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Abstract

A bipartite graph is bipancyclic if it contains
a cycle of every even length from 4 to |V (G)|
inclusive. A hamiltonian bipartite graph G
is bipanpositionable if, for any two different
vertices x and y, there exists a hamiltonian
cycle C of G such that dC(x, y) = k for any
integer k with dG(x, y) ≤ k ≤ |V (G)|/2 and
(k − dG(x, y)) being even. A bipartite graph
G is k-cycle bipanpositionable if, for any
two different vertices x and y, there exists a
cycle of G with dC(x, y) = l and |V (C)| = k
and for any integer l with dG(x, y) ≤ l ≤ k

2

and (l − dG(x, y)) being even. A bipartite
graph G is bipanpositionable bipancyclic if
G is k-cycle bipanpositionable for every
even integer k, 4 ≤ k ≤ |V (G)|. We prove
that the hypercube Qn is bipanpositionable
bipancyclic if and only if n ≥ 2.

Keywords: bipanpositionable, bipancyclic,
hypercube, hamiltonian.
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1 Introduction

For the graph definitions and notations we
follow [4]. Let G = (V, E) be a graph,
where V is a finite set and E is a subset
of {(u, v) | (u, v) is an unorder pair of V }.
We say that V is the vertex set and E
is the edge set of G. Two vertices u and
v are adjacent if (u, v) ∈ E. A path
is represented by 〈v0, v1, v2, · · · , vk〉, where
all vertices are distinct. The length of
a path Q is the number of edges in Q.
We also write the path 〈v0, v1, v2, · · · , vk〉 as
〈v0, Q1, vi, vi+1 · · · , vj, Q2, vt, · · · , vk〉, where
Q1 is the path 〈v0, v1, · · · , vi−1, vi〉 and Q2

is the path 〈vj, vj+1, · · · , vt−1, vt〉. We use
dG(u, v) to denote the distance between u and
v in G, i.e., the shortest path joining u to v
in G. A cycle is a path of at least three ver-
tices such that the first vertex is the same as
the last vertex. We use dc(u, v) to denote the
distance between u and v in a cycle C, i.e.,
the length of the shortest path joining u to
v in C. A hamiltonian cycle of G is a cy-
cle that traverses every vertex of G exactly
once. A hamiltonian graph is a graph with a
hamiltonian cycle. A graph G = (V0 ∪ V1, E)
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is bipaetite if V (G) = V0 ∪ V1 and E(G) is a
subset of {(u, v) | u ∈ V0 and v ∈ V1}.

The n-dimensional hypercube, Qn, consists
of all n-bit binary strings as its vertices and
two vertices u and v are adjacent if and only
if their binary labels different in exactly one
bit position. Let u = un−1un−2 . . . u1u0 and
v = vn−1vn−2 . . . v1v0 be two n-bit binary
strings. The Hamming distance h(u, v) be-
tween two vertices u and v is the number of
different bits in the corresponding strings of
both vertices. The hypercubes Q1, Q2, and
Q3 are illustrated in Figure 1 and Q4 is illus-
trated in Figure 2. Let Qi

n be the subgraph of
Qn induced by {un−1un−2 . . . u1u0 | un−1 = i}
for i = 0, 1. Therefore, Qn can be constructed
recursively by taking two copies of Qn−1, Q0

n

and Q1
n, and adding a perfect matching be-

tween these two copies. Let u be a vertex in
Q0

n (resp. Q1
n), we use ū to denote the unique

neighbor of u in Q1
n (resp. Q0

n). The hyper-
cube is a widely used topology in computer
architectures [8]. There are some interesting
studies in hypercube [6, 10,13].

A graph is pancyclic if it contains a cy-
cle of every length from 3 to |V (G)| inclu-
sive. The concept of pancyclic graphs is
proposed by Bondy [3]. It is known that
there is no odd cycle in any bipartite graph.
For this reason, the concept of bipancyclic
graph is proposed [7]. A bipartite graph
is bipancyclic if it contains a cycle of every
even length from 4 to |V (G)| inclusive. It
is proved that the hypercube Qn is bipan-
cyclic if n ≥ 2 [9, 12]. A graph is pancon-
nected if, for any two different vertices x and
y, there exists a path of length l joining x
and y with dG(x, y) ≤ l ≤ |V (G)| − 1. The
concept of panconnected graphs is proposed
by Alavi and Williamson [1]. It is easy to
see that any bipartite graph with at least
3 vertices is not panconnected. Therefore,
the concept of bipanconnected graphs is pro-
posed. A bipartite graph is bipanconnected if,
for any two different vertices x and y, there
exists a path of length l joining x and y with
dG(x, y) ≤ l ≤ |V (G)| − 1 and (l − dG(x, y))

being even. It is proved that the hypercube
is bipanconnected [9]. A hamiltonian graph
G is panpositionable if for any two different
vertices x and y of G and for any integer
k with dG(x, y) ≤ k ≤ |V (G)|/2, there ex-
ists a hamiltonian cycle C of G such that
dC(x, y) = k. A hamiltonian bipartite graph
G is bipanpositionable if for any two differ-
ent vertices x and y of G and for any in-
teger k with dG(x, y) ≤ k ≤ |V (G)|/2 and
(k−dG(x, y)) being even, there exists a hamil-
tonian cycle C of G such that dC(x, y) = k.
The concept of panpositionable and bipanpo-
sitionable are proposed by Kao et al. [11]. It
is proved that the hypercube Qn is bipanposi-
tionable if n ≥ 2 [11]. A bipartite graph G is
edge-bipancyclic if for any edge in G, there is
a cycle of every even length from 4 to |V (G)|
traversing through this edge. The concept
of edge-bipancyclic is proposed by Alspach
and Hare [2]. A bipartite graph G is vertex-
bipancyclic if for any vertex in G, there is a
cycle of every even length from 4 to |V (G)|
going through this vertex. The concept of
vertex-bipancyclic is proposed by Hobbs [5].
Obviously, every edge-bipancyclic graph is
vertex-bipancyclic. It is proved that the hy-
percube Qn is edge-bipancyclic if n ≥ 2 [9].

In this paper, we propose a more interest-
ing property about hypercubes. A k cycle is
a cycle of length k. A bipartite graph G is
k-cycle bipanpositionable if for every different
vertices x and y of G and for any integer l
with dG(x,y) ≤ l ≤ k

2
and (l − dG(x, y)) be-

ing even, there exists a k cycle C of G such
that dC(x, y) = l. (Note that dC(x, y) ≤ k

2

for every cycle C of length k.) A bipartite
graph G is bipanpositionable bipancyclic if G
is k-cycle bipanpositionable for every even
integer k with 4 ≤ k ≤ |V (G)|. In this
paper, we prove that the hypercube Qn is
bipanpositionable bipancyclic if and only if
n ≥ 2. As a consequence of this result, we
can see that many previous results on hyper-
cubes follows directly from ours. For exam-
ple, the hypercube is bipancyclic, bipancon-
nected, bipanpositionable, edge-bipancyclic
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Figure 1: The graphs Q1, Q2 and Q3
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Figure 2: The 4-dimensional hypercube

and vertex-bipancyclic. Therefore, our result
unify theses results in a general sense.

2 Bipanpositionable Pan-

cyclic Property

We prove our main result by induction as
stated in Lemma 1 and Theorem 1 below.

Lemma 1. The Q3 is bipanpositionable bi-
pancyclic.

Proof. Let x and y be two different vertices
in Q3. Obviously, dQ3(x,y) = 1, 2 or 3. Since
the hypercube is vertex symmetric, without
loss of generality, we may assume that x =
000.
Case 1: Suppose that dQ3(x,y) = 1. Since
Q3 is edge symmetric, we assume that y =
001. See Table 1
Case 2: Suppose that dQ3(x,y) = 2. We
have y ∈ {011, 101, 110}. See Table 1

Case 3: Suppose that dQ3(x,y) = 3. We
have y = 111. See Table 1

Thus, Q3 is bipanpositionable bipancyclic.

Theorem 1. The Qn is bipanpositionable bi-
pancyclic if and only if n ≥ 2.

Proof. We observe that Q1 is not bipan-
positionable bipancyclic. So we start with
n2 ≥ 2. We prove Qn is bipanpositionable
bipancyclic by induction on n. It is easy to
see that Q2 is bipanpositionable bipancyclic.
By Lemma 1, this statement holds for n = 3.
Suppose that Qn−1 is bipanpositionable bi-
pancyclic for some n ≥ 4. Let x and y be two
distinct vertices in Qn, and let k be an even
integer with k ≥ max{4, 2dQn(x,y)} and k ≤
2n. For every integer l with dQn(x,y) ≤ l ≤ k

2

and (l−dQn(x,y)) being even, we need to con-
struct a k-cycle C of Qn with dC(x,y) = l.
Case 1: dQn(x,y) = 1. Without loss of gen-
erality, we may assume that both x and y are
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Table 1: Proof of Lemma 1

Case 1 y = 001 4-cycle dC(x,y) = 1 〈000, 001, 011, 010, 000〉
6-cycle dC(x,y) = 1 〈000, 001, 101, 111, 110, 100, 000〉

dC(x,y) = 3 〈000, 100, 101, 001, 011, 010, 000〉
8-cycle dC(x,y) = 1 〈000, 001, 101, 111, 011, 010, 110, 100, 000〉

dC(x,y) = 3 〈000, 100, 101, 001, 011, 111, 110, 010, 000〉
Case 2 y = 011 4-cycle dC(x,y) = 2 〈000, 001, 011, 010, 000〉

6-cycle dC(x,y) = 2 〈000, 001, 011, 010, 110, 100, 000〉
8-cycle dC(x,y) = 2 〈000, 001, 011, 010, 110, 111, 101, 100, 000〉

dC(x,y) = 4 〈000, 001, 101, 111, 011, 010, 110, 100, 000〉
y = 101 4-cycle dC(x,y) = 2 〈000, 001, 101, 100, 000〉

6-cycle dC(x,y) = 2 〈000, 001, 101, 111, 110, 100, 000〉
8-cycle dC(x,y) = 2 〈000, 001, 101, 111, 011, 010, 110, 100, 000〉

dC(x,y) = 4 〈000, 001, 011, 111, 101, 100, 110, 010, 000〉
y = 110 4-cycle dC(x,y) = 2 〈000, 010, 110, 100, 000〉

6-cycle dC(x,y) = 2 〈000, 100, 110, 111, 101, 001, 000〉
8-cycle dC(x,y) = 2 〈000, 100, 110, 010, 011, 111, 101, 001, 000〉

dC(x,y) = 4 〈000, 100, 101, 111, 110, 010, 011, 001, 000〉
Case 3 y = 111 6-cycle dC(x,y) = 3 〈000, 001, 011, 111, 110, 100, 000〉

8-cycle dC(x,y) = 3 〈000, 001, 011, 111, 101, 100, 110, 010, 000〉

in Q0
n. (l − dQn(x,y)) is even, so l is an odd

number.

Case 1.1: l = 1. Suppose that k ≤ 2n−1.
By induction, there is a k-cycle C of Q0

n with
dC(x,y) = 1. Suppose that k ≥ 2n−1 + 2. By
induction, there is a 2n−1-cycle C ′ of Q0

n with
dC(x,y) = 1. Without loss of generality, we
write C ′ = 〈x, P, z,y,x〉 such that dP (x, z) =
k− 2. Suppose that k− 2n−1 = 2. Then C =
〈x, P, z, z̄, ȳ,y,x〉 forms a (2n−1 + 2)-cycle
with dC(x,y) = 1. Suppose that k−2n−1 ≥ 4.
By induction, there is a (k − 2n−1)-cycle C ′′

of Q1
n such that dC′′(z̄, ȳ) = 1. We write

C ′′ = 〈z̄, R, ȳ, z̄〉 with dR(z̄, ȳ) = k−2n−1−1.
Then C = 〈x, P, z, z̄, R, ȳ,y,x〉 forms a k-
cycle of Qn with dC(x,y) = l.

Case 1.2: l ≥ 3. Suppose that k − l − 1 ≤
2n−1. By induction, there is a (l + 2)-cycle
C ′ of Q0

n with dC′(x,y) = 1. We write
C ′ = 〈x, P,y,x〉 where dP (x,y) = l. By in-
duction, there is a (k − l− 1)-cycle C ′′ of Q1

n

with dC′′(x̄, ȳ) = 1. We then write C ′′ =
〈ȳ, R, x̄, ȳ〉 such that dR(ȳ, x̄) = k − l − 1.

Then C = 〈x, P,y, ȳ, R, x̄,x〉 forms a k-
cycle of Qn with dC(x,y) = l. Suppose
that k − l − 2 ≥ 2n−1 + 1. By induction,
there is a (k − 2n−1)-cycle C ′ of Q0

n with
dC′(x,y) = l. We write C ′ = 〈x, P,y,u, R,x〉
with dP (x,y) = l and dR(u,x) = k− (2n−1−
1) − l − 2. By induction, there is a (2n−1)-
cycle C ′′ of Q1

n with dC′′(x̄, ū) = 1. We write
C ′′ = 〈x̄, ū, S, x̄〉 with dS(ū, x̄) = 2n−1 − 1.
Then C = 〈x, P,y, R,u, ū, S, x̄,x〉 forms a k-
cycle of Qn with dC(x,y) = l.

Case 2: dQn(x,y) ≥ 2 and l = 2. Since
dQn(x,y) ≤ l and l = 2, so dQn(x,y) = 2.
Without loss of generality, we may assume
that x is in Q0

n and y is in Q1
n. Then

dQn(x̄,y) = 1 and dQn(ȳ,x) = 1.

Suppose that k = 4. Then C =
〈x, x̄,y, ȳ,x〉 forms a 4-cycle of Qn with
dQn(x,y) = 2. Suppose that 6 ≤ k ≤
2n−1+2. By induction, there is a (k−2)-cycle
C ′ = 〈x, P, ȳ,x〉 of Q0

n such that dP (x, ȳ) =
k − 3. Then C = 〈x, P, ȳ,y, x̄,x〉 forms a k-
cycle of Qn with dC(x,y) = 2. Suppose that
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k ≥ 2n−1 + 4. By induction, there is a 2n−1-
cycle C ′ of Q0

n with dC′(x, ȳ) = 1. We write
C ′ = 〈x, P, z, ȳ,x〉 with dP (x, z) = 2n−1 − 2.
By induction, there is a (k − 2n−1)-cycle C ′′

of Q1
n with dC′′(y, z̄) = 1. We write C ′′ =

〈y, z̄, R,y〉 with dR(y, z̄) = k−2n−1−1. Then
C = 〈x, P, z, z̄, R,y, ȳ,x〉 forms a k-cycle of
Qn with dC(x,y) = 2.

Case 3: dQn(x,y) ≥ 2 and l ≥ 3. Without
loss of generality, we may assume that x is
in Q0

n and y is in Q1
n. Suppose that k − l −

dQn(x,y)+2 ≤ 2n−1. By induction, there is a
(l+dQn(x,y)−2)-cycle C ′ = 〈x, P, ȳ,u, R,x〉
of Q0

n such that dP (x, ȳ) = l − 1 and
dR(u,x) = dQn(x,y)−2. By induction, there
is a (k−l−dQn(x,y)+2)-cycle C ′′ of Q1

n with
dC′′(y, ū) = 1. We write C ′′ = 〈y, S, ū,y〉
with dS(y, ū) = k − l − dQn(x,y) + 1. Then
C = 〈x, P, ȳ,y, S, ū,u, R,x〉 forms a k-cycle
of Qn with dC(x,y) = l. Suppose that k −
l− dQn(x,y) + 4 ≥ 2n−1. By induction, there
is a (k − 2n−1)-cycle C ′ = 〈x, P, ȳ,u, R,x〉 of
Q0

n such that dP (x, ȳ) = l−1 and dR(u,x) =
k − 2n−1 − l. By induction, there is a 2n−1-
cycle C ′′ of Q1

n with dC′′(y, ū) = 1. We write
C ′′ = 〈y, S, ū,y〉 with dS(y, ū) = 2n−1 − 1.
Then C = 〈x, P, ȳ,y, S, ū,u, R,x〉 forms a k-
cycle of Qn with dC(x,y) = l.

The theorem is proved.
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