertices in the cycle. 

Since each vertex has one inter-cluster edge at 
most, we can find two vertices Si and Di in each 
supervertex Vi*, where 0 ≤ i ≤ l-1, such that they are 
incident to the inter-cluster edges connecting to   
V(i-1) mod l* and V(i+1) mod l*, respectively. Obviously, (S0, 
D0, S1, D1, …, Sl-1, Dl-1) forms a cycle of length 2l.  

Case 1: X is not S0 and X is not D0.  Clearly, (S0, X, 
D0, S1, D1, …, Sl-1, Dl-1) forms a cycle of length 2l+1. 
Totally, there are (W-2)l-1 appending vertices. Thus, 
X resides in cycles of all lengths ranging from 2l+1 to 
Wl. 
Case 2: X is S0 or X is D0. Clearly, X resides in cycles 
of all lengths ranging from 2l to Wl.        Q. E. D 

Theorem 7. A WK(W, L) is vertex-pancyclic for W ≥ 
6.  

Proof. We will prove the theorem by induction on L. 

For L =1, a WK(W, 1) is a KW. Clearly, it’s 
vertex-pancyclic. 

Hypothesis:  Suppose that a WK(W, k) is 
vertex-pancyclic, where W ≥ 6. 

Induction Step: Because the OG(WK(W, k+1)) is a 
WK(W, k). By the hypothesis, we know that each 
supervertex of the OG(WK(W, k+1)) resides in cycles 
of all lengths ranging from 3 to Wk. From the Lemma 
6, we know that each vertex of a WK(W, k+1) resides 
in 

  {Cs| 7 ≤ s ≤ 3 W } (for 3 WK(W, 1) supervertices) 
∪ {Cs| 9 ≤ s ≤ 4 W } (for 4 WK(W, 1) supervertices)  
…, 
∪ {Cs| 2n+1 ≤ s ≤ n W } (for n WK(W, 1)    
supervertices) 
∪ {Cs| 2n+3 ≤ s ≤ (n+1) W } (for n+1 WK(W, 1) 
supervertices) 
…,  
∪ {Cs| 2Wk+1 ≤ s ≤ WkW =Wk+1} (for Wk WK(W, 1) 
supervertices). 

For W ≥ 6 and n ≥ 3, nW is always greater than 
2n+3. Thus, each vertex of a WK(W, k+1) resides in 
cycles of all lengths ranging from 7 to Wk+1. By the 
recursive structure of the WK-Recursive Network, 
each vertex of a WK(W, k+1) must reside in a WK(W, 

1) subnetwork. Thus, each vertex of a WK(W, k+1) 
resides in  {Cs| 3 ≤ s ≤ W} ∪ {Cs| 7 ≤ s ≤ Wk+1} = 
{Cs| 3 ≤ s ≤ Wk+1} for W ≥ 6.             Q. E. D. 

Then, we investigate the vertex-pancyclicity of 
a WK(4, L) and a WK(5, L). Clearly, a WK(4, 1) and 
a WK(5, 1) are vertex-pancyclic for L = 1. That is, 
each vertex of a WK(4, 1) (WK(5, 1)) resides in {Cs| 
3 ≤ s ≤ 4} ({Cs| 3 ≤ s ≤ 5}). From Lemma 6, we know 
that each vertex of a WK(4, 2) (WK(5, 2)) resides in 
{Cs| 7 ≤ s ≤ 16} ({Cs| 7 ≤ s ≤ 25}). Thus, a WK(4, 2) 
and a WK(5, 2) are 7-vertex-pancyclic. Suppose that 
a WK(4, k) and a WK(5, k) are 7-vertex-pancyclic for 
k ≥ 2. By the recursive structure of the WK(W, L), 
each vertex of a WK(W, k+1) must reside in a WK(W, 
2) subnetwork for k > 2. According to Lemma 6, each 
vertex of a WK(4, k+1) (WK(5, k+1)) resides in {Cs| 
7 ≤ s ≤ 16} ∪ {Cs| 15 ≤ s ≤ 4 k+1} = {Cs| 7 ≤ s ≤ 4 k+1} 
({Cs| 7 ≤ s ≤ 25} ∪ {Cs| 15 ≤ s ≤ 5 k+1}= {Cs| 7 ≤ s ≤ 5 

k+1}). Thus, we have 

Lemma 8. A WK(4, L) and a WK(5, L) are 
7-vertex-pancyclic, where L ≥ 2. 

In a WK(4, L) (WK(5, L)), a corner vertex (dL)L 
has no inter-cluster edge, where 0 ≤ dL ≤ 3 (0 ≤ dL ≤ 4) 
and L ≥ 2. Thus, the corner vertex cannot reside in a 
C6.  

Corollary 9. A WK(4, L) and a WK(5, L) are strictly 
7-vertex-pancyclic, where L ≥ 2. 

A WK(3, 1) is nothing but a C3. From Lemma 6, 
each vertex of a WK(3, 2) resides in   {Cs| 7 ≤ s ≤ 
9}. Each vertex of a WK(3, 3) resides in {Cs| 15 ≤ s ≤ 
27}. Each vertex of a  WK(3, 4) resides in {Cs| 31 ≤ 
s ≤ 81}. If each vertex of a WK(3, k) resides in {Cs| 
31 ≤ s ≤ 3k} for k ≥ 4, each vertex of a WK(3, k+1) 
resides in {Cs| 63 ≤ s ≤ 3k+1}. By the recursive 
structure of the WK-Recursive Network, each vertex 
of a WK(W, k+1) must reside in a WK(W, k) 
subnetwork. Clearly, 3k is always greater than 63 for 
k ≥ 4. Thus, each vertex of a WK(3, k+1) resides in 
{Cs| 31 ≤ s ≤ 3k} ∪ {Cs| 63 ≤ s ≤ 3k+1} = {Cs| 31 ≤ s ≤ 
3k+1 } for k ≥ 4. Thus we have 

Lemma 10. A WK(3, L) is 31-vertex-pancyclic for L 
≥ 4. 

4. The Edge-Pancyclicity of a 
WK-Recursive Network 

In this section, we investigate the 
edge-pancyclicity of the WK-Recursive network. To 
study the edge-pancyclicity of a WK-Recursive 
network, the following lemmas are required. 

Lemma 11. If each inner-cluster edge of the 
OG(WK(W, L)) resides in a cycle of length l, each 
inner-cluster edge of a WK(W, L) resides in cycles of 
all lengths ranging from 2l+2 to Wl, where W ≥ 4. 
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Proof. In a WK(W, L), let (X, Y) be an arbitrary 
inner-cluster edge residing in an arbitrary WK(W, 1) 
supervertex V1*. By Proposition 2, because W ≥ 4, 
there exists a vertex S1 residing in the V1* such that S1 
≠ X and S1 ≠ Y; and S1 is incident to a level-1 edge 
(V0*, V1*) of the WK(W, L). By the hypothesis, we 
know that the inner-cluster edge (V0*, V1*) of the 
OG(WK(W, L)) resides in a cycle (V0*, V1*, …, Vl-1*) 
of length l, where 3 ≤ l ≤ WL-1, as illustrated in Figure 
3. Let D1 be the vertex that resides in V1* and is 
incident to the next edge (V1*, V2*) of the cycle. 

Case 1: X ≠ D1 and Y ≠ D1. Clearly, (S0, D0, S1, X, Y, 
D1, S2, D2, …, Sl-1, Dl-1) forms a cycle of length 2l+2. 
Totally, there are (W-2)l-2 appending vertices. Thus, 
(X, Y) resides in cycles of all lengths ranging from 
2l+2 to Wl. 

Case 2: X = D1 or Y = D1. Without loss of generality, 
let Y = D1. Clearly, (S0, D0, S1, X, Y   (i.e., D1), S2, 
D2, …, Sl-1, Dl-1) forms a cycle of length 2l+1. Totally, 
there are (W-2)l-1 appending vertices. Thus, (X, Y) 
resides in cycles of all lengths ranging from 2l+1 to 
Wl.                                 Q. E. D. 

Lemma 12. Each inner-cluster edge of a WK(W, L), 
where W ≥ 7, resides in cycles of all lengths ranging 
from 3 to WL. 

Proof. We will prove the lemma by induction on L. 

For L =1, a WK(W, 1) is a KW. Clearly, the lemma is 
true. 

Hypothesis:  Suppose that each inner-cluster edge of 
a WK(W, k), where W ≥ 7, resides in cycles of all 
lengths ranging from 3 to Wk. 

Induction Step: The OG(WK(W, k+1)) is a WK(W, k). 
By the hypothesis and Lemma 11, we know that each 
inner-cluster edge of a WK(W, k+1) resides in 

{Cs| 8 ≤ s ≤ 3 W } (for 3 WK(W, 1) supervertices) 
∪ {Cs| 10 ≤ s ≤ 4 W } (for 4 WK(W, 1) supervertices) 
…, 
∪ {Cs| 2n+2 ≤ s ≤ n W } (for n WK(W, 1) 
supervertices) 
∪ {Cs| 2n+4 ≤ s ≤ (n+1) W } (for n+1 WK(W, 1) 
supervertices) 
…, 
∪ {Cs| 2Wk+2 ≤ s ≤ WkW =Wk+1} (for Wk WK(W, 1) 
supervertices). 

For W ≥ 7 and n ≥ 3, nW is always greater than 2n+4. 
Thus, each inner-cluster edge of a  WK(W, k+1) 
resides in cycles of all lengths ranging from 8 to Wk+1. 
By the recursive structure of the WK-Recursive 
Network, each inner-cluster edge of a WK(W, k+1) 
must reside in a WK(W, 1) subnetwork for k ≥ 1. 
Thus, each inner-cluster edge of a WK(W, k+1) 
resides in  {Cs| 3 ≤ s ≤ 7} ∪ {Cs| 8 ≤ s ≤ Wk+1} = 
{Cs| 3 ≤ s ≤ Wk+1}, where W ≥ 7. This extends the 
induction and completes the proof.        Q. E. D. 

Clearly, each inner-cluster edge of a WK(W, 1), 

where 5 ≤ W ≤ 6, resides in cycles of all lengths 
ranging from 3 to W. By Lemma 11, each 
inner-cluster edge of a WK(W, 2), where   5 ≤ W ≤ 
6, resides in {Cs| 3 ≤ s ≤ W or 8 ≤ s ≤ W2}. Suppose 
that each inner-cluster edge of a WK(W, k), where 5 ≤ 
W ≤ 6, resides in {Cs| 3 ≤ s ≤ W or 8 ≤ s ≤ Wk}. By 
Lemma 11, we know that each inner-cluster edge of a 
WK(W, k+1), where 5 ≤ W ≤ 6, resides in {Cs| 3 ≤ s ≤ 
W  or  8 ≤ s ≤ W2 or 18 ≤ s ≤ Wk+1}. For 5 ≤ W ≤ 6, 
W2 is always greater than 18. Thus, we have 

Corollary 13. Each inner-cluster edge of a WK(W, L), 
where 5 ≤ W ≤ 6, resides in 
{Cs| 3 ≤ s ≤ W or 8 ≤ s ≤ WL}. 

Likewise, we have the following corollary. 

Corollary 14. Each inner-cluster edge of a WK(4, 2) 
resides in {Cs| 3 ≤ s ≤ 4 or 8 ≤ s ≤ 16}. 

Each inner-cluster edge of a WK(4, 3) resides 
in {Cs| 3 ≤ s ≤ 4 or 8 ≤ s ≤ 16 or 18 ≤ s ≤ 64}. 
Suppose that each inner-cluster edge of a WK(4, k) 
resides in {Cs| 3 ≤ s ≤ 4 or   8 ≤ s ≤ 16 or 18 ≤ s ≤ 4k} 
for k ≥ 3. By Lemma 11, each inner-cluster edge of a 
WK(4, k+1) resides in {Cs| 3 ≤ s ≤ 4 or 8 ≤ s ≤ 16 or 
18 ≤ s ≤ 4k or 38 ≤ s ≤ 4k+1 }. Clearly, for k ≥ 3, 4k is 
always greater than 38. Thus, we have 

Corollary 15. Each inner-cluster edge of a WK(4, L) 
resides in {Cs| 3 ≤ s ≤ 4 or 8 ≤ s ≤ 16 or 18 ≤ s ≤ 4L } 
for L ≥ 3. 

Lemma 16. There exist paths of all lengths ranging 
from 2L-1 to WL-1, between each pair of corner 
vertices of a WK(W, L), where W ≥ 4. 

Proof. We will prove the lemma by induction on L. 

For L = 1, a WK(W, 1) is a KW. Clearly, there exist 
paths of all lengths ranging from 2L-1(i.e., 1) to WL-1 
(i.e., W-1), between each pair of corner vertices of a 
WK(W, 1). 

Hypothesis:  Suppose that there exist paths of all 
lengths ranging from 2k-1 to Wk-1, between each pair 
of corner vertices of a WK(W, k), where W ≥ 4. 

Induction Step: The OG(WK(W, k+1)) is a WK(W, k). 
Let (P, Q) be a pair of corner vertices of a WK(W, 
k+1). The WK(W, 1) supervertex that P(Q) resides in 
is denoted by VP* (VQ*). By the hypothesis, we know 
that there exist a path (V0*, V1*, …, Vl-1*) of length 
l-1, where 2k ≤ l ≤ Wk, V0* = VP* and Vl-1* = VQ*. 
There exist paths of all lengths ranging from 2×2k-1 = 
2k+1-1 to W×Wk-1 = Wk+1-1, between P and Q. This 
extends the induction and completes the proof.     
Q. E. D. 

If each WK(W, 1) subnetwork of a WK(W, L) 
is taken as a supervertex, the WK(W, L) will be 
transformed to a WK(W, L-1). Moreover, each 
original level-1 inter-cluster edge will be an 
inner-cluster edge in the WK(W, L-1); and each 
original level-J inter-cluster edge will be a level-(J-1) 
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inter-cluster edge in the WK(W, L-1), where L-1 ≥ J ≥ 
2. As stated before, a  WK(W, L) can be constructed 
recursively. By induction, it is easy to see that if each 
WK(W, H) subnetwork of a WK(W, L) is taken as a 
supervertex, the WK(W, L) will be transformed to a 
WK(W, L-H); the original level-H inter-cluster edge 
of the WK(W, L) will be transformed as an 
inner-cluster edge of the WK(W, L-H); and the 
original level-J inter-cluster edge of the WK(W, L) 
will be transformed as a level-(J-H) inter-cluster edge 
of the WK(W, L-H), where L-1 ≥ J > H. 

Lemma 17. If each inner-cluster edge of a WK(W, 
L-H) resides in a cycle of length l, each level-H 
inter-cluster edge of a WK(W, L) resides in cycles of 
all lengths ranging from 2H×l to WH×l.      Q. E. D 

Proof: By hypothesis, we know that each 
inner-cluster edge of a WK(W, L-H) resides in a cycle 
of length l. Thus, in the corresponding WK(W, L), 
each level-H inter-cluster edge resides in the cycles 
through l WK(W, H) subnetworks and l level-H 
inter-cluster edges. From Lemma 16, we know that 
each level-H inter-cluster edge of a WK(W, L) resides 
in cycles of all lengths ranging from (2H-1)×l + l = 
2H×l to (WH-1)×l + l = WH×l.             Q. E. D. 

Lemma 18. A level-H inter-cluster edge of a WK(W, 
L), where W ≥ 7 and H ≥ 1, resides in cycles of all 
lengths ranging from 3×2H to WL. 

Proof.  By Lemma 12, each inner-cluster edge of the 
WK(W, L-H) resides in cycles of all lengths ranging 
from 3 to WL-H, where W ≥ 7. From Lemma 17, we 
know that each level-H inter-cluster edge of a WK(W, 
L) resides in {Cs| 3×2H ≤ s ≤ 3×WH } ∪ {Cs| 4×2H ≤ s 
≤ 4×WH } ∪…∪ {Cs| (WL-H –1)×2H ≤ s ≤ 
(WL-H –1)×WH } ∪ {Cs| WL-H ×2H ≤ s ≤ WL-H ×WH = 
WL} = {Cs| 3×2H ≤ s ≤ WL}. That is, each level-H 
inter-cluster edge of a WK(W, L) resides in cycles of 
all lengths ranging from 3×2H to WL, where W ≥ 7 
and H ≥ 1.                            Q. E. D. 

In this paper, the shortest path between X and Y 
is denoted by X ⇒S Y; and an edge connecting U and 
V is denoted by U → V. The highest level of the 
inter-cluster edges of a WK(W, L) is L-1. Consider an 
level-(L-1) inter-cluster edge (da(db)L-1, db(da)L-1) of a 
WK(W, L), where da ≠ db. By the structure of a 
WK(W, L), da(*)L-1 and db(*)L-1 are connected by only 
one edge (da(db)L-1, db(da)L-1). Thus, the shortest cycle 
embedding (da(db)L-1, db(da)L-1) is (da(db)L-1→ db(da)L-1 

⇒S db(dc)L-1→ dc(db)L-1 ⇒S dc(da)L-1 → da(dc)L-1 ⇒S 
da(db)L-1) where da, db and dc are distinct digits. The 
distance between db(da)L-1 and db(dc)L-1 (dc(db)L-1 and 
dc(da)L-1, da(dc)L-1 and da(db)L-1) is 2L-1-1 [8]. The total 
length of the cycle is 3(2L-1-1)+3 = 3×2L-1. Thus, we 
have 

Lemma 19. The length of the shortest cycle 
containing a level-(L-1) inter-cluster edge of a WK(W, 
L) is 3×2L-1. 

Combining Lemma 12, Lemma 18 and Lemma 
19, we have 

Theorem 20. A WK(W, L) is strictly 
3×2L-1-edge-pancyclic, where W ≥ 7 and L ≥ 1. 

Then, we investigate the m-edge-pancyclicity 
of a WK(5, L) and a WK(6, L). According to 
Corollary 13 and Lemma 17, we can derive that each 
level-H inter-cluster edge of a WK(5, L) resides in 
{Cs| 3×2H ≤ s ≤ 5L} for L ≥ 3. Clearly, the highest 
level of the inter-cluster edges of a WK(5, L) is L-1. 
From Corollary 13 and Lemma 19, we have the 
following lemmas: 

Lemma 21. A WK(5, 2) is 8-edge-pancyclic. 

Lemma 22. A WK(5, L) is strictly 
3×2L-1-edge-pancyclic for L ≥ 3. 

Like the above discussion, we can derive the 
following lemmas: 

Lemma 23. A WK(6, 2) is 8-edge-pancyclic. 

Lemma 24. A WK(6, L) is strictly 
3×2L-1-edge-pancyclic for L ≥ 3. 

Then, we investigate the m-edge-pancyclicity 
of a WK(4, L). By Corollary 15 and Lemma 17, we 
can derive that each level-H inter-cluster edge of a 
WK(4, L) resides in {Cs| 3×2H ≤ s ≤ 4L} for L ≥ 4. 
Clearly, the highest level of the inter-cluster edges of 
a WK(4, L) is L-1. From Corollary 14, Corollary 15 
and Lemma 19, we have the following lemmas: 

Lemma 25. A WK(4, 2) is 8-edge-pancyclic. 

Lemma 26. A WK(4, 3) is 18-edge-pancyclic. 

Lemma 27. A WK(4, L) is strictly 3×2L-1-edge- 
pancyclic for L ≥ 4. 

Consider the edge ((0)L-11, (0)L-12) of a WK(3, 
L), where L ≥ 2. Clearly, the edge cannot be 
contained in a Hamiltonian cycle. As illustrated in 
Figure 4, edge (01, 02) cannot reside in a 
Hamiltonian cycle of a WK(3, 2). Thus, a WK(3, L) 
is not m-edge-pancyclic for L ≥ 2. 

5. Conclusions 

In this paper, we have shown that a 
WK-Recursive network with amplitude W and level L 
is vertex-pancyclic for W ≥ 6. The WK-Recursive 
network is proved to be strictly 7-vertex-pancyclic, 
where 5 ≤ W ≤ 6 and L ≥ 2. On the other hand, we 
also investigate the m-edge-pancyclicity of the 
WK-Recursive network. We show that the 
WK-Recursive network is strictly 
3×2L-1-edge-pancyclic for W ≥ 7 and L ≥ 1. However, 
the panconnected problem of the WK-Recursive 
network is still open. 



                                                                             7

Acknowledgments 

This work was supported in part by the 
National Science Council of the Republic of China 
under the contract number: NSC95-2221-E-142-003. 

REFERENCE 

[1]  B. Alspach and D. Hare, “Edge-pancyclic 
block-intersection graphs”, Discrete Math, 97 
(1–3), pp.17–24, 1991. 

[2]  T. Araki and Y. Shibata, “Pancyclicity of 
recursive circulant graphs”, Information 
Processing Letters, 81(4), pp.187-190, 2002. 

[3]  A. Auletta, A. Rescigno, and V. Scarano, 
“Embedding graphs onto the supercube”, IEEE 
Trans. Comput, 44 (4), pp.593-597, 1995. 

[4]  M.M. Bae, “Resource placement in torus-based 
networks”, IEEE Transactions on Comput, 
46(10), 1083-1092, 1997. 

[5]  H.Y. Chang and R.J. Chen, “Embedding cycles 
in IEH graphs”, Inform. Process. Lett, 64, 
pp.23-27, 1997. 

[6]  J. M. Chang, J. S.Yang, J. S. Yang, Y. L. Wang 
and Y. Cheng, “Panconnectivity, Fault-Tolerant 
Hamiltonicity and Hamiltonian-Connectivity in 
Alternating Group Graphs”, Networks, 44(4), 
pp.302-310, 2004. 

[7]  G. Chartrand and O. R. Oellermann, “Applied 
and Algorithmic Graph Theory”, McGraw-Hill, 
New York, 1993. 

[8]  G.H. Chen and D.R. Duh, “Topological 
properties, communication, and computation on 
WK-recursive networks”, Networks, 24(6), 
pp.303-317, 1994. 

[9]  G.H. Chen, J.S. Fu and J.F. Fang, 
“Hypercomplete: A pancyclic recursive 
topology for large-scale distributed 
multicomputer systems”, Network, 35(1), 
pp.56-69, 2000. 

[10]  H.L. Chen and N.F. Tzeng, “Efficient resource 
placement in hypercubes using 
multiple-adjacency codes”, IEEE Trans. Comput. 
43(1), pp.23-33, 1994. 

[11]  J. Fan, X. Lin and X. Jia, “Node-pancyclicity 
and edge-pancyclicity of crossed cubes”, 
Information Processing Letters, 93(3), 
pp.133-138, 2005. 

[12]  J.F. Fang, G.J. Lai, Y.C. Liu and S.T. Fang, “A 

novel broadcasting scheme for WK-recursive 
networks”, in Proceedings of 2003 IEEE Pacific 
Rim Conference on Communications, 
Computers and signal Processing, 2, 
pp.1028-1031, 2003. 

[13]  R. Fernandes, D.K. Friesen and A. Kanevsky, 
“Embedding rings in recursive networks”, 
Proceedings of the International Parallel 
Processing Symposium, pp.273-280, 1994. 

[14]  J.S. Fu, “Hamiltonicity of the WK-recursive 
network with and without faulty nodes”, IEEE 
Transactions on Parallel and Distributed 
Systems, 16(9), pp.853-865, 2005. 

[15]  A. Hobbs, “The square of a block is vertex 
pancyclic”, J. Combin. Theory Ser. B, 20(1), 
pp.1-4, 1976. 

[16]  F.T. Leighton, “Introduction to Parallel 
Algorithms and Architectures: Arrays, Trees, 
Hypercubes, Mogran Kaufmann”, California, 
1992. 

[17]  Y.C. Lin, “On balancing sorting on a linear 
array”, IEEE Transactions on Parallel and 
Distributed Systems, 4(5), pp.566-571, 1993. 

[18]  A.I. Mahdaly, H.T. Mouftah and N.N. Hanna, 
“Topological properties of WK-recursive 
networks”, Proceed. Second IEEE Workshop on 
Future Trends of Distributed Computing 
Systems, pp.374-380, 1990. 

[19]  D.R. O'Hallaron, “Uniform approach for solving 
some classical problems on a linear array”, 
IEEE Transactions on Parallel and Distributed 
Systems, 2(2), pp.236-241, 1991. 

[20]  C.D. Park and K.Y. Chwa, “Hamiltonian 
properties on the class of hypercube-like 
networks”, Information Processing Letters, 
91(1), pp.11-17, 2004. 

[21]  C. Peters and L. Volkmann, “Vertex 6-pancyclic 
in-tournaments”, Discrete Math, 285(1–3), 
pp.227–238, 2004. 

[22]  B. Ucar, C. Aykanat, K. Kaya and M. Ikinci, 
“Task assignment in heterogeneous computing 
systems”, Journal of Parallel and Distributed 
Computing, 66(1) , pp.32-46, 2006. 

[23]  G.D. Vecchia and C. Sanges, “Recursively 
scalable network for message passing 
architecture”, Proceed. Int. Conf. Parallel 
Processing and Applications, 1, pp.33-40, 1987. 

[24]  G.D. Vecchia and C. Sanges, “A recursively 
scalable network VLSI implementation”, Future 
Generat. Comput. Syst, 4(3), pp.235-243, 1988.



                                                                             8

 

(a) A WK(4, 0). 

(b) A WK(4, 1). 

(c) A WK(4, 2). 
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(d) A WK(4, 3). 

Figure 1. The structures of a WK(4, 0), a WK(4, 1), a WK(4, 2) and a WK(4, 3).  
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00* 01* 
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Figure 2. The outline graph of WK(4, 3).
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… 
V0* V1* Vl-1*

Figure 3. A cycle of length l in an OG(WK(W, L)).
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Figure 4. The edge (02, 01) cannot reside in a Hamiltonian cycle of a WK(3, 2).


