k-

nez AL 2 LR R TR L B

Panconnected properties and pancyclic properties of the
k-ary n-cubes

= At
Jywe-Fei Fang

TR S KT AR
B p F B

Department of Digital Content and
Technology

National Taichung University

* jffang(@mail.sju.edu.tw

i &

EAHmT P RN T T k- op-2 Y 2
A B R LR o kS REY n2>2
o NEER T k- op- SRR 3 IR
1+ (residual bipanconnected) o » & b 5F e k-~
n-* > 48 % 5 B 4% 4 (bipanconnected) ; I ¥ ¥+
S AR e A 3 B (bipartite set)ehiz B g gk X 2
Y ? 23 xR d Dist(X, Y)_L N-2 % & R 2 B2
@2 XY F A 'B‘ﬂT il YRR HY N
LSRR DistX, Y) 7 X v ¥ ihk @ie
rom® » APRBEME kEBREE 22
k-7 n-= > % 2 5 j~ e B2 F (bipancyclic) °

r’n&‘]‘ﬁ“%&mkﬁ n>2 o k-op-2 ke
mEPE G R m-omid &SR (strictly
mpanconnected) AEAmEsk-1)n/2e» T}K
WoHEA LR XZ Y l%L"IAE.V;(k Hn/2 %
N-lE Rz pmddz ;a2 (k-1)n/2 ¢ @it 5|
TR R T T AP W TR kL A
WSt dY n 22 P k7 on-2 2 RGO Bk
m-j™it B F (strictly m-pancyclic): @ H m & % k-
PG T E T Ak va N eiw
Bloa® k-1 KA kT o

Mats: SRRl k-~ n-2 38 Lu Bl F2
/—i@*ﬁ?]ﬂ'—%ﬁ'

1o

1. Introduction

A Path and a cycle are popular interconnection
networks owing to their simple structures and low
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degrees. Moreover, many parallel algorithms have
been devised on them [8, 10]. Many researchers have
discussed how to embed cycles and paths into various
interconnection networks [2, 5, 6]. To execute a
parallel program on a path efficiently, the size of the
path must accord with the problem size of the
program [8]. Therefore, it makes sense to discuss
how to join a specific pair of vertices by paths of
various sizes. A graph G with N vertices is
panconnected if for each pair of distinct vertices X, ¥
and for any integer /, where Dist(X, ¥) < | < N-1,
there exists a path of length / joining X and Y, where
Dist(X, Y) is the distance between X and Y [5].

A graph is m-panconnected if each pair of
vertices X and Y is joined by the m-panconnected
paths of all lengths ranging from m to N-1. Clearly,
every mi-panconnected graph must be
my-panconnected, where N-1 > m,> m;. A graph is
strictly m-panconnected if it is m-panconnected but
not (m-1)-panconnected; that is, m has reached the
lower bound of the problem.

The bipanconnectivity is a restriction of the
concept of the panconnectivity to bipartite graphs [9].
A bipartite graph is said to be bipanconnected if there
exists a bipanconnected path of each length s joining
an arbitrary pair of vertices X and Y for each dist(X, Y)
<5 < N-1, where s-dist(X, Y) is even and dist(X, Y) is
the distance between X and Y. The residual vertex
that is not contained in the bipanconnected path
joining X and Y is denoted by RV(X, Y). A bipartite
graph G is residual bipanconnected if G 1is
bipanconnected; and for arbitrary two vertices X and
Y reside in the same partite set of G, there exists a
residual vertex RV(X, Y) adjacent to Y. That is, for
arbitrary two vertices X and Y in the same bipartite
set, there exists a path of each odd length s+1, (X=V,,
Vi, ..., Vs =Y, Ve = RV(X, 1)), for each dist(X, ¥) <



s < N-1.

Likewise, to execute a parallel program
efficiently, the size of the allocated cycle must also
accord with the problem size of the program. Thus,
many researchers study the problem of how to embed
cycles of different sizes into an interconnection
network. A graph is pancyclic if it embeds a cycle of
every length ranging from 3 to N [2]. A graph is
m-pancyclic if it embeds a cycle of every length
ranging from m to N, where 3 < m < N. Obviously,
every mj-pancyclic graph must be my-pancyclic,
where N > my> my. A graph is strictly m-pancyclic if
it is not (m-1)-pancyclic but m-pancyclic; that is, m
has reached the lower bound of the problem. The
bipancyclicity is a restriction of the concept of
pancyclicity to bipartite graphs. A bipartite graph is
bipancyclic if it embeds a cycle of every even length
ranging from 4 to V.

In a heterogeneous computing system, each
vertex and each edge may be assigned with distinct
computing power and distinct bandwidth,
respectively [13]. Thus, it is meaningful to extend the
pancyclicity to the vertex-pancyclicity and the
edge-pancyclicity [6]. A graph is vertex-pancyclic
(edge-pancyclic) if each vertex(edge) lies on a cycle
of every length ranging from 3 to N. Informally, a
vertex(edge) transitive graph looks the same when
viewed from each vertex(edge). Clearly, an
m-pancyclic graph must be m-vertex-pancyclic
(m-edge-pancyclic) if it is vertex(edge) transitive.
Similarly, that a bipancyclic graph possesses vertex
transitivity(edge transitivity) implies that it is a
vertex-bipancyclic (edge-bipancyclic) graph.

The interconnection network considered in this
paper is the k-ary n-cube which is denoted by an H(k,
n). Many interconnection networks, including the
ring, the torus and the hypercube, can be viewed as
the subclasses of the k-ary n-cubes [7]. These
interconnection networks are attractive in both
theoretical interests and practical systems [8]. In fact,
they are widely applied as the interconnection
networks of some practical systems. For example,
Kendall square machines have ring structure [7], the
Tera Parallel Computer [14] and CRAY T3D [12] use
the 2D torus and the 3D torus as their interconnection
networks, respectively. The Symult S-series [1] and
NCUBE family [11] employ the hypercube as their
interconnection networks.

On the other hand, the H(k, n) has been proved
to possess many attractive properties such as
regularity, vertex transitivity and edge transitivity [3].
For example, Bose et al. shown that it is Hamiltonian;
and they proposed a single-vertex routing algorithm
and a broadcasting algorithm [4]. Ashir et al. devised
several communication algorithms  including
multi-vertex broadcasting, single-vertex scattering
and total exchange [3]. Yang et al. investigated the
fault tolerant Hamiltonicity [16]. Wang et al. studied
some Hamiltonian-like  properties, such as

bipancyclicity, laceability and bipanconnectivity, of
the H(k, n) [15]. They have shown that the H(k, 2) is
bipancyclic and Hamiltonian laceable for & is even.

In this paper, We do a further investigation
about the bipanconnectivity and m-panconnectivity of
the H(k, n). We refer to the H(k, n) for k is even(odd)
as the even(odd) H(k, n). We prove that the even H(k,
n) is residual bipanconnected for n > 2. The odd H(k,
n) is shown to be strictly m-panconnectic where m =
n(k-1)/2, for k > 3 and n > 2. That is, there exist a
path of each length ranging from n(k-1)/2 to N-1 and
n(k-1)/2 has reached the lower bound of this problem.
We also show that the k-ary n-cube is bipancyclic for
k is even and n > 2. That is, it embeds all cycles of
even lengths ranging from 4 to N, where N is the
order of the network. The k-ary n-cube is shown to be
strictly m-pancyclic where m = k-1, for kis odd, k> 5
and n > 2. That is, it embeds all cycles of lengths
ranging from k-1 to N and the value k-1 has reached
the lower bound of this problem.

2. Notations and Background

A path of length /; is denoted by a P(/,); and a
cycle of length /, is denoted by a C(/,) where /,> 3. A
ladder of length s, denoted by an L(s), is a P(s)xK(2)
where K(2) is a two-vertex complete graph that is an
edge. Each vertex of an L(s) is labeled by (by, bo),
where by =0 or by =1, and 0 < b; < 5. Each edge ((by,
0), (b, 1)) is called a rung of the L(s), where 0 < b, <
s. Specifically, it is called the b;th rung. The Oth rung
is called the bottom rung of the ladder. As shown in
Figure 1, an L(6) is illustrated. In this paper, we use
{(0, 0), (1, 0), ..., (s, 0), (s, 1), ..., (1, 1), (0, 1)} to
denote the L(s). Clearly, a path of length 2/+1, ((0, 0),
1, 0), ..., (,, 0), ([, 1), ..., (1, 1), (0, 1)), can be
embedded in an L(s), where 0 </ <.

Definition 1. A torus with » rows and ¢ columns,
denoted by a Tor(R, F), is defined as C(R)x C(F).

A vertex of a Tor(R, F) is labeled by (v,, vy),
where 0 < v, <R-1,0< v < F-1.

Proposition 1. There exists a path of each odd length
ranging from 1 to 2s+1 joining (0, 0) and (0, 1) in an
L(s). Thus, there exists a cycle of each even length
ranging from 4 to 2s+2 containing ((0, 0), (0, 1)).

Definition 2. The k-ary n-cube, denoted by the H(k,
n), is defined recursively [4]:

1. An H(k, 1) is a C(k).
2. An H(k, n) is H(k, n-1) x C(k) for n > 2.

That is, an H(k, n) is a C(k)". An H(k, n)
comprises k" vertices, each vertex X labeled by an
n-digit number in radix k arithmetic v, v,.;...v, vi. The
verteX X = Vv, V,1...Vis1 Vi Vig...vo v is adjacent to
another vertex Y = v, v,.1...Vis1 W; Vii...vp vy 1f and



only if they differ by exactly one digit position 7 and
[vi - wj| =1, where 1 <i < n. A digit v; is an even(odd)
digit if it is even(odd). A vertex X = v, v,.1...Vis1 V;
Vi1...v2 vy 1s an even(odd) vertex if the sum of its all
digits is even(odd). The H(k, n) is a bipartite graph
for k is even because the odd(even) vertices are just
adjacent to even(odd) vertices. The H(k, n) possesses
many attractive properties:

Proposition 2. The H(k, n) is Hamiltonian. [4]

Proposition 3. The H(k, n) is vertex transitive and
edge transitive. [3]

Definition 3. Let 4 = a, a,.;...a, a be an n-digit radix
k number. The Lee weight of A, denoted by W;(A), is
defined as

Wi(A4) = 2|a| , where |a} = min(ay, k-a;) [4]

i=1

Definition 4. The Lee distance between two n-digit
radix k£ numbers A4 and B is defined as W;(4-B). [4]

Proposition 4. The distance of two vertices X and Y,
denoted by Dist(X, Y), is Wy (X-Y). [4]

Since an even H(k, n) is bipartite, all of the
lengths of the paths joining two vertices X and Y of
the even H(k, n) are even or odd; whereas, the paths
joining two vertices X and Y of an odd H(k, n) have
even lengths or odd lengths. The odd(even) distance
of two vertices X and Y in the odd H(k, n), denoted by
ODist(X, Y)(EDist(X, Y)), is the length of the path
with the shortest odd(even) length joining X and Y. If
Wi (X-Y) is an odd number; clearly, the ODist(X, Y) =
Dist(X, Y); otherwise, EDist(X, Y) = Dist(X, Y).

A path of an H(k, n) can be represented by its
transition sequence which is the ordered list of each
digit position associated with the direction(i.e., + or -)
that change as it proceeds from one vertex to the next
one. For example, the path of the H(5, 4), (2314,
2324,2224, 3224, 3223, 3213), can be represented by
2+, 3-, 4+, 1-, 2-). Clearly, that the transition
sequence of a path contains both of i+ transition and
i- transition implies that it is not shortest; because it
can be shortened by reducing a pair of i+ transition
and i- transition. We have

Proposition 5. The transition sequence of an ODist(X,
Y) or an EDist(X, Y) contains only i+ transition or i-
transition for each 1 <i < n.

By Proposition 4, we know that the transition
sequence of a shortest path joining X and Y contains
the shorter transition hops generated by either i+
transitions or i-transitions for each 1 <7 < n. Consider
two vertices in a C(/). Let the length of the shortest
path joining the two vertices be f; then, the length of
the converse path is /-f. That is, the converse path
takes [-2f more hops than the shortest path. Given two
vertices X = v, v,.1...v,vy and Y = u,u,.,... u,u; of an
H(k, n), if we choose the transition direction(i.e., i+
transition or i- transition) which generates the longer

transition hops for some dimension 7, and we choose
the transition direction which generates the shorter
transition hops except dimension i, there exists Dis#(X,
Y)+k-2Min(k-vi+u;, vi-u;) hops in the path joining X
and Y. If £ is odd and Dis«(X, Y) is even(odd), Dis#(X,
+k-2Min(k-v+u;, vi-u;) is odd(even); whereas if k is
even and Dist(X, Y) 1is even(odd), DistX,
Y)+k-2Min(k-vi+u;, vi-u;) is even(odd). To minimize
k-2Min(k-vitu;, vi-u;) for each 1 < i < n, clearly, the
maximum of Min(k-vitu;, vi-u;) should be chosen.
Thus, we have

Proposition 6. Given two vertices X = v, v,.1... v, W
and Y=u,u,. ... u,u; of an odd H(k, n) and let Dist(X,
Y) = ODist(X, Y) (Respectively, EDist(X, Y)), the
EDist(X, Y) (Respectively, ODist(X, Y)) is Dist(X,
Y)+k-2Max(Min(k-vi+u,, vi-u;)) for each 1 <i<n.

In this paper, the outline graph of an H(k, n),
denoted by an OG(H(k, n)), is to take each v,
Vp1...v* subnetwork as a supervertex, where * is a
don’t care symbol; and a pair of supervertices V'* and
U* in the OG(H(k, n)) is connected if and only if
there exists an edge (Xi, X>) in the H(k, n) such that
X is in the V* and X; is in the U*. Clearly, a pair of
supervertices V* = v, v,1...»,* and U* = w,u,.1...up*
is connected if and only if they differ by exactly one
digit position, the ith digit where 2 < i <n, and |v; - u/]
= 1. That is, if each v, v,.;...v,* subnetwork of an H(k,
n) is taken as a supervertex, the H(k, n) will be
transformed to an H(k, n-1). We have the following
proposition.

Proposition 7. The OG(H(k, n)) is an H(k, n-1).

The vertex X = v, v,.;...vodis called the vertex
d of the I* = v, v,_1...»y*. By the structure of the H(k,
n), the vertex d of V* and vertex d of U* are adjacent
if and only if V* and U* are adjacent in the OG(H(k,
n)) for each 0 < d < k-1. Clearly, if the OG(H(k, n))
embeds a C(]), (Vo*, V1*, 1%, ..., Vii*), the H(k, n)
embeds the structure of C(/)xC(k). Likewise, if the
OG(H(k, n)) embeds a P(]), (Vo*, V1*, o*, ..., Vii*,
Vi*), the H(k, n) embeds the structure of P()xC(k).
As illustrated in Figure 2, the structure of C(/) xC(k)
is embedded in H(k, n) if C(/) is embedded in
OG(H(k, n)).

Definition 5. A path-of-ladders POL(BP, si, LD(0),
LD(1), ..., LD(sl-1)) is a graph unified by a bone path
BP and s/ ladders LD(0), LD(1), ..., LD(sl-1) with
BR(0), BR(1), ..., BR(sl-1) as the bottom rungs,
respectively, such that each BR(i) is contained in the
BP where 0 <i <sl-1.

As illustrated in Figure 3, the structure of a
path-of-ladders graph is shown, where (x,, x|, x5, x3,
X4, Xs) is the bone path; and (xy, x1), (x1, x2), (x2, X3),
(x4, x5) are BR(0), BR(1), BR(2) and BR(3),
respectively. From Proposition 1, we have
Proposition 8. A path-of-ladders POL(BP, si, LD(0),
LD(1), ..., LD(sl-1)) contains a path of each length /
joining two ends of BP, where lbp <1< N-1 and I-Ibp



is even, /bp is the length of BP.

Definition 6. A cycle-of-ladders COL(BC, sl, LD(0),
LD(1), ..., LD(sl-1)) is unified by a bone cycle BC
and s/ ladders LD(0), LD(1), ..., LD(sl-1) with BR(0),
BR(1), ..., BR(sl-1) as the bottom rungs, respectively,
such that each BR(i) is contained in the BC where 0 <
i <s5l-1 and BR(0), BR(1), ..., BR(sl-1) disjoint each
other.

As illustrated in Figure 3, the structure of a
cycle-of-ladders graph is shown, where (xg, x1, x2, X3,
X4, Xs) 1s the bone cycle; and (x, x1), (x5, x3) are the
BR(0), BR(1), respectively. By Proposition 1, we
have

Proposition 9. A cycle-of-ladders COL(BC, sl, LD(0),
LD(1), ..., LD(sl-1)) contains a cycle of each length /,
where /bc <[ < N and [-Ibc is an even number, /bc is
the length of BC and N is the number of vertices of
the cycle-of-ladders.

3. Panconnected Properties of the
H(k, 2)

In this section, we study how to embed paths
into the k-ary n-cubes. Firstly, we study the path
embedding properties of the H(k, 2). Since the H(k, 2)
is a Tor(k, k), to clarify the labeling of each vertex,
we will discuss these properties on the Tor(k, k).

Lemma 1. Let X = (0, 0) and Y = (v,, v;) be two
vertices of a Tor(R, F). There exist the paths of all
lengths [ where [-v, -v; is even, v, +v; < [ < wR+v; for
even v,, and v, +v; </ < v,R+R-v;-1 for odd v,.

Proof.

Case 1. v, is odd.  Firstly, Unify the bone path BP =
((0,0), (0, 1), ..., (0,v;-1), (0,v), (1,v)), 2, »), ...,
(vo-1, 1), (v2, 1)) with the v, ladders, LD(0) = ((0, vy),
(0,v+1), ..., (0,R-2), (0,R-1), (1,R-1), (1,R-2), ...,
(Lvi+D), (1)), LD(D) = (1, ), (Lvi-1), .oy (1, 1),
(1,0), (2,0), (2, 1), ..., (2,v;-1), (2,v)), ..., LD(1,-2)
= ((V2-2, Vl), (V2-2, Vl-l), ceey (V2-2, 1), (V2-2, 0), (Vz-l,
O), (Vz-l, 1), cees (Vz-l, V]-l), (Vz-l, V])), LD(VQ-I) =
((Vz-l, V]), (Vz-l, V1+1), ceey (Vz-l,R-Z), (Vz-l,R-l), (Vz,
R-l), (Vz,R-Z), Ceey (Vz, V1+1), (Vz, Vl)) the POL(BP, V2,
LD(0), LD(1), ..., LD(v,-1)) can be generated. By
Proposition 8, the paths joining X and Y of all lengths
ranging from vytv; to wR+R-vi-1 can be derived,
where [-v,-v| is even. As illustrated in Figure 4, we
show the pol, for the case that (v,,v)) = (3, 2) of the
Tor(8, 8).

Case 2. v, is odd. Similar to Case 1, we can prove
that that the paths joining X and Y of all lengths
ranging from v,+v; to v,R+v,, where /-v,-v; is even,
can be derived. Q.E.D.

The snake path joining (0, 0) and (v,, v;) is the
path with the maximal length (i.e., v,R+v; for odd v,,
and v,R+R-v;-1 for even v,) in the above lemma.

Lemma 2. The residual

bipanconnected.

even H(k, 2) is

Proof. By the symmetric properties of the H(k, 2),
without loss of generality, let X = (0, 0) and ¥ = (v, v;)
where k/2 > v,, vi 2 0.

Case 1. X and Y are in the distinct partite sets. That is,
v, +v; is odd. One of v, and v; is an odd number and
the other one is an even number. Without loss of
generality, let v; and v, be an even number and an
odd number, respectively. By Lemma 1, there exist
the paths of all odd lengths ranging from v,+v; to
vok+k-vi-1 joining X and Y. Unify the bone path BP
which is the snake path joining (0, 0) and (v,, v;) with
the &/2 ladders, LD(0) = ((v»-1,0), (v2,0), ..., (k-1,0),
(k-1,1), ..., (v, 1), (n-1, 1)), ..., LD(@) = ((vo-1,-2),
(Vz, V1-2), ceey (k—l, V1-2), (k-l, Vl-l), ceey (Vz, Vl-l),
(vo-1,vi-1)), LD(i+1) = ((va, v1), (01, v1), .., (-1,
v1), (k-1,vi+1), ..., (»tl, vitl), (v, vitl)), ..., and
LD(k/2-1) = ((vy, k-2), (vy+1,k-2), ..., (k-1,k-2), (k-1,
k-1), ..., (nt1,k-1), (v, k-1)), a POL(BP, k/2, LD(0),
LD(1), ..., LD(k/2-1)) can be derived, where i =
vi/2-1. As illustrated in Figure 5, the case that (v, vy)
= (3, 2) of the Tor(8, 8) is shown. By Proposition 8§,
there are paths of all odd lengths ranging from
vokt+k-vi-1 to k*-1 joining X and Y. Combining the
result of Lemma 1, we know that there exist the paths
joinzing X and Y of all odd lengths ranging from v,+v,
to £°-1.

Case 2. X and Y are in the same partite set. That is,
both of v, and v, are odd numbers or even numbers.

Case 2.1. v, and v, are even numbers. By Lemma 1,
we know that there exist paths joining X = (0, 0) and
Y = (v,, vy) of all even lengths ranging from v,+v, to
wk+vy. In the first stage, let BP, be the snake path
joining X and Y, and let LD(0) = ((v»-1, k-1), (vy,
k-1), ..., (k-1, k-1), (k-1,k-2), ..., (v2, k-2), (v2-1,k-2)),
LD((1) = ((vo-1, £-3), (va, k-3), ..., (k-1, k-3), (k-1,
k-4), ..., (v, k-4), (vo-1, k-4)), ..., LD (i) = ((v-1,
V1+3), (Vz, V1+3), ceey (k-l,V1+3), (k-l, V1+2), ceey (VQ,
vit2), (vo-1, vi+2)), where i = (k-1-(n,+3))2 =
(k-v1)/2-2; and let LD(i+1) = ((v2, 0), (v,*+1,0), ...,
(k-1,0), (k-1,1), ..., (vs+1, 1), (v, 1)), LD(i+2) = ((v2,
2), (»t1,2), ..., (k-1,2), (k-1,3), ..., (»t1,3), (v,
3)), ey LD](k/z-Z) = ((Vz, V1-2), (V2+1, V1-2), ceey (k—l,
vi-2), (k-1, vi-1), ..., (vp+1, vi-1), (v2, vi-1)). Unify
BP, with the above ladders, a pol; = POL(BP,, k/2-1,
LD(0), LD(1), ..., LD(k/2-2)) can be derived. As
illustrated in Figure 6, the case that (v,,vi) = (2, 4) of
the 7or(8, 8) is shown. By Proposition 8, we can
obtain the paths joining X and Y of all even lengths
ranging from Vok+v) to
Voktvi+2(i+ 1) (k-vy)+2(k/2-2-i)(k-v,-1), where [ =
(k-v1)/2-2. In the second stage, let BP, be the path
containing all vertices in the pol;; and let LDy(0) =
((k-1, vi+2), (k-1, vi+1), (k-1, v)), (-2, vy), (k-2, vi+1),
(k-2, vit2)), LDy(1) = ((k-3, vi+2), (k-3, vi+1), (k-3,
v1), (k-4, vy), (k-4, vit1), (k-4, v+2)), ..., LDy(j-1) =
((»F3, vi+2), (v+3, vitl), (vo+3, vi), (1nF2, w),
(v2t2, vitl), (nt2, vi+2)), LD:() = ((vatl, vi+2),



(vot+1, vi+l), (vy, vitl), (vo, »+2)), where j =
(k-v,)/2-1. Unify BP, with the above ladders, a p/, =
POL(BP,, j+1, LD(0), LDx(1), ..., LDy(j)) can be
derived; and there exists a residual vertex (v,+1, v;)
adjacent to Y. As illustrated in Figure 7, the case that
(va, v1) = (2, 4) of the Tor(8, 8) is shown where the
residual vertex is (3, 4). By Proposition 8, there are
paths joining X and Y of all even lengths ranging
from v R+v+2(i+ 1) (k-vo)+2(k/2-2-i)(k-v»-1) to K*-2
where i = (k-v;)/2-2. Combining the results of Lemma
1 and the above two stages, we know that there exist
paths joining X = (0, 0) and Y = (v,, v;) of all even
lengths ranging from vy +v, to k*-2 where v, and v; are
both even numbers.

Case 2.2. v, and v; are odd numbers. By Lemma 1,
we know that there exist paths joining X = (0, 0) and
Y = (v, v1) of all even lengths ranging from v,+v; to
vok+k-vi-1. Similar to Case 2.1, we can also prove
that there exist paths joining X = (0, 0) and Y = (v, vy)
of all even lengths ranging from vy+v, to &*-2 where
v, and v; are both odd numbers. Moreover, there
exists a residual vertex (v,, vi-1) adjacent to Y in this
case. Q.E.D.

Similar to the proof of Lemma 2, we can derive the
following lemmas:

Lemma 3. For X= (0, 0) and Y = (v,, v;) of a Tor(k, k)
where k is odd and both of v, and v, are odd, there
exist paths joining X and Y of all even lengths ranging
from vy+v, to K-1.

Lemma 4. For X = (0, 0) and Y = (v, v;) of a Tor(k, k)
where k is odd and both of v, and v, are even, there
exist paths joining X and Y of all even lengths ranging
from vy+v; to i-1.

Lemma 5. For X= (0, 0) and Y = (v,, v;) of a Tor(k, k)
where k is odd, one of v; and v, is odd, and the other
is even, there exist paths joining X and Y of all odd
lengths ranging from vy+v; to k°-2,. Moreover, there
exists a residual vertex adjacent to Y.

By the symmetry of the Tor(k, k), without loss
of generality, we assume that v, is even and v, is odd.
As illustrated in Figure 8 and Figure 9, the first stage
and the second stage of the case that ¥ = (3, 2) of the
Tor(9, 9) are shown, respectively. Moreover, there
exists a residual vertex (v,+1, v;) adjacent to Y in this
case.

Now, we study the paths joining two vertices in
an odd H(k, 2). Since the H(k, 2) is a Tor(k, k),
without loss of generality, we assume that X = (0, 0)
and Y = (v, v) of the Tor(k, k) where (k-1)/2 > v, 2 v,
> 0.

Lemma 6. There exist paths joining X = (0, 0) and ¥
= (v, v1) of all lengths ranging from k-v,+v;-1 to k-1
in the odd H(k, 2) where (k-1)/2 > v, > v; > 0.

Proof.

Case 1: Both of v, and v, are odd. By Lemma 3, we
know that there exist paths joining X = (0, 0) and ¥ =

(v2,v1) of all even lengths ranging from vy+v; to k-1
in the odd H(k, 2). By the symmetry of the odd H(k,
2), there exists an automorphism to map each vertex
(W, wy) to the vertex (k-wp, wy). Thus, Y can also be
regarded as the vertex (k-v,,v;). By Lemma 5, there
exist paths of all odd lengths joining X = (0, 0) and ¥
= (v, v1) ranging from k-v,+v; to K22 in the odd H(k,
2). By definition, (k-1)/2 > v, > v; > 0; thus we know
that k-vy+tv; > vytv,. Consequently, there exist paths
joining X = (0, 0) and Y = (v,, v;) of all lengths
ranging from k-v,+vi-1 to k*-1 in the odd H(k, 2).

Case 2: Both of v, and v; are even. By Lemma 4, we
know that there exist paths joining X = (0, 0) and ¥ =
(v2,v1) of all even lengths ranging from vy+v; to k-1
in the odd H(k, 2). The remainder of the proof is
similar to Case 1.

Case 3: v, is odd and v, is even. By Lemma 5, we
know that there exist paths joining X = (0, 0) and ¥ =
(v, v1) of all odd lengths ranging from v, +v, to k-2 in
the odd H(k, 2). By the symmetry of the odd H(k, 2),
there exists an automorphism to map each vertex (w;,
wy) to the vertex (k-w,, wy). Thus, Y can also be
regarded as the vertex (k-v,,v;). By Lemma 4, there
exist paths joining X = (0, 0) and Y = (v, v;) of all
even lengths ranging from k-v,+v, to &*-1 in the odd
H(k, 2). By definition, (k-1)/2 > v, > v| 2 0; thus we
know that k-v,+v; > v,+vy. Consequently, we know
that there exist paths joining X = (0, 0) and Y = (v, v))
of all lengths ranging from k-v,+v;-1 to k*-1 in the
odd H(k, 2).

Case 4: v, is even and v; is odd. Similar to Case 3, we
can prove that there exist paths joining X = (0, 0) and
Y = (v, vy) of all lengths ranging from k-vy+tv,-1 to
k-1 in the odd H(k, 2). Q.E.D.

From the above lemma, clearly, the maximum
value of k-v,tv;-1 is k-1 when v, = v,. Thus, we have
the following lemma.

Lemma 7. The odd H(k, 2) is m-panconnected, where
m=k-1.

Then, based on the above study on the H(k, 2),
we will investigate the path embedding properties of
the H(k, n). For that purpose, the following lemmas
about K(2)xC(k) are required. As illustrated in Figure
10, the structure of K(2)xC(k) is shown.

Lemma 8. K(2)xC(k) is residual bipanconnected for
k is even.

Proof. For the symmetry of the K(2)xC(k), without
loss of generality, we assume that X = (0, 0) and ¥ =
(Vz, V]), where 0 < v, < 1, 0< v < k/2.

Case 1: X and Y are in distinct partite sets. That is,
vyt 1s odd.

Subcase 1.1: v, = 0. Clearly, v; is an odd digit. In the
first stage, let BP; be the shortest path joining X and
Y, (X=(0, 0), (0, 1), ..., (0, v-1), (0, v;) = Y); and let
LDI(O) = ((09 0)7 (17 0)7 (1’ 1)’ (0’ 1)): LDl(l) = ((O’ 2),
1, 2), (1, 3), (0, 3)), ..., LD((v1-1)/2) = ((0, v;-1), (1,



vi-1), (1, v), (0, vy)). Unify BP; with the above
ladders, a pol; = POL(BP,, (vi+1)/2, LD(0),
LD(1), ..., LD(v,-1)/2)) can be derived. Thus, there
exists a path joining X and Y of each odd length
ranging from v, to 2v,+1. In the second stage, let BP,
be the path containing all vertices in the pol;; and let
LDy(0) = ((1, vy), (1, vi+1), ..., (1, k-1), (0, k1), ...,
(0, vi+1), (0, vy)). Unify BP, with LD,(0), a pol, =
POL(BP,, 1, LD,(0)) can be derived. Thus, there
exists a path of each odd length ranging from 2v,+1
to 2k-1. Combining results of the two stages, we
know that there exist a path joining X = (0, 0) and Y =
(v2, v1) of each odd length ranging from v; to 24-1.

Subcase 1.2: v, = 1. Clearly, v, is an even digit. For v,

= 0, by Proposition 1, there exists a path joining (0, 0)
and (1, 0) of each odd length ranging from 1 to 24-1.

Then, we consider the case that v; # 0. Similar to

Subcase 1.1, we can prove that there exists a path
joining X and Y of each odd length ranging from v,+1

to 2k-1, where vi+1 = Dist(X, Y).

Case 2: X and Y are in the same partite set. That is,
vty 1S even.

Subcase 2.1: v, = 0. Clearly, v, is an even digit. In the
first stage, let BP, be the shortest path joining X and
Y, (X=1(0,0), (0, 1), ..., (0, vi-1), (0, v;) = ¥); and let
LD,(0) = ((0, 0), (1, 0), (1, 1), (0, 1)), LD(1) = ((0, 2),
(1, 2), (1, 3), (0, 3)), ..., LD\((v-2)/2) = ((0, v1-2), (1,
vi-2), (1, vi-1), (0, v;-1)). Unify BP, with the above
ladders, a pol; = POL(BP,, vi/2, LD(0), LD(1), ...,
LD(v,-2)/2)) can be derived. Thus, there exists a path
joining X and Y of each even length ranging from v,
to 2vy; moreover, there exists a residual vertex (0,
vi+1) adjacent to Y for theses paths. In the second
stage, let BP, be the path of length 2v,, (X= (0, 0), (1,
0), (1, 1), (0, 1), ..., (0, v1-2), (1, v1-2), (1, »-1), (1,
v1), (0, vi) = Y); and let LD,(0) be ((1, v), (1,
vitl), ..., (1, k1), (0, &-1), ..., (0, vi+1), (O, wy)).
Unify BP, with LD,(0), a pol, = POL(BP,, 1, LD5(0))
can be derived. Thus, there exists a path joining X
and Y of each even length ranging from 2v; to 24-2;
moreover, there exists a residual vertex (0, vi-1)
adjacent to Y for these paths. Combining results of
the two stages, we know that there exist a path
joining X and Y of each even length ranging from v,
to 2k-2; moreover, there exists a residual vertex
adjacent to Y.

Subcase 2.2: v, = 1. Clearly, v; is an odd digit.
Similar to Subcase 2.1, we can prove that there exists
a path joining X and Y of each even length ranging
from v;+1 to 2k-2; moreover, there exists a residual
vertex (1, v;-1) adjacent to Y for these paths.
Q.E.D.

4. Panconnected Properties of the
H(k, n)

Then, we consider the paths joining arbitrary

two vertices of the K(2)xC(k) structure where k is
odd. To simplify the proof, without loss of generality,
we assume that X = (0, 0) and Y = (v, v;), where 0 <
v <1,0<y < (k-1)/2.

Lemma 9. For two vertices X = (0, 0) and ¥ = (v, v)
of K(2)xC(k) where k is odd,

(1) if Dist(X, Y) is odd, there exists a path of each
odd length ranging from Dis#(X, Y) to 2k-1
joining X and Y; and there exists a path of each
even length ranging from Dist(X, Y)+k-2Min(k-v,,
v1) to 2k-2 joining X and Y that is adjacent to a
residual vertex;

(2) if Dist(X, Y) is even, there exists a path of each
even length ranging from Dis«(X, Y) to 2k-2
joining X and Y that is adjacent to a residual
vertex; and there exists a path of each odd length
ranging from Dist(X, Y)+k-2Min(k-vi, v;) to 2k-1
joining X and Y.

Proof. Case 1: Dist(X, Y) is odd.

Subcase 1.1: v, = 0 and v, is odd. (1) Similar to
Subcase 1.1 of Lemma 8, there exists a path joining X
and Y of each odd length ranging from Dist(X, Y) = v,
to 2k-1. (2) By the symmetry of the K(2)xC(k)
structure, there exists an automorphism to map each
vertex (wp, wi) to the vertex (w,, k~-w;). Thus, Y can
also be regarded as the vertex (v,, k-v;). Similar to
Subcase 2.1 of Lemma 8, there exists a path joining X
and Y of each even length ranging from k-v; to 2&-2,
where k-v| = Dist(X, Y)+k-2Min(k-v;, v;) since k-v; >
v by the hypothesis that v; < (k-1)/2; moreover, there
exists a residual vertex adjacent to Y.

Subcase 1.2: v, = 1 and v, is even. (1) Similar to
Subcase 1.2 of Lemma 8, there exists a path joining X
and Y of each odd length ranging from Dist(X, Y) =
1+v; to 2k-1. (2) Similar to Subcase 2.2 of Lemma 8§,
there exists a path joining X and Y of each even
length ranging from k-v\+1 to 2k-2, where k-vi+1 =
Dist(X, Y)+k-2Min(k-v,, v;); moreover, there exists a
residual vertex adjacent to Y.

Case 2: Dist(X, ) is even.

Subcase 2.1: v, = 0 and v, is even. (1) Similar to
Subcase 2.1 of Lemma 8, there exists a path joining X
and Y of each even length ranging from Dis#(X, Y) =
vi to 2k-2; moreover, there exists a residual vertex
adjacent to Y. (2) Similar to Subcase 1.1 of Lemma 8,
there exists a path joining X and Y of each odd length
ranging from k-v; to 2k-1, where k-v; = Dist(X,
Y)+k-2Min(k-vy, vy).

Subcase 2.2: v, = 1 and v, is odd. (1) Similar to
Subcase 2.2 of Lemma 8, there exists a path joining X
and Y of each even length ranging from Dis#(X, Y) =
1+v; to 2k-2; moreover, there exists a residual vertex
adjacent to Y. (2) Similar to Subcase 1.2 of Lemma 8§,
there exists a path joining X and Y of each odd length
ranging from k-v;+1 to 2k-1, where k-v|+1 = Dist(X,
+k-2Min(k-vy, vy). Q.E.D.



Theorem 10. That is, even H(k, n) is residual
bipanconnected.

Proof. We will prove the lemma by induction on .
For n =2, By Lemma 2, the lemma holds.
Hypothesis: The lemma is true forn =J2> 2.

Induction Step: By the symmetric properties of the
H(k, n), without loss of generality, let X = u.q u;...up
u; = 00...00; and let Y = v, v;...v, v be a vertex in
an H(k, J+1), where 0 <v; < k/2 for each 1 <i < J+1;
and vy <v; <. <y <y,

Case 1: X and Y are in the distinct bipartite sets. That
is, Y is an odd vertex.

Subcase 1.1: vyq vy ...v, is an odd vertex of the
OG(H(k, J+1)). Clearly, v, is an even digit. Recall
that the OG(H(k, J+1)) is an H(k, J). By hypothesis,
there exists a path of each odd length / ranging from
Dist(07, vyiy vy...v2) to -1 joining uyey uy...up* = 0%
and V1 VJ...VQ*, (uJ+] uy ...1/{2* = OJ* = Vo*, V]*,
Vz*, . V[* = V1 VJ...VQ*) in the OG(H(k, J+l))
Clearly, the path of odd length Dist(07, v, V.. )t
Vi, (Voo, V1 0, V20, ceesy V/_10, VIO, I/ll, ceey V[(Vl-l),
V;vy =7), is the shortest path joining X and Y. Let BP
be (V,0, V10, 1,0, ..., V130, V1,0); and let LD(0) =
Vo0, Vol, ..., Vok-1, V1 k-1, ..., V11, V10), LD(1) =
V0, 1, .., k-1, V3k-1, .., V31, 130), ...,
LD((I-3)2) = (V150, Vis 1, ..., Visk-1, Vio k-1, ...,
Vial, V120). Unify BP with the above ladders, a po/
= POL(BP, (I-1)/2, LD(0), LD(1), ..., LD((I-3)/2))
can be derived. Thus, there exists a path joining X =
V50 = 0" and ¥, 0 of each odd length ranging from
-2 to (I-1)k-1. From Lemma 8, we know that there
exists a path joining ¥, 0 and V;v; = Y of each odd
length ranging from v;+1 to 2k-1. Since V;, 0 is
adjacent to V., 0, there exists a path of each odd
length ranging from /+v, to ((I-D)k-1)+Q2k-1)+1 =
(H1)k-1. As illustrated in Figure 11, the case that v, =
2 and k = 6 is shown. Since there exists a path of each
odd length / ranging from Dist(0”, v, v;...v5) to k-1
joining usy uy ...ux* = 0”* and vy v, ...»* in the
OG(H(k, J+1)), there exists a path joining X and Y of
each odd length ranging from Dist(07, vy v, ...v))+v,
= Dist(0”™, vy vy...va vy) to (K-1+1)k-1 = k/*'-1.

Subcase 1.2: vy vy ...V, is an even vertex of the
OG(H(k, J+1)) and vy vy...vo # gy Uy...up. Similar
to Subcase 1.1, it is not difficult to find that there
exists a path joining X and Y of each odd length
ranging from Dist(07, vy vy...vo)+v; = Dist(0™, vy,
Vy... ) to K1

Subcase 1.3: vy vy...v2 =00...0 = uy uy...u,. Since

Vi1 Vy...vo vy is an odd vertex, v; must be an odd digit.

By Proposition 2, there exists a Hamiltonian path,
(MJ+1 LIJ...MQ* = Vi VJ...VQ* = Vo*, V]*, ey VN_z*,
Vya*) of the OG(H(k, J+1), where N = k. By Lemma
8, there exists a path joining X and Y of each odd
length ranging from v, = Dist(X, Y) to 2k-1 in the
K(2)xC(k) network, (Vo*, V1*). Then, let BP be the
path (V()O, V1 0, V1 1, Vol, V02, V] 2, ceey Vo(Vl-l), Vl

(Vl-l), V1 Vi, V[ (Vﬁ‘l), N V[ (k-l), V() (k-l), N V()
(vi+1), Vovy); and let LD(0) = (V,0, V>0, ..., V¥, 0,
Vnal, .., oL, i), LD(1) = (V12, V52, ..., Va2,
Vi3, ..., V23, 13), ..., LD(k/I2-1) = (V1 (k-2), V,
k-2), ..., Vya(k-1), Vi (k-1), ..., Vo (k-1), Vi(k-1)).
Unify BP with LD(0), LD(1), ..., LD(k/2-1), a pol =
POL(BP, ki2, LD(0), LD(1), ..., LD(k/2-1)) can be
derived. As illustrated in Figure 12, we show the pol
for the case that vi = 3 of the H(8, 2). Thus, there
exists a path joining X and Y of each odd length
ranging from 2k-1 to 2k-1+(K-2)k = K'-1.
Combining the above results, we know that there
exists a path joining X and Y of each odd length
ranging from v, = Dist(X, Y) to k’"'-1.

Case 2: X and Y are in the same bipartite set. That is,
Y is an even vertex.

Subcase 2.1: vyq vy ...v, is an odd vertex of the
OG(H(k, J+1)). Clearly, v, is an odd digit. By Lemma
8, similar to Subcase 1.1, we can prove that there
exists a path joining X and Y of each even length
ranging from Dist(OJ, Vi Vi )ty = Dist(OJH, Vil
Vy...»p V) to ¥, Moreover, there exists a residual
vertex adjacent to Y.

Subcase 2.2: vy vy ...V, is an even vertex of the
OG(H(k, J+1)) and Vi1 Vy...Vy £ Uj Ug... U Similar
to Subcase 1.2, there exists a path joining X and Y of
each even length ranging from Dist(0’, vy,
VL)t = Dist(O‘M, Vi Vy .. V) to K.
Moreover, there exists a residual vertex adjacent to Y.

Subcase 2.3: vy vy...vp; = 00...0 = upy uy...up. By
Lemma 8, similar to Subcase 1.3, we can prove that
there exists a path joining X and Y of each even
length ranging from v, = Dist((X, Y) to k"'-2.
Moreover, there exists a residual vertex adjacent to Y.
This extends the induction and completes the proof.
Q.E.D.

Lemma 11. For arbitrary two vertices X and Y of an
odd H(k, n),

(1) there exists a path of each odd length ranging
from ODist(X, Y) to k"-2 joining X and Y that is
adjacent to a residual vertex;

(2) there exists a path of each even length ranging
from EDist(X, Y) to k"-1 joining X and Y.

Proof. We will prove the lemma by induction on 7.
For n = 2, the lemma holds by Lemma 3, 4 and 5.
Hypothesis: The lemma is true for n =J 2> 2.

Induction Step: By the symmetric properties of the
H(k, n), without loss of generality, let X = .y u;...up
u; = 00...00; and let Y = v, v;...v,v; be a vertex in
an H(k, J+1), where 0 <v; < (k-1)/2 for each 1 <i <
J+1, and Vi Sy .Sy, Sy,

Case 1: vy is an odd digit.

Recall that the OG(H(k, J+1)) is an H(k, J). By
hypothesis, there exists a path of each odd length /



ranging from ODist(0’, v, v, ...v,) to k’-2 joining
Ut 1/!]...1/{2* = OJ* and Vi1 VJ...VQ*, (UJ+] HJ...UQ* =
0% = Vo, Vi*, Vo*, ..., V* = vy vy..»*) in the
OG(H(k, J+1)). Since I ranges from ODist(0’, v,
Vr...) to K -2, similar to Subcase 2.1 of Theorem 10,
by Lemma 9, we can prove that there exists a path of
each even length ranging from ODist(0’, vy,
vy .. )ty to (K'-2)k-1 = k''-2k-1 joining X = ¥, 0
and Y = V;v,. By hypothesis, there exists a residual
vertex V. * for the path of odd length / joining Vy*=
0”* and V;* = vy vy...v,* in the OG(H(k, n)) for k is
odd. Consider the path (07* = Vo*, V*, V¥, ..., Vio*
=V VJ...V2*, VN»I*) where N = kl Let P() be (V()O,
ol, ..., Vok=2, Vo k-1, Vi k-1, Vi k-2, ..., V1 1, V]
0, .cooy V50, Vs 1, ooy Va3 0, Vs 1, oo, Vs k-2,
Vy3k-1). By Lemma 9, there exists a path P, of each
odd length ranging from k-1-v; to 2k-1 joining Vy.,
k-1 and Vy, v, = Y. Concatenating Py and Py, a path
of each even length ranging from
((K"-2)k=1)+1+(k-1-v;) = K" '-k-1-v, to £”"'-1 joining X
and Y can be derived. Combining the above results,
we know that there exists a path of each even length
ranging from ODist(OJ, Vi Vyo...)ty to K1
joining X and Y. Likewise, we can derive that there
exists a path of each odd length ranging from
EDist(0’, vy vy .. ») v to K712 joining X and Y;
moreover, Y is adjacent to a residual vertex. By the
symmetric properties, v v, ...v, vy can be regarded
as vy vy ..., (k-v)). Clearly, k-v| is an even digit.
Likewise, we can prove that there exists a path of
each odd length ranging from ODist(07, vy,
vy . .v)*(k-v)) to K/'-2 joining X and Y that is
adjacent to a residual vertex; and there exists a path
of each even length ranging from EDist(0’, vy,
vy .. Hk-v;) to k’"'-1 joining X and Y. Clearly,
EDist(OM, Vi1 Vs .. V) = Min(ODist(0, v,
V.. vo)y+vy, EDist0’, vy, vy .. .vo)+H(k-vy)); thus, there
exists a path of each even length ranging from
EDist(0”"', vy v;...vov;) to &”7'-1 joining X and Y.
Likewise, ODist(OJH, Vi V.. V) = Min(EDist(OJ,
Vit Vg .. va) v, ODist(07, vy vy ...vo)+H(k-y)), thus,
there exists a path of each odd length ranging from
ODist(0”", vy vy...v;v) to k-2 joining X and Y;
moreover, Y is adjacent to a residual vertex.

Case 2: v is an even digit. The proof is similar to
Case 1. Q.E.D.

By the above lemma, we have

Corollary 12. For two vertices of the H(k, n), there
exists a path joining X and Y of each length ranging
from ODist(X, Y)-1(Respectively, EDist(X, Y)-1) for
ODist(X, Y) > EDist(X, Y)( Respectively, EDist(X, Y)
> ODist(X, Y)) to k"-1.

Theorem 13. The odd H(k, n) is
m-panconnected, where m = n(k-1)/2.

strictly

Proof. Without loss of generality, let X = u, u,. ...u,
u; = 00...00; and let Y = v, v,.; ..., v; be a vertex in
the H(k, n), where 0 < v; < (k-1)/2 for each 1 <i < n;
and v, < v, £...< v, <vy. Clearly, Dist(X, Y) < nvy;

thus, by Proposition 6, for Dist(X, Y) = ODist(X, Y)
(Respectively, Dist(X, Y) = EDist(X, Y)), the EDist(X,
Y) (Respectively, ODist(X, Y)) < nvitk-2v; <
n(k-1)/2+k-2(k-1)/2 = n(k-1)/2+1. By Corollary 12,
we know that there exists a path joining X and Y of
each length ranging from n(k-1)/2 to £"-1. Moreover,
n(k-1)/2 is the diameter of the odd H(k, n), it has
reached the lower bound of this problem. Q. E. D.

5. The Pancyclic Properties

Theorem 14. The even H(k, n) is bipancyclic for n >
2.

Proof. In the first stage, owing to that the OG(H(k, n))
is a H(k, n-1) and that the H(k, n-1) is Hamiltonian,
there exists a P(N-1)xC(k), (Vo*, V1%, ..., Vas™, Vo™,
Var®), where N = . Clearly, P(N-1)xK(2) that is
an L(N-1) is a subgraph of the P(N-1)xC(k). From
Proposition 1, the H(k, n) contains cycles of each
even length ranging from 4 to 2N. In the second stage,
we show that the H(k, n) can embed a
cycle-of-ladders as a subgraph. Let BC be (V;, 0, V,
1, vy Vok—l), and let LD(O) = {V()O, V] O, ey VN_20,
Va0, Va1, Vo 1, oo, i 1L, Vo 1y, LD(1) = {12, V),
2, iy V22, Va2, Va3, V23, ..., V13, Vo34, ..,
LD((k-1)/2-1) = {Vo k-3, V1 k-3, ..., Vo k-3, Va1 k-3,
VN_1 k—2, VN_2 k—2, . Vl k—2, VO k—2} Unlfy BC with
the above ladders, a COL(BC, k/2, LD(0), LD(1), ...,
LD(k/2-1)) can be derived. As illustrated in Figure 13,
the structure of the cycle-of-ladders embedded in the
H(5, 2) is shown. By Proposition 9, we know that the
even H(k, n) contains a cycle of each even length
ranging from k to k+(2N-2)k/2 = Nk = n*. Combining
the above results, we know that the even H(k, n)
contains a cycle of each even length ranging from 4
to k" for n > 2. Q. E. D.

Lemma 15. The odd H(k, n) embeds a cycle of each
even length ranging from 4 to £"-1 for n > 2.

Proof. In the first stage, owing to that the OG(H(k, n))
is a H(k, n-1) and that the H(k, n-1) is Hamiltonian,
there exists a P(N-1)xC(k), (Vo*, V1%, ..., Vas™®, Vo™,
Var®), where N = . Clearly, P(N-1)xK(2) that is
an L(N-1) is a subgraph of the P(N-1)xC(k). From
Proposition 1, the H(k, n) contains cycles of each
even length ranging from 4 to 2N. In the second stage,
we show that the H(k, n) can embed a
cycle-of-ladders as a subgraph. Let the bone cycle
BC[ be (V() 1, V1 1, ey VN—Z 1, VN—I 1, VN»I 0, VN_20, ey
V10, V,0). And let the ith ladder LD;(i) be {V 1, V>
2, ey Vi k=2, Voi k-1, Vopy k-1, Vaiy k-2,..., Vi 2,
Va1 1} with the edge (Vi 1, Vo 1) as the bottom
rung for each i where 0 < i < (N-1)/2-1. Unify BC,
with the above ladders, a col; = COL(BC;, (N-1)/2,
LD(0), LDy(1), ..., LD{((N-1)/2-1)) can be derived.
By Proposition 9, we know that the odd H(k, n)
contains a cycle of each even length ranging from 2N
to 2N+(2k-4)x(N-1)/2 = kN-k+2 for n > 2. In the third



stage, let BC, be the path containing all vertices in
the COll, and let LDz(O) = {VN-Z 2, VN—I 2, VN—] 3, VN-Z
3}, LDz(l) = {VN_2 4, VN—I 4, VN—I 5, VN_2 5}, ceey
LDy((k-3)/2-1) = { V2 k-3, Vi k-3, Vi k-2, Vo k-2}.
Unify BC, with the above ladders, a col, = COL(BC,,
(k-3)/2, LDy(0), LD(1), ..., LD((k-3)/2-1)) can be
derived. As illustrated in Figure 14, the structure of
the col, embedded in the H(9, 2) is shown. Thus, we
know that the odd H(k, n) contains a cycle of each
even length ranging from AN-k+2 to AN-k+2+(k-3) =
kN-1 = K'-1. Combining the above results, we know
that the odd H(k, n) contains a cycle of each even
length ranging from 4 to £"-1. Q.E.D.

Lemma 16. The odd H(k, n) embeds a cycle of each
odd length ranging from £ to £" for n > 2.

Proof. In the first stage, owing to that the OG(H(k, n))
is a H(k, n-1) and that the H(k, n-1) is Hamiltonian,
there exists a P(N-1)xC(k), (Vo*, V1%, ..., Vas™®, Vo™,
Var®), where N = k' Let BC, be (V,0, Vy1, ..., V,
k-l), and let LD](O) = {V() 0, V1 0, ey VN_2 O, VN_1 0,
VN_1 1, VN_2 1, ceey V] 1, Vol}, LD](I) = {V02, V] 2, ceey
Vno 2, Va2, Vv 3, Vv 3, -, Vi3, Vo 3%, ..,
LDI((k—l)/Z—l) = {V() k—3, V[ k—3, ceey VN_2 k—3, VN»I k—3,
VN_lk—Z, VN,Q k—2, ceey V] k—2, V() k—2} Unlfy BC1 with
the above ladders, a col; = COL(BC1, (k-1)/2, LD,(0),
LD(1), ..., LD\((k-1)/2-1)) can be derived. By
Proposition 9, we know that the odd H(k, n) contains
a cycle of each odd length ranging from k& to
k+(2N-2)(k-1)/2 = Nk-N+1. In the second stage, let
BC, be the cycle containing all vertices in the coli;
and let LD,(0) = {V| k-2, Vo k-2, V, k-1, V| k-1},
LDy1) = {V3 k-2, V4 k-2, V4 k-1, V3 k-1}, ...,
LDz((N-l)/Z-l) = {VN_2 k—2, VN»[ k—2, VN_1 k—l, VN,Q
k-1}. Unify BC, with the above ladders, a col, =
COL(BC,, (N-1)/2, LD, (0), LD, (1), ..., LD,
((N-1)/2-1) can be derived. As illustrated in Figure 15,
the structure of the col, embedded in the H(S, 2) is
shown. By Proposition 9, we know that the odd H(k,
n) contains a cycle of each odd length ranging from
Nk-N+1 to (Nk-N+1)+(N-1) = Nk = k" for n > 2.
Combining the above results, we know that the odd
H(k, n) contains a cycle of each odd length ranging
from k to k" for n > 2. Q.E.D.

Combining Lemma 15 and Lemma 16, we have

Lemma 17. For n > 2, the odd H(k, n) is m-pancyclic;
where m = k-1 for k> 5, and m = 3 for k = 3.

Lemma 18. The length of the smallest odd cycle in
the odd H(k, n) is k.

Proof. Suppose that there exists a cycle of odd length
r, r <k, in the odd H(k, n). Let X=v,v,...vov; be a
vertex contained in the cycle. Along the cycle from X
to X, a sequence of 7 transitions can be derived. Since
r < k, it’s impossible that there exist k i+ transitions
or k i- transitions for each 1 <7 < n in the sequence.
There are the same number of i+ transitions and i-
transitions for each 1 < i < n in the sequence. Thus,
the sequence has even transitions, a contradiction.

Q.E.D.
From Lemma 17 and Lemma 18, we have
Lemma 19. The odd H(k, n) is pancyclic for k= 3.

Theorem 20. The odd H(k, n) is strictly
(k-1)-pancyclic for k > 5.

6. Conclusions

In this paper, we study the panconnected
properties and the pancyclic properties of the k-ary
n-cubes. We show that the k-ary n-cube is residual
bipanconnected for k is even and n > 2. The k-ary
n-cube is also shown to be strictly m-panconnected
where m is (k-1)n/2 for k is odd and n > 2. We show
that the even k-ary n-cube is bipancyclic for n > 2.
The odd k-ary n-cube is shown to be strictly
m-pancyclic where m = k-1, k> 5 and n > 2. That is,
it embeds all cycles of lengths ranging from 4-1 to N;
and k-1 has reached the lower bound of this problem.
Furthermore, owing to that the k-ary n-cube is vertex
transitive and edge transitive, the even k-ary n-cube is
vertex-bipancyclic and edge-bipancyclic for n > 2;
whereas, the odd k-ary n-cube is strictly
m-vertex-pancyclic and m-edge-pancyclic where m =
k-1, for k > 5 and n > 2. The work will help the
engineers to develop corresponding application on
the multiprocessor systems that employ the k-ary
n-cubes as the interconnection networks. It will also
help a further investigation on the k-ary n-cubes. For
example, to find a fault tolerant algorithm to generate
the bipanconnected paths and m-panconnected paths
on the k-ary n-cubes appears interesting.
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Figure 1. The structure of an L(6).
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Figure 2. Embedding the structure of C(/) xC(k) in H(k, n) if C(]) is
embedded in OG(H(k, n)).

11



LD(0) LD@3)

LD(2)

Xo X1 X2 X3 X4 X5

LD(1)
Figure 3. The structure of a path-of-ladders graph.

Figure 4. Embedding the paths of odd length ranging from 5 to 29 joining
(0, 0) and (3, 2) of the Tor(8, 8), where the wraparound edges are omitted.
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Figure 5. Generating the path of ladders for (3,2) of ~ Figure 6. Generating the paths of ladders for
the Tor(8, 8). (2, 4) of the Tor(8, 8) in the first stage.

(0,0) (0,0)

20900006

Figure 7. Generating the paths of ladders for (2, 4)
of the Tor(8, 8) in the second stage.

Figure 8. Generating the paths of ladders for
(3, 2) of the Tor(9, 9) in the first stage.
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(0,0)

20900008

Figure 9. Generating the paths of ladders for (3, 2)
of the 7or(9, 9) in the second stage.

Figure 10. The structure of the K(2)xC(8) structure.

A path-of-ladders
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| \ ! \ ! v i
R | \ 1 \ 1 \
Pl v \ ! \
P ! 1 I 1
Pl 1! I I I
o [ 1 | 1
ol P! ! ! !
Pl L I I I
Pl ) I I I
Pl - ] ! !
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F I \ I \ 1
P ! \ ! \ !

: 10 V50 V50 130 Vi:0 V.50

Figure 11. Finding the path joining V0 and V2 of each odd length ranging
from [+2 to (/+1)k-1, where [ is even.
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Figure 12. In the even H(k, n), finding the path joining V0 and V) 3 of each
odd length ranging from 24-1 to Nk-1, where N is £

LD(0)

Figure 13. Embedding the cycle-of-ladders to the H(6, 2).
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Figure 14. Embedding the cycle of ladders drawn by the bold lines into the H(9, 2).

Figure 15. Embedding the cycle of ladders drawn by the bold lines into the H(S, 2).
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