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Abstract

In this article, we introduce 2RP-property in the aug-

mented cube AQn: Let {u,v,x,y} be any four distinct

vertices of AQn. Let l1 and l2 be two integers with

l1 ≥ dAQn(u,v), l2 ≥ dAQn(x,y), and l1 + l2 = 2n−2.

Then there exist two disjoint paths P1 and P2 such that

(1) P1 is a path joining u and v with l(P1) = l1, (2) P2 is

a path joining x and y with l(P2) = l2, and (3) P1 ∪ P2

spans AQn except some special conditions.

Keywords: hamiltonian, augmented cubes.

1 Introduction

Interconnection networks play an important role in par-

allel computing/communication systems. The graph em-

bedding problem is a central issue in evaluating a net-

work. The graph embedding problem asked if the quest

graph is a subgraph of a host graph, and an important ben-

efit of the graph embeddings is that we can apply existing

algorithm for guest graphs to host graphs. This problem

has attracted a burst of studies in recent years. Cycle net-

works and path networks are suitable for designing simple

algorithms with low communication costs. The cycle em-

bedding problem, which deals with all possible lengths of

the cycles in a given graph, is investigated in a lot of inter-
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connection networks [6, 10, 12, 13]. The path embedding

problem, which deals with all possible lengths of the paths

between given two vertices in a given graph, is investi-

gated in a lot of interconnection networks [3–5, 12–14].

In this article, a network is represented as a loopless

undirected graph. For the graph definitions and nota-

tion, we follow [1]. Let G = (V, E) be a graph if V

is a finite set and E is a subset of {(a, b) | (a, b) is an

unordered pair of V }. We say that V is the vertex set

and E is the edge set. Two vertices u and v are adja-

cent if (u, v) ∈ E. We use NbdG(u) to denote the set

{v | (u, v) ∈ E(G)}. The degree of a vertex u in G,

denoted by degG(u), is |NbdG(u)|. We use δ(G) to de-

note min{degG(u) | u ∈ V (G)}. A graph is k-regular

if degG(u) = k for every vertex u in G. A path is a se-

quence of adjacent vertices, written as 〈v0, v1, . . . , vm〉,
in which all the vertices v0, v1, . . . , vm are distinct except

that possibly v0 = vm. We also write the path 〈v0, P, vm〉,
where P = 〈v0, v1, . . . , vm〉. The length of a path P , de-

noted by l(P ), is the number of edges in P . Let u and v be

two vertices of G. The distance between u and v denoted

by dG(u, v) is the length of the shortest path of G joining

u and v. The diameter of a graph G, denoted by D(G),

is max{dG(u, v) | u, v ∈ V (G)}. A cycle is a path with

at least three vertices such that the first vertex is the same

as the last one. A hamiltonian cycle is a cycle of length

V (G). A hamiltonian path is a path of length V (G) − 1.

The hypercube Qn is one of the most popular intercon-

nection networks for parallel computer/comminication

system [11]. This is partly due to its attractive prop-

erties, such as regularity, recursive structure, vertex and

edge symmetry, maximum connectivity, as well as effec-

tive routing and broadcasting algorithm. The augmented

cube AQn is a variation of Qn, proposed by Choudum

and Sunitha [2], and not only retains some favorable prop-

erties of Qn but also processes some embedding proper-

ties that Qn does not [2,7–9,13]. For example, AQn con-

tains cycles of all lengths from 3 to 2n, but Qn contains

only even cycles.

For the path embedding problem on the augmented

cube, Ma et al. [13] proved that between any two dis-

tinct vertices x and y of AQn, there exists a path Pl(x,y)

of length l with dAQn(x,y) ≤ l ≤ 2n − 1. Obvi-

ously, we expect that such a path Pl(x,y) can be fur-

ther extended by including the vertices not in P l(x,y)

into a hamiltonian path from x to a fixed vertex z or

a hamiltonian cycle. For this reason, we prove that for

any three distinct vertices x, y and z of AQn, and for

any dAQn(x,y) ≤ l ≤ 2n − 1 − dAQn(y, z) there ex-

ists a hamiltonian path R(x,y, z; l) from x to z such

that dR(x,y,z;l)(x,y) = l. As a corollary, we prove

that for any two distinct vertices x and y, and for any

dAQn(x,y) ≤ l ≤ 2n−1, there exists a hamiltonian cycle

S(x,y; l) such that dS(x,y;l)(x,y) = l.

In the following section, we introduce the definition

and some properties of the augmented cubes. In Section

3, we introduce the 2RP-property for the augmented cube

AQn and prove that AQn satisfies the 2RP-property if

n ≥ 2. We make some remarks to illustrate that some in-

teresting properties of augmented cubes are consequences

of 2RP-property in the final section.

2 Preliminaries

In this section, we introduce some properties of the

augmented cubes. Assume that n ≥ 1 is an integer. The

graph of the n-dimensional augmented cube, denoted by

AQn, has 2n vertices, each labeled by an n-bit binary

string V (AQn) = {u1u2 . . . un | ui ∈ {0, 1}}. For

n = 1, AQ1 is the graph K2 with vertex set {0, 1}.

For n ≥ 2, AQn can be recursively constructed by two
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copies of AQn−1, denoted by AQ0
n−1 and AQ1

n−1, and

by adding 2n edges between AQ0
n−1 and AQ1

n−1 as fol-

lows:

Let V (AQ0
n−1) = {0u2u3 . . . un | ui = 0 or 1 for

2 ≤ i ≤ n} and V (AQ1
n−1) = {1v2v3 . . . vn | vi = 0 or

1 for 2 ≤ i ≤ n}. A vertex u = 0u2u3 . . . un of AQ0
n−1

is adjacent to a vertex v = 1v2v3 . . . vn of AQ1
n−1 if and

only if one of the following cases holds.

(i) ui = vi, for 2 ≤ i ≤ n. In this case, (u,v) is called a

hypercube edge. We set v = uh.

(ii) ui = v̄i, for 2 ≤ i ≤ n. In this case, (u,v) is called

a complement edge. We set v = uc.

The augmented cubes AQ1, AQ2, AQ3 and AQ4 are

illustrated in Figure 1. It is proved in [2] that AQn is a

vertex transitive, (2n−1)-regular, and (2n−1)-connected

graph with 2n vertices for any positive integer n. Let i be

any index with 1 ≤ i ≤ n and u = u1u2u3 . . . un be

a vertex of AQn. We use ui to denote the vertex v =

v1v2v3 . . . vn such that uj = vj with 1 ≤ j �= i ≤ n and

ui = v̄i. Moreover, we use ui∗ to denote the vertex v =

v1v2v3 . . . vn such that uj = vi for j < i and uj = v̄j for

i ≤ j ≤ n. Obviously, un = un∗, u1 = uh, uc = u1∗,

and NbdAQn(u) = {ui | 1 ≤ i ≤ n} ∪ {ui∗ | 1 ≤ i <

n}.

Lemma 1. Assume that n ≥ 2. Then |NbdAQn(u) ∩
NbdAQn(v)| ≥ 2 if (u,v) ∈ E(G).

Proof. We prove this lemma by induction. Since AQ2

is isomorphic to the complete graph K4, the lemma holds

for n = 2. Assume the lemma holds for 2 ≤ k < n. Sup-

pose that {u,v} ⊂ V (AQi
n−1) for some i ∈ {0, 1}. By

induction, |NbdAQn(u) ∩ NbdAQn(v)| ≥ 2. Thus, con-

sider the case that either v = uh or v = uc. Obviously,

{u2∗,uc} ⊂ NbdAQn(u) ∩ NbdAQn(v) if v = uh; and

0 1

(a) AQ1

00 01

10 11

(b) AQ2

000 001 100 101

010 011 110 111

0000 0001 0100 0101

0010 0011 0110 0111

1000 1001 1100 1101

1010 1011 1110 1111

(c) AQ3
(d) AQ4

Figure 1: The augmented cubes AQ1, AQ2, AQ3 and
AQ4.

{u2∗,uh} ⊂ NbdAQn(u)∩NbdAQn(v) if v = uc. Then

the statement holds. �
The following lemma can easily be obtained from the

definition of AQn.

Lemma 2. Assume that n ≥ 3. For any two different

vertices u and v of AQn, there exists two other vertices

x and y of AQn such that the subgraph of {u,v,x,y}
containing a four cycle.

Lemma 3. [8] Let F be a subset of V (AQn). Then

there exists a hamiltonian path between any two vertices

of V (AQn) − F if |F | ≤ 2n − 4 for n ≥ 4 and |F | ≤ 1

for n = 3.

Lemma 4. [2] Let u and v be any two vertices in AQn

with n ≥ 2. Suppose that both u and v are in AQ i
n−1

for i = 0, 1. Then dAQn(u,v) = dAQi
n−1

(u,v). Suppose

that u is a vertex in AQi
n−1 and v is a vertex in AQ1−i

n−1.

Then there exist two shortest paths P1 and P2 of AQn

joining u to v such that (V (P1) − {v}) ⊂ V (AQi
n−1)

and (V (P2) − {u}) ⊂ V (AQ1−i
n−1).

With Lemma 4, we have the following corollary.

Corollary 5. Assume that n ≥ 3. Let x and y be two

vertices of AQn with dAQn(x,y) ≥ 2. Then, there are
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two vertices p and q in NbdAQn(x) with dAQn(p,y) =

dAQn(q,y) = dAQn(x,y) − 1.

Lemma 6. [8] Let {u,v,x,y} be any four distinct ver-

tices of AQn with n ≥ 2. Then there exist two disjoint

paths P1 and P2 such that (1) P1 is a path joining u and

v, (2) P2 is a path joining x and y, and (3) P1∪P2 spans

AQn.

We refer to Lemma 6 as 2P-property of the augmented

cube. This property is used for many applications of the

augmented cubes [7, 8]. Obviously, l(P1) ≥ dAQn(u,v)

and l(P2) ≥ dAQn(x,y), and l(P1) + l(P2) = 2n − 2.

We expect that l(P1), hence, l(P2) can be an arbitrarily

integer with the above constraint. However, such expec-

tation is almost true. Let us consider AQ3. Suppose that

u = 001, v = 110, x = 101, and y = 010. Thus,

dAQ3(u,v) = 1 and dAQ3(x,y) = 1. We can find

P1 and P2 with l(P1) ∈ {1, 3, 5}. Note that {x,y} =

NbdAQ3(u) ∩ NbdAQ3(v). We can not find P1 with

l(P1) = 2. Again, {u,v} = NbdAQ3(x) ∩ NbdAQ3(y).

We can not find P2 with l(P2) = 2. Hence, we cannot find

P1 with l(P1) = 4. Similarly, we consider AQ4. Suppose

that u = 0000, v = 1001, x = 0001 and y = 1000.

Thus, dAQ4(u,v) = 2 and dAQ4(x,y) = 2. We can

find P1 and P2 with l(P1) ∈ {3, 4, . . . , 11}. Note that

{x,y} = NbdAQ4(u) ∩ NbdAQ4(v). We can not find

P1 with l(P1) = 2. Again, {u,v} = NbdAQ4(x) ∩
NbdAQ4(y). We can not find P2 with l(P2) = 2.

3 The 2RP-property of the
augmented cubes

In this section, we introduce the 2RP-property for the

augmented cube AQn and prove that AQn satisfies the

2RP-property if n ≥ 2. First, we propose the 2RP-

property of AQn with n ≥ 2: Let {u,v,x,y} be any

four distinct vertices of AQn. Let l1 and l2 be two in-

tegers with l1 ≥ dAQn(u,v), l2 ≥ dAQn(x,y), and

l1 + l2 = 2n − 2. Then there exist two disjoint paths

P1 and P2 such that (1) P1 is a path joining u and v

with l(P1) = l1, (2) P2 is a path joining x and y with

l(P2) = l2, and (3) P1 ∪ P2 spans AQn except for the

following cases: (a) l1 = 2 with dAQn(u,v) = 1 such

that {x,y} = NbdAQn(u) ∩ NbdAQn(v); (b) l2 = 2

with dAQn(x,y) = 1 such that {u,v} = NbdAQn(x) ∩
NbdAQn(y); (c) l1 = 2 with dAQn(u,v) = 2 such that

{x,y} = NbdAQn(u) ∩ NbdAQn(v); and (d) l2 = 2

with dAQn(x,y) = 2 such that {u,v} = NbdAQn(x) ∩
NbdAQn(y).

Theorem 7. Assume that n is a positive integer with n ≥
2. Then AQn satisfies 2RP-property.

Proof. We prove this theorem by induction. By brute

force, we check the theorem holds for n = 2, 3, 4. As-

sume the theorem holds for any AQk with 4 ≤ k < n.

Without loss of generality, we can assume that l1 ≥ l2.

Thus, l2 ≤ 2n−1−1. By the symmetric property of AQn,

we can assume that at least one of u and v, say u, is in

V (AQ0
n−1). Thus, we have the following cases:

Case 1: v ∈ V (AQ0
n−1) and {x,y} ⊂ V (AQ1

n−1).

Subcase 1.1: dAQn(x,y) ≤ l2 ≤ 2n−1 − 3 except that

(1) l2 = 2n−1 − 4 and (2) l2 = 2 if dAQn(x,y) = 1 or

2 with {u,v} �= NbdAQn(x) ∩ NbdAQn(y). See Fig-

ure 2(a) for an illustration. By Lemma 3, there exists

a hamiltonian path R of AQ0
n−1 joining u to v. Since

l(R) = 2n−1 − 1, we can write R as 〈u, R1,p,q, R2,v〉
for some vertices p and q such that {ph,qh} ∩ {x,y} =

∅. By induction, there exist two disjoint paths S1 and

S2 such that (1) S1 is a path joining ph to qh with

l(S1) = 2n−1 − l2 − 2, (2) S2 is a path joining x to y

with l(S2) = l2, and (3) S1 ∪ S2 spans AQ1
n−1. We set
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P1 as 〈u, R1,p,ph, S1,qh,q, R2,v〉 and set P2 as S2.

Obviously, P1 and P2 are the required paths.

u

v

x

y

p ph

qh

R
1

R2

S
2

q
S1

u

v

x

y

p

r

ph

Q1

Q2

P
2

q

rh

(a)

(b)

Figure 2: Subcase 1.1 and Subcase 1.3.

Subcase 1.2: l2 = 2 if dAQn(x,y) = 1 or 2 with

{u,v} �= NbdAQn(x) ∩ NbdAQn(y). Obviously, there

exists a path P2 of length 2 in AQn − {u,v} joining x

to y. By Lemma 3, there exists a hamiltonian path P1 of

AQn − V (P2) joining u to v. Obviously, P1 and P2 are

the required paths.

Subcase 1.3: l2 = 2n−1 − 4. See Figure 2(b) for an illus-

tration. Obviously, there exists a vertex p in V (AQ1
n−1)−

{x,y,uh,vh}, a vertex q in NbdAQ1
n−1

(p) − {x,y},

and a vertex r in NbdAQ1
n−1

(q) − {x,y,p}. Suppose

that rh /∈ {u,v}. By induction, there exist two dis-

joint paths Q1 and Q2 such that (1) Q1 is a path join-

ing u to ph, (2) Q2 is a path joining rh to v, and (3)

Q1 ∪ Q2 spans AQ0
n−1. By Lemma 3, there exists a

hamiltonian path P2 of AQ1
n−1 − {p,q, r} joining x to

y. We set P1 as 〈u, Q1,ph,p,q, r, rh, Q2,v〉. Suppose

that rh ∈ {u,v}. Without loss of generality, we assume

that rh = v. By Lemma 3, there exists a hamiltonian

path R of AQ0
n−1 − {v} joining u to ph. We set P1 as

〈u, R,ph,p,q, r, rh = v〉. Obviously, P1 and P2 are the

required paths.

Subcase 1.4: l2 = 2n−1−2. Obviously, there exist a ver-

tex p ∈ V (AQ1
n−1)−{x,y,uh,uc, vh,vc}. By Lemma

6, there exists two disjoint paths Q1 and Q2 such that (1)

Q1 is a path joining u and ph, (2) Q2 is a path joining pc

and v, and (3) Q1∪Q2 spans AQ0
n−1. By Lemma 3, there

exists a hamiltonian path P2 of AQ0
n−1 − {p} joining x

to y. We set P1 as 〈u, Q1,ph,p,pc, Q2,v〉. Obviously,

P1 and P2 are the required paths.

Subcase 1.5: l2 = 2n−1 − 1. By Lemma 3, there exists a

hamiltonian path P1 of AQ0
n−1 joining u and v and there

exists a hamiltonian path P2 of AQ1
n−1 joining x to y.

Obviously, P1 and P2 are the required paths.

Case 2: v ∈ V (AQ0
n−1) and exactly one of x and y is in

V (AQ0
n−1). Without loss of generality, we assume that

x ∈ V (AQ0
n−1).

Subcase 2.1: l2 = 1. Obviously, dAQn(x,y) = 1. We

set P2 as 〈x,y〉. By Lemma 3, there exists a hamiltonian

path P1 of AQn − {x,y} joining u to v. Obviously, P1

and P2 are the required paths.

Subcase 2.2: l2 = 2 if dAQn(x,y) = 1 or 2 with

{u,v} �= NbdAQn(x) ∩ NbdAQn(y). The proof is the

same to Subcase 1.2.

Subcase 2.3: l2 = 3.
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Suppose that dAQn(x,y) = 1. There exists a vertex p

in NbdAQ0
n−1

(x) − {u,v}. By Lemma 3, there exists a

hamiltonian path P1 of AQn −{x,y,p,ph} joining u to

v. We set P2 as 〈x,p,ph,y〉. Obviously, P1 and P2 are

the required paths.

Suppose that dAQn(x,y) = 2. By Lemma 4, there

exists a path 〈x,p,y〉 from x to y such that p ∈
V (AQ1

n−1). By Lemma 1, there exists a vertex q ∈
NbdAQ1

n−1
(p) ∩ NbdAQ1

n−1
(y). By Lemma 3, there ex-

ists a hamiltonian path P1 of AQn − {x,y,p,q} joining

u to v. We set P2 as 〈x,p,q,y〉. Obviously, P1 and P2

are the required paths.

Suppose that dAQn(x,y) = 3. By Lemma 4, there

exists a path P2 from x to y such that (V (P2) − {x}) ⊂
V (AQ1

n−1). By Lemma 3, there exists a hamiltonian path

P1 of AQn − V (P2) joining u to v. Obviously, P1 and

P2 are the required paths.

Subcase 2.4: 4 ≤ l2 ≤ 2n−1−2 except that l2 = 2n−1−
3.

Suppose that dAQn(x,y) = 1 or 2. We first claim that

there exists a vertex p in NbdAQn(x)∩NbdAQn(y). As-

sume that dAQn(x,y) = 1. Obviously, either y = xh or

y = xc. We set p = xc if y = xh; and we set p = xh if

y = xc. Assume that dAQn(x,y) = 2. See Figure 3 for

an illustration. By Lemma 4, there exists a path 〈x,p,y〉
from x to y such that p ∈ V (AQ1

n−1). Obviously, p

satisfies our claim. By Lemma 3, there exists a hamil-

tonian path R of AQ0
n−1 − {x} joining u to v. Since

l(R) = 2n−1 − 3, we can write R as 〈u, R1, s, t, R2,v〉
such that {sh, th}∩{p,y} = ∅. By induction, there exist

two disjoint paths S1 and S2 such that (1) S1 is a path join-

ing sh to th with l(S1) = 2n−1 − 1 − l2, (2) S2 is a path

joining p to y with l(S2) = l2 − 1, and (3) S1 ∪ S2 spans

AQ1
n−1. We set P1 as 〈u, R1, s, sh, S1, th, t, R2,v〉 and

P2 as 〈x,p, S2,y〉. Obviously, P1 and P2 are the required

paths.

x y

u

v

R
2

R
1

p

s

t

sh

th
S
1

S2

Figure 3: Subcase 2.4.

Suppose that dAQn(x,y) ≥ 3. By Lemma 4, there

exists a vertex p in V (AQ1
n−1) such that dAQn(p,y) =

dAQn(x,y) − 1. By Lemma 3, there exists a hamiltonian

path R of AQ0
n−1 − {x} joining u to v. We can write R

as 〈u, R1, s, t, R2,v〉 such that {sh, th} ∩ {p,y} = ∅.

By induction, there exist two disjoint paths S1 and S2

such that (1) S1 is a path joining sh to th with l(S1) =

2n−1 − 1 − l2, (2) S2 is a path joining p to y with

l(S2) = l2 − 1, and (3) S1 ∪S2 spans AQ1
n−1. We set P1

as 〈u, R1, s, sh, S1, th, t, R2,v〉 and P2 as 〈x,p, S2,y〉.
Obviously, P1 and P2 are the required paths.

Subcase 2.5: l2 = 2n−1 − 3 or l2 = 2n−1 − 1. Let k = 3

if l2 = 2n−1 − 3 and k = 1 if l2 = 2n−1 − 1. There ex-

ists a vertex p in NbdAQ0
n−1

(x)−{u,v,yn}. By Lemma

3, there exists a hamiltonian path R of AQ0
n−1 − {x,p}

joining u to v. We can write R as 〈u, R1, s, t, R2,v〉 such

that {s, t} ∩ {p,yn} = ∅. By induction, there exist two

disjoint paths S1 and S2 such that (1) S1 is a path join-

ing sn to tn with l(S1) = k, (2) S2 is a path joining pn

to y with l(S2) = 2n−1 − k − 2, and (3) S1 ∪ S2 spans

AQ1
n−1. We set P1 as 〈u, R1, s, sn, S1, tn, t, R2,v〉 and

P2 as 〈x,p,pn, S2,y〉. Obviously, P1 and P2 are the re-
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quired paths.

Case 3: {v,x,y} ⊂ V (Q0
n−1).

Subcase 3.1: l2 = 1. The proof is the same as Subcase

2.1.

Subcase 3.2: l2 = 2 if dAQn(x,y) = 1 or 2 with

{u,v} �= NbdAQn(x) ∩ NbdAQn(y). The proof is the

same as Subcase 1.2.

Subcase 3.3: dAQn(x,y) ≤ l2 ≤ 2n−2 − 1. See Figure

4(a) for an illustration. By induction, there exist two dis-

joint paths R1 and R2 such that (1) R1 is a path joining u

to v with l(R1) = 2n−1 − l2 − 2, (2) R2 is a path joining

x to y with l(R2) = l2, (3) R1 ∪ R2 spans AQ0
n−1. We

can write R1 as 〈u, R3,p,q, R4,v〉. By Lemma 3, there

exists a hamiltonian path S of AQ1
n−1 joining ph to qh.

We set P1 as 〈u, R3,p,ph, S,qh,q, R4,v〉 and P2 as R2.

Obviously, P1 and P2 are the required paths.

Subcase 3.4: 2n−2 + 1 ≤ l2 ≤ 2n−1 − 1 except that

l2 = 2n−2 + 2. See Figure 4(b) for an illustration. By

induction, there exist two disjoint paths R1 and R2 such

that (1) R1 is a path joining u to v with l(R1) = 2n−2−1,

(2) R2 is a path joining x to y with l(R2) = 2n−2 − 1,

and (3) R1 ∪ R2 spans AQ0
n−1. We can write R1 as

〈u, R3,p,q, R4,v〉 and write R2 as 〈x, R5, s, t, R6,y〉.
By induction, there exist two disjoint paths S1 and S2

such that (1) S1 is a path joining ph to qh with l(S1) =

2n−1 − l2 + 2n−2 − 2, (2) S2 is a path joining sh to th

with l(S2) = l2 − 2n−2, and (3) S1 ∪ S2 spans AQ1
n−1.

We set P1 as 〈u, R3,p,ph, S1,qh,q, R4,v〉 and P2 as

〈x, R5, s, sh, S2, th, t, R6,y〉. Obviously, P1 and P2 are

the required paths.

Subcase 3.5: l2 = 2n−2 or 2n−2 + 2. Let k = 0 if l2 =

2n−2 and k = 2 if l2 = 2n−2+2. By induction, there exist

two disjoint paths R1 and R2 such that (1) R1 is a path

joining u to v with l(R1) = 2n−2 − k, (2) R2 is a path

joining x to y with l(R2) = 2n−2+k−2, and (3) R1∪R2

spans AQ0
n−1. We can write R1 as 〈u, R3,p,q, R4,v〉

and write R2 as 〈x, R5, s, t, R6,y〉. By Lemma 3, there

exists a hamiltonian path S of AQ1
n−1 −{sn, tn} joining

pn to qn. We set P1 as 〈u, R3,p,pn, S,qn,q, R4,v〉
and P2 as 〈x, R5, s, sn, tn, t, R6,y〉. Obviously, P1 and

P2 are the required paths.

x

y

u

v

p

q

ph

qh

x

y

u

v

p

q

ph

qh

s

t

sh

th

R
3

R
4

S

R2

R3

R4

R
5

R
6

S
1

S
2

(a)

(b)

Figure 4: Subcase 3.3 and Subcase 3.4.

Case 4: {x,v,y} ⊂ V (AQ1
n−1).

Subcase 4.1: dAQn(x,y) ≤ l2 ≤ 2n−1−3 except that (1)

l2 = 2n−1−4 and (2) l2 = 2 if dAQn(x,y) = 1 or 2 with

{u,v} �= NbdAQn(x) ∩ NbdAQn(y). See Figure 5(a)

for an illustration. Obviously, there exists a vertex p in

NbdAQ1
n−1

(v)−{x,y,uh}. By induction, there exist two
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disjoint paths S1 and S2 such that (1) S1 is a path joining

p to v with l(S1) = l1 − 2n−1, (2) S2 is a path joining x

to y with l(S2) = l2, and (3) S1 ∪ S2 spans AQ1
n−1. By

Lemma 3, there exists a hamiltonian path R of AQ0
n−1

joining u and ph. We set P1 as 〈u, R,ph,p, S1,v〉 and

we set P2 as S2. Obviously, P1 and P2 are the required

paths.

u

v

x

y

p

ph

R

S
1

S2

u

v

x

y

p

ph

s
R

1

R
2

S
2
2

r

S
2
1

rh

sh

S
1

(a)

(b)

Figure 5: Subcase 4.1 and Subcase 4.5.

Subcase 4.2: l2 = 2 if dAQn(x,y) = 1 or 2 with

{u,v} �= NbdAQn(x) ∩ NbdAQn(y). The proof is the

same to Subcase 1.2.

Subcase 4.3: l2 = 2n−1 − 4. Obviously, there exists a

vertex p in NbdAQ1
n−1

(v) − {x,y}, and there exists a

vertex q in NbdAQ1
n−1

(p)−{x,y,v,uh}. By Lemma 3,

there exists a hamiltonian path R of AQ0
n−1 joining u to

qh, and there exists a hamiltonian path P2 of AQ1
n−1 −

{v,p,q} joining x to y. We set P1 as 〈u, R,qh,q,p,v〉.
Obviously, P1 and P2 are the required paths.

Subcase 4.4: l2 = 2n−1 − 2. Let v′ be an element in

{vh,vc} − {u}. By Lemma 3, there exists a hamilto-

nian path R of AQ0
n−1 joining u to v′, and there exists

a hamiltonian path P2 of AQ1
n−1 − {v} joining x to y.

We set P1 as 〈u, R,v′,v〉. Obviously, P1 and P2 are the

required paths.

Subcase 4.5: l2 = 2n−1 − 1. See Figure 5(b) for

an illustration. Obviously, there exists a vertex p in

NbdAQ1
n−1

(v) − {x,y}. By induction, there exist two

disjoint paths S1 and S2 such that (1) S1 is a path joining

p to v with l(S1) = 1, (2) S2 is a path joining x to y with

l(S2) = 2n−1 − 3, and (3) S1 ∪ S2 spans AQ1
n−1. Ob-

viously, we can write S2 as 〈x, S1
2 , r, s, S2

2 ,y〉 for some

vertex r and s such that u /∈ {rh, sh}. Again by induc-

tion, there exist two disjoint paths R1 and R2 such that

(1) R1 is a path joining u to ph with l(R1) = 2n−1 − 3,

(2) R2 is a path joining rh to sh with l(R2) = 1, and (3)

R1 ∪ R2 spans AQ0
n−1. We set P1 as 〈u, R1,ph,p,v〉

and set P2 as 〈x, S1
2 , r, rh, sh, s, S2

2 ,y〉. Obviously, P1

and P2 are the required paths.

Case 5: v ∈ V (AQ1
n−1) and |{x, y} ∩ V (AQ0

n−1)| =

1. Without loss of generality, we assume that x ∈
V (AQ0

n−1).

Subcase 5.1: l2 = 1. The proof is the same to Subcase

2.1.

Subcase 5.2: l2 = 2 if dAQn(x,y) = 1 or 2 with

{u,v} �= NbdAQn(x) ∩ NbdAQn(y). The proof is the

same to Subcase 1.2.

Subcase 5.3: l2 = 3.

8



Suppose that dAQn(x,y) = 1. Obviously, there exists

a vertex p in NbdAQ0
n−1

(x) − {u,vh}. We set P2 as

〈x,p,ph,y〉. By Lemma 3, there exists a hamiltonian

path P1 of AQn − V (P2) joining u to v. Obviously, P1

and P2 are the required paths.

Suppose that dAQn(x,y) = 2. Assume that {u,v} =

NbdAQn(x)∩NbdAQn(y). Thus, we have either v = xh

or v = xc. Moreover, u = xα, and y = vα for some

α ∈ {i | 2 ≤ i ≤ n} ∪ {i∗ | 2 ≤ i ≤ n − 1}. We set

P2 as 〈x,xh∗, (xh∗)α, ((xh)α) = y〉 in the case of v =

xh. Otherwise, we set P2 as 〈x,xh, (xh)α, ((xh∗)α) =

y〉. By Lemma 3, there exists a hamiltonian path P1

of AQn − V (P2) joining u to v. Obviously, P1 and

P2 are the required paths. Now, assume that {u,v} �=
NbdAQn(x) ∩ NbdAQn(y). By Lemma 1, there exists

a vertex p in (NbdAQn(x) ∩ NbdAQn(y)) − {u,v}.

Without loss of generality, we may assume that p is

in AQ0
n−1. By Lemma 1, there exists a vertex q in

(NbdAQ0
n−1

(p) ∩ NbdAQ0
n−1

(x)) − {u}. By Lemma 3,

there exists a hamiltonian path P1 of AQn − {x,q,p,y}
joining u to v. We set P2 as 〈x,q,p,y〉. Obviously, P1

and P2 are the required paths.

Suppose that dAQn(x,y) = 3. By Lemma 4, there are

two shortest paths R1 and R2 of AQn joining x to y such

that R1 can be written as 〈x, r1, r2,y〉 with {r1, r2} ⊂
V (AQ0

n−1) and R2 can be written as 〈x, s1, s2,y〉 with

{s1, s2} ⊂ V (AQ1
n−1). Suppose that u �= r2 or

v �= s1. Without loss of generality, we assume that

u �= r2. By Corollary 5, there exists a vertex t ∈
NbdAQ0

n−1
(x) ∩ NbdAQ0

n−1
(r2) − {u}. We set P2 as

〈x, t, r2,y〉. By Lemma 3, there exists a hamiltonian

path P1 of AQn − V (P2) joining u to v. Obviously,

P1 and P2 are the required paths. Thus, we consider

u = r2 and v = s1. By Corollary 5, there exists a

vertex p in NbdAQ0
n−1

(x) ∩ NbdAQ0
n−1

(u). Obviously,

dAQn(p,y) = 2. By Lemma 4, there exists a vertex

q in V (AQ1
n−1) ∩ NbdAQn(p) ∩ NbdAQn(y). Since

dAQn(q,y) = 1 and dAQn(v,y) = 2, q �= v. We set

P2 as 〈x,p,q,y〉. By Lemma 3, there exists a hamilto-

nian path P1 of AQn −V (P2) joining u to v. Obviously,

P1 and P2 are the required paths.

Subcase 5.4: 4 ≤ l2 ≤ 2n−1 − 1 with dAQn(x,y) = 1.

Suppose that l2 = 4. See Figure 6(a) for an

illustration. Obviously, there exists a vertex p in

NbdAQ0
n−1

(x) − {u,vh}. By Lemma 1, there exists

a vertex q in (NbdAQ0
n−1

(x) ∩ NbdAQ0
n−1

(p)) − {u}.

By Lemma 3, there exists a hamiltonian path P1 of

AQn − {x,y,p,ph,q} joining u to v. We set P2 as

〈x,q,p,ph,y〉. Obviously, P1 and P2 are the required

paths.

Suppose that 5 ≤ l2 ≤ 2n−1 − 1 except that l2 =

2n−1 − 2. See Figure 6(b) for an illustration. Obviously,

there exist a vertex p in NbdAQ0
n−1

(x)−{u,vh,yh} and

a vertex s in NbdAQ0
n−1

(u) − {x,p,vh,yh}. By induc-

tion, there exist two disjoint paths R1 and R2 such that (1)

R1 is a path joining u to s with l(R1) = 2n−1−2−l2, (2)

R2 is a path joining p to x with l(R2) = l2 − 2, and (3)

R1∪R2 spans AQ0
n−1. By Lemma 3, there exists a hamil-

tonian path S of AQ1
n−1 − {y,ph} joining sh to v. We

set P1 as 〈u, R1, s, sh, S,v〉 and P2 as 〈x, R2,p,ph,y〉.
Obviously, P1 and P2 are the required paths.

Suppose that l2 = 2n−1 − 2. See Figure 6(c) for an

illustration. Let s and p be two vertices in V (AQ0
n−1) −

{u,x,vh,yh}. By induction, there exist two disjoint

paths R1 and R2 such that (1) R1 is a path joining u to s

with l(R1) = 2n−2, (2) R2 is a path joining p to x with

l(R2) = 2n−2 − 2, (3) R1 ∪R2 spans AQ0
n−1. Similarly,

there exist two disjoint paths S1 and S2 such that (1) S1

is a path joining sh to v with l(S1) = 2n−2 − 1, (2) S2

is a path joining ph to y with l(S2) = 2n−2 − 1, and (3)
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Figure 6: Subcase 5.4.

S1 ∪ S2 spans AQ1
n−1. We set P1 as 〈u, R1, s, sh, S1,v〉

and P2 as 〈x, R2,p,ph, S2,y〉. Obviously, P1 and P2 are

the required paths.

Subcase 5.5: 4 ≤ l2 ≤ 2n−1 − 1 except l2 = 2n−1 − 3

with dAQn(x,y) ≥ 2.

Suppose that dAQn(x,y) = 2 with {u,v} =

NbdAQn(x) ∩ NbdAQn(y). See Figure 7(a) for an illus-

tration. Thus, we have either v = xh or v = xc. More-

over, u = xα and y = (xh)α for some α ∈ {i | 2 ≤ i ≤
n} ∪ {i∗ | 2 ≤ i ≤ n − 1}. Obviously, there exists a ver-

tex t in NbdAQ1
n−1

(v) − {xh,y,xc,uh}. By induction,

there exist two disjoint paths R1 and R2 such that (1) R1

is a path joining t to v with l(R1) = 2n−1−1− l2, (2) R2

is a path joining xc to y with l(R2) = l2 − 1 in the case

of v = xh; otherwise R2 is a path joining xh to y with

l(R2) = l2−1, and (3) R1∪R2 spans AQ1
n−1. By Lemma

3, there exists a hamiltonian path S of AQ0
n−1−{x} join-

ing th to u. We set P1 as 〈u, S, th, t, R1,v〉 and P2 as

〈x,xc, R2,y〉 in the case of v = xh; otherwise, we set P2

as 〈x,xh, R2,y〉. Obviously, P1 and P2 are the required

paths.

Suppose that dAQn(x,y) = 2 with {u,v} �=
NbdAQn(x) ∩ NbdAQn(y). See Figure 7(b) for an illus-

tration. Then, there exists a vertex p in (NbdAQn(x) ∩
NbdAQn(y)) − {u,v}. Without loss of generality, we

may assume that p ∈ V (AQ1
n−1). Obviously, there exists

a vertex t in NbdAQ1
n−1

(v) − {y,p,uh,xh}. By induc-

tion, there exist two disjoint paths R1 and R2 such that (1)

R1 is a path joining t to v with l(R1) = 2n−1 − 1 − l2,

(2) R2 is a path joining p to y with l(R2) = l2 − 1, and

(3) R1 ∪ R2 spans AQ1
n−1. By Lemma 3, there exists

a hamiltonian path S of AQ0
n−1 − {x} joining th to u.

We set P1 as 〈u, S, th, t, R1,v〉 and P2 as 〈x,p, R2,y〉.
Obviously, P1 and P2 are the required paths.

Suppose that dAQn(x,y) = k ≥ 3. By
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Figure 7: Subcase 5.5.

Lemma 4, there are two shortest paths S1 and

S2 of AQn joining x to y such that S1 can

be written as 〈x = r0, r1, r2, . . . , rk−1,y〉 with

(V (S1) − {y}) ⊂ V (AQ0
n−1) and S2 can be writ-

ten as 〈x, s1, s2, . . . , sk−1,y〉 with (V (S2) − {x}) ⊂
V (AQ1

n−1). Suppose that u �= rk−1. See Figure 7(c)

for an illustration. We set p = rk−1. Again, there exists

a vertex s in NbdAQ0
n−1

(u) − {x,p,yh,vh}. By induc-

tion, there exist two disjoint paths R1 and R2 such that (1)

R1 is a path joining u to s with l(R1) = 2n−1 − 1 − l2,

(2) R2 is a path joining p to x with l(R2) = l2 − 1, and

(3) R1 ∪ R2 spans AQ0
n−1. By Lemma 3, there exists

a hamiltonian path S of AQ1
n−1 − {y} joining sh to v.

We set P1 as 〈u, R1, s, sh, S,v〉 and P2 as 〈x, R2,p,y〉.
Obviously, P1 and P2 are the required paths.

Now we assume that rk−1 = u and s1 = v. See Fig-

ure 7(d) for an illustration. Since dAQn(rk−2,y) = 2,

by Lemma 4, there exists a vertex p ∈ NbdAQn(rk−2)

in V (AQ1
n−1) such that dAQn(p,y) = 1. Suppose that

l2 = 4 with dAQn(x,y) = 3. Thus, 〈x, r1,p,y〉 is a

shortest path joining x and y. By Lemma 1, there ex-

ists a vertex q ∈ NbdAQ1
n−1

(p) ∩ NbdAQ1
n−1

(y) − {v}.

By Lemma 3, there exists a hamiltonian path P1 of

AQn − {x, r1,p,q,y} joining u to v. We set P2 as

〈x, r1,p,q,y〉. Obviously, P1 and P2 are the required

paths. Suppose that l2 = 4 with dAQn(x,y) = 4. Thus,

P2 = 〈x, r1, r2,p,y〉 is a shortest path joining x and

y. By Lemma 3, there exists a hamiltonian path P1 of

AQn−{x, r1, r2,p,y} joining u to v. Obviously, P1 and

P2 are the required paths. Suppose that 5 ≤ l2 ≤ 2n−2

with dAQn(x,y) ≥ 3. Obviously, there exists a vertex

s in NbdAQ0
n−1

(u) − {x, rk−2,yh,vh}. By induction,

there exist two disjoint paths R1 and R2 such that (1) R1

is a path joining u to s with l(R1) = 2n−1 − l2, (2) R2

is a path joining rk−2 to x with l(R2) = l2 − 2, and (3)
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R1∪R2 spans AQ0
n−1. By Lemma 3, there exists a hamil-

tonian path S of AQ1
n−1 −{p,y} joining sh to v. We set

P1 as 〈u, R1, s, sh, S,v〉 and P2 as 〈x, R2, rk−2,p,y〉.
Obviously, P1 and P2 are the required paths. Suppose

that 2n−2 + 1 ≤ l2 < 2n−1 − 1 except 2n−1 − 3 with

dAQn(x,y) ≥ 3. Obviously, there exists a vertex s in

NbdAQ0
n−1

(u) − {x, rk−2,yh,vh}. By induction, there

exist two disjoint paths R1 and R2 such that (1) R1 is a

path joining u to s with l(R1) = 2n−2 + 1, (2) R2 is a

path joining rk−2 to x with l(R2) = 2n−2 − 3, and (3)

R1 ∪ R2 spans AQ0
n−1. Again by induction, there exist

two disjoint paths S1 and S2 such that (1) S1 is a path

joining sh to v with l(S1) = 2n−1− l2 +2n−2−4, (2) S2

is a path joining p to y with l(S2) = l2−2n−2+2, and (3)

S1 ∪ S2 spans AQ1
n−1. We set P1 as 〈u, R1, s, sh, S1,v〉

and P2 as 〈x, R2, rk−2,p, S2,y〉. Obviously, P1 and P2

are the required paths.

Subcase 5.6: l2 = 2n−1 − 3 or l2 = 2n−1 − 1 with

dAQn(x,y) ≥ 2. Let t = 0 if l2 = 2n−1 − 3 and t = 1

if l2 = 2n−1 − 1. Obviously, there exist two vertices s

and p in AQ0
n−1 − {u,x,vn,yn}. By induction, there

exist two disjoint paths R1 and R2 such that (1) R1 is a

path joining u to s with l(R1) = 2n−2 − t, (2) R2 is

a path joining p to x with l(R2) = 2n−2 + t − 2, and

(3) R1 ∪ R2 spans AQ0
n−1. Similarly, there exist two

disjoint paths S1 and S2 such that (1) S1 is a path joining

sn to v with l(S1) = 2n−2 − t, (2) S2 is a path joining

pn to y with l(S2) = 2n−2 + t − 2, and (3) S1 ∪ S2

spans AQ1
n−1. We set P1 as 〈u, R1, s, sn, S1,v〉 and P2

as 〈x, R2,p,pn, S2,y〉. Obviously, P1 and P2 are the

required paths.

Thus, Theorem 7 is proved. �

4 Concluding remarks

Now, we make some remarks to illustrate that some in-

teresting properties of augmented cubes are consequences

of Theorem 7.

Remark 1. The hamiltonian connected property of aug-

mented cubes, proved in [8], states that there exists a

hamiltonian path of AQn joining any two different ver-

tices u and y. Now, we prove that AQn is hamiltonian

connected by Theorem 7. Obviously, AQn is hamiltonian

connected for n = 1. Since n ≥ 2, we can choose a pair

of adjacent vertices v and x such that {v,x}∩{u,y} = ∅.

By Theorem 7, there are two disjoint paths P1 and P2

such that (1) P1 is a path joining u to v, (2) P2 is a path

joining x to y, and (3) P1 ∪ P2 spans AQn. Obviously,

〈u, P1,v,x, P2,y〉 forms a hamiltonian path joining u to

y. Thus, AQn is hamiltonian connected.

Remark 2. The panconnected property of AQn, proved

in [13], stated that between any two different vertices x

and y of AQn there exists a path Pl(x,y) of length l for

any dAQn(x,y) ≤ l ≤ 2n − 1. Now, we prove that AQn

is panconnected by Theorem 7. Obviously, AQn is pan-

connected for n = 1, 2. Now, we consider that n ≥ 3.

Suppose that l = 2n − 1. By Remark 1, AQn is

hamiltonian connected. Obviously, the hamiltonian path

of AQn joining x and y is of length 2n − 1. Suppose that

l = 2n − 2. Let u be a vertex in NbdAQn(y) − {x}.

By Lemma 1, there exists a vertex v in (NbdAQn(u) ∩
NbdAQn(y)) − {x}. By Theorem 7, there exist two dis-

joint paths P1 and P2 such that (1) P1 is a path joining

x to u with l(P1) = 2n − 3, (2) P2 is a path joining y

to v with l(P2) = 1, and (3) P1 ∪ P2 spans AQn. Ob-

viously, 〈x, P1,u,y〉 is a path of length 2n − 2 joining x

to y. Suppose that l = 2n − 3. We can find two adja-

cent vertices u and v such that {u,v} ∩ {x,y} = ∅. By

Theorem 7, there exist two disjoint paths P1 and P2 such

that (1) P1 is a path joining x to y with l(P1) = 2n − 3,

(2) P2 is a path joining u to v with l(P2) = 1, and (3)
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P1 ∪ P2 spans AQn. Obviously, P1 is a path of length

2n − 3 joining x to y. Suppose that l ≤ 2n − 4. By

Lemma 2, there exist two vertices u and v such that

dAQn(u,v) = 2, {x,y} �= NbdAQn(u) ∩ NbdAQn(v),

and {u,v} �= NbdAQn(x) ∩ NbdAQn(y). By Theorem

7, there exist two disjoint paths P1 and P2 such that (1)

P1 is a path joining x to y with l(P1) = l, (2) P2 is a path

joining u to v with l(P2) = 2n − 2 − l, and (3) P1 ∪ P2

spans AQn. Obviously, P1 is a path of length l joining x

to y. Thus, AQn is panconnected.

Remark 3. The edge-pancyclic property property of

AQn stated that for any edge e = (x,y) and for any

3 ≤ l ≤ 2n, there exists a cycle of length l containing

e if n ≥ 2. We prove that AQn is edge-pancyclic by The-

orem 7. Obviously, AQn is edge-pancyclic for n = 2.

Thus, we consider that n ≥ 3.

Suppose that l = 3. By Lemma 1, there exists u ∈
NbdAQn(x)∩NbdAQn(y). Obviously, 〈x,y,u,x〉 forms

a cycle of length three containing e. Now, we consider

that l = 2n and l = 2n − 1. By Lemma 1, there exists

v ∈ (NbdAQn(u)∩NbdAQn(y))−{x}. By Theorem 7,

there exist two disjoint paths P1 and P2 such that (1) P1 is

a path joining x to u with l(P1) = 2n−3, (2) P2 is a path

joining v to y with l(P2) = 1, and (3) P1∪P2 spans AQn.

Obviously, 〈x, P1,u,v,y,x〉 forms a cycle of length 2n

containing e and 〈x, P1,u,y,x〉 forms a cycle of length

2n − 1 containing e. Suppose l = 2n − 2. By Theorem

7, there exist two disjoint paths Q1 and Q2 such that (1)

Q1 is a path joining x to y with l(Q1) = 2n − 3, (2) Q2

is a path joining u to v with l(Q2) = 1, and (3) Q1 ∪
Q2 spans AQn. Obviously, 〈x, Q1,y,x〉 forms a cycle

of length 2n − 2 containing e. Suppose that 4 ≤ l ≤
2n − 3. By Lemma 2, there exists two vertices p and q of

AQn such that dAQn(p,q) = 2, {x,y} �= NbdAQn(p)∩
NbdAQn(q), and {p,q} �= NbdAQn(x) ∩ NbdAQn(y).

By Theorem 7, there exist two disjoint paths R1 and R2

such that (1) R1 is a path joining x to y with l(R1) = l−1,

(2) R2 is a path joining u to v with l(R2) = 2n − l − 1,

and (3) R1 ∪ R2 spans AQn. Obviously, 〈x, R1,y,x〉
forms a cycle of length l containing e.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Ap-

plications, North-Holland, New York, 1980.

[2] S.A. Choudum, V. Sunitha, Augmented cubes, Net-

works 40 (2) (2002) 71–84.

[3] J.-M. Chang, J.-S. Yang, Y.-L. Wang, Y. Cheng, Pan-

connectivity, fault-tolerant hamiltonicity and hamil-

tonian connectivity in alternating group graphs, Net-

works 44 (2004) 302–310.

[4] J. Fan, X. Jia, X. Lin, Complete path embeddings

in crossed cubes, Information Science, 176 (2006)

3332–3346.

[5] J. Fan, X. Jia, X. Lin, Optimal embeddings of paths

with various lengths in twisted cubes, IEEE Trans.

Parallel and Distributed Systems, 18, (2007) 511–

521.

[6] A. Germa, M.C. Heydemann, D. Sotteau, Cycles in

cube-connected cycles graph, Discrete Appli. Math.

83 (1998) 135–155.

[7] T.Y. Ho, C.K. Lin, Jimmy J.M. Tan, L.H. Hsu, The

super spanning connectivity of augmented cubes,

accepted by Ars Combinatorica.

[8] H.C. Hsu, L.C. Chiang, J.J.M. Tan, L.H. Hsu, Fault

hamiltonicity of augmented cubes, Parallel Comput.

31 (2005) 130–145.

13



[9] H.C. Hsu, P.L. Lai, C.H. Tsai, Geodesic pancyclic-

ity and balanced pancyclicity of augmented cubes,

Information Processing Letters 101 (2007) 227–232.

[10] S.C. Hwang, G.H. Chen, Cycles in butterfly graphs,

Networks 35 (2) (2000) 161–171.

[11] F.T. Leighton, Introduction to Parallel Algorithms

and Architectures: Arrays · Trees · Hypercubes,

Morgan Kaufmann Publishers, San Mateo, CA,

1992.

[12] T.K. Li, C.H. Tsai, Jimmy J.M. Tan, L.H. Hsu,

Bipanconnected and edge-fault-tolerant bipancyclic

of hypercubes, Information Processing Letters, 87

(2003) 107–110.

[13] M. Ma, G. Liu, J.M. Xu, Panconnectivity and edge-

fault-tolerant pancyclicity of augmented cubes, Par-

allel Computing 33 (2007) 35–42.

[14] M. Ma, J.M. Xu, Panconnectivity of locally twisted

cubes, Applied Mathematics Letters, 19, (2006)

673–677.

14


