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Abstract

Since protein structure is well conserved over evolu-
tionary time, it therefore provides the opportunity to
recognize homology that is undetectable by sequence
comparison, and it represents a powerful means of dis-
covering functions. In addition, the three-dimensional
structure of a protein can yield direct insight into its
molecular mechanism. Currently, there are several
techniques available in attempting to find the optimal
alignment of shared structural motifs between two pro-
teins.

In this paper, we propose novel distance/similarity
measurements and algorithms for pairwise alignment
of protein structures. Methods of locating suitable iso-
metric transformations of one structure, and align it
to the other are addressed. Our methods allow se-
quence gaps of any length, reversal of chain direction,
and free topological connectivity of aligned segments.
Sequential connectivity can be imposed as an option.
The method is fully automatic to identify structural re-
semblances and common structural cores accurately
and sensitively, even in the presence of geometrical
distortions.

Keywords: Bioinformatics, Structural genomics, Al-
gorithms, Structure alignments and comparisons.

1 Introduction

The three dimensional structure of proteins is
highly conserved during evolution [4]. Proteins are
constructed by one or more polypeptide chains that
fold into complicated 3D structures. In order to rec-
ognize the function of proteins, we can obtain insights
by means of structures comparison. Detection of pro-
teins with a similar fold can suggest a common an-
cestor, and often a similar function [6]. Comparison
of 3D structures makes it possible to establish dis-
tant relationships, even between protein families dis-

tinct in terms of sequence comparison alone. This is
why structural alignment of proteins increases our un-
derstanding of more distant evolutionary relationships
[3]. The link between structural classification and se-
quence families enables us to study functions of vari-
ous folds, or whole proteins.

Protein structure alignment techniques have grown
increasingly important as a means to quantitatively
compare and classify all known protein structures. The
number of structures in the Protein Data Bank is cur-
rently (as of Aug 2004) more than 26,711 [2]. One of
the primary goals of structural alignment programs is
to quantitatively measure the level of structural sim-
ilarity between all pairs of known protein structures.
This data can provide several meaningful insights into
the nature of protein structures and their functional
mechanisms. For instance, the comparison of all struc-
tures against each other can show relationships, both
functional and structural, between proteins that were
previously not known to be related [11].

In addition, structure based distance measures are
critical to constructing accurate phylogenies of pro-
teins and classifying structures into families that share
similar folds or motifs. Identifying these shared struc-
tural motifs using structural alignment techniques can
provide significant insight into the functional mecha-
nisms of the protein family. There have been several
methods proposed to compare protein structures and
measure the degree of structural similarity between
them. These methods have been based on alignment
of secondary structure elements as well as alignment
of intra and inter-molecular atomic distances [1, 8, 10].

Dynamic programming techniques for 1D-base se-
quence comparisons such as Needleman-Wunsch al-
gorithm [16] and Smith-Waterman algorithm [21] are
usually applied to find a structural alignment for two
3D protein chain structures using various heuristics.

There have been several methods proposed to com-
pare protein structures and measure the degree of
structural similarity between them. The basic idea
is , first, rapid identification of pair alignments of

1

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1000



secondary structure elements, clustering them into
groups, and scoring the best substructure alignment.
The first one methods (VAST) is based on continu-
ous distribution of domains in the fold space. Second
method FSSP/DALI provides two levels of description
- a coarse-grained one and one with a fine-grained res-
olution. Third method CATH provides the complete
PDB fold classification by domains and links to other
sources of information. The last two methods (CE and
LGscore2) are based on a different idea. They focus on
the local geometry rather than global features such as
orientation of secondary structures and overall topol-
ogy (as in the case of VAST or DALI) [5, 9, 12, 17, 20].

In this paper, our objective is to calculate the
significance of score (rmsd) between spatial arrange-
ments of Cα atom of protein backbone that are not
necessarily adjacent in sequence. We use a idea of
matching of Cα atom between them. To find the best
match by the continuously perturb. Finally, we can ob-
tain a lower score (rmsd).

2 Method

In this paper, we propose a novel distance / sim-
ilarity measurement and algorithm for pairwise align-
ment of protein structures. We first propose a novel su-
perposition distance measurement between two given
structure, and then describe an algorithm in calculating
the similarity. Secondly, methods of locating suitable
isometric transformations of one structure, and align
it to the other are addressed. In our methods of find-
ing suitable isometric transformation, we use Monte
Carlo procedure to pick up suitable initial setting. Our
method allows sequence gaps of any length, reversal
of chain direction, and free topological connectivity of
aligned segments. Sequential connectivity can be im-
posed as an option. The method is fully automatic and
identifies structural resemblances and common struc-
tural cores accurately and sensitively, even in the pres-
ence of geometrical distortions.

2.1 Protein (molecular) structure distances,
similarities, and scoring functions

We briefly explain the idea of the smallest root
mean squared deviation (rmsd). The idea is to align
atom vectors of the two given (molecular) structures,
and use the common least averaged squared errors
as a measurement of differences between these two
(paired) sequences. The rmsd fitting is a kind of least-
squares fitting method for two sequences of points, and
was developed by several persons independently [18].

Let P = {p1, . . . , pn} andQ = {q1, . . . , qn} be
two sequences of points. We assume thatP is trans-
lated so that its centroid( 1

n

∑n
k=1 pk) is at the ori-

gin. We also assume thatQ is translated in the same
way. For each point or Vectorx, (x)i(i = 1, 2, 3)

denotes thei-th (X,Y,Z) coordinate value ofx, and
‖x‖ denotes the length ofx. Let d(P,Q, R,a) =√

1
n

∑n
k=1 ‖Rpk + a− qk‖2 where R is a rotation

matrix and a is a translation vector. Then, the
rmsd valued(P, Q) betweenP andQ is defined by
d(P, Q) = minR,a d(P, Q,R,a).

d(P, Q, R, a) is minimized whena = 0 andR =
(AtA)

1
2 A−1 where the matrixA = (Aij) i, j = 1, 2, 3

is given byAij =
∑n

k=1(pk)i(qk)j , A
1
2 = B means

BB = A , ando denotes the zero vector [19]. Thus,
d(P, Q), R and a can be computed inO(n) time,
whereO(f(n)) time means that the computation time
is at mostC · f(n) for some constantC.

Note that there must be an atom-pairing scheme
before one can do thermsd computation. The first
atom of the first selection is compared to the first atom
of the second selection, fifth to fifth, and so on. Usu-
ally, most existed protein alignment algorithms use
rmsd to calculate the averaged squared different dis-
tances between Cα atoms of two protein backbones.
Throughrmsd, we can find the similarity between two
protein structures. Thermsd algorithm is used by
VAST,CE, and many other packages as the final re-
fined measurement step. The trick, though, is how
these algorithms to identify the suitable paired atoms
selected from the two given structural elements.

One reasonable way of defining the distance mea-
surement (similarity) between two given structures is
to find the bestrmsdthat fits between the smaller pro-
tein and a subset of the larger protein with the same
number of residues. For example, if the smaller pro-
tein hasn residues, the optimal alignment is defined
by finding a subset (subsequence) ofn residues in the
larger structure such that the (minimum) rmsd between
the smaller structure and the subsequence of the larger
structure is minimized. The main difficulty of this
method is that there are exponential ways to choosen
residues in the larger structure. Furthermore, since the
n chosen residues are unordered, it may be necessary
to exploit as many asn! different permutations before
a correct rmsd alignment (with minimum deviation) is
found.

In this paper, we propose a more computation-
ally feasible solution for the similarity measurement.
We use the geometric projective method by projecting
the 3D atoms into three orthogonal 2D image planes,
namely, thexy-plane (equation: z = 0), xz-plane
(y = 0), andyz-plane(x = 0). In the following, we
define the set difference measure of two set of points
P = {p1, . . . , pn} andQ = {q1, . . . , qm} on thexy-
plane, the other two plane measurements follow ac-
cordingly. Without loss of generality we will assume
thatn ≤ m. Intuitively, the setP represents a smaller
molecular structure whileQ represents a larger struc-
ture.

2

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1001



∆(P,Q).
Input: Two set of pointsP = {p1, p2, . . . , pn} andQ = {q1, q2, . . . , qm}; n < m
Output:The superposition distance betweenP andQ.

1 for eachp in P , q in Q, do w(p)←1;w(q)←1;w ← 0; B The canceled total weights.
2 for each pointq in Q do
3 while t 6= 0 do
4 Letp in P be nearest point ofq, such thatdi ≤ d(p, q) < di+1;
5 t ← min{wi; w(p), w(q)};
6 w ← w + t;w(p) ← w(p)− t;w(q) ← w(q)− t;
7 Removep from P if w(p) = 0;
8 Returnm + n− 2w as the superposition distance,∆(P,Q)

Figure 1: The algorithm for computing the superposition distance∆(P, Q).

ALIGN(P, Q ·R0)
Input: Two set of pointsP = {p1, p2, . . . , pn} andQ = {q1, q2, . . . , qm};n < m R0:

an initial rotation transformation ofP .
Output:a good isometric transformationT for aligning structuresP andQ.

1 Translate points ofP andQ such that each of their mass centers after
the translation becomes the origin point(0, 0, 0).

2 Rotate:P ← R0 ◦ P ; T ← R0◦ “the translation”;
3 w ← ∆(P, Q);
4 Repeat the following 5 to 9 until the superposition converges.
5 For each one of the three different orthogonal planes rotations, find the

best rotation angle (pivoted at the center of the mass).
6 Letθx be thegoodangle that rotatesP around thex-axis (i.e., along

theyz-plane) such that superposition distance∆(R(θx) ◦ P,Q) after
the rotation is sufficiently smaller than∆(P, Q). The other two angles
θy andθz is also defined similarly.

7 θ ← arg min{∆(R(θx) ◦ P, Q), ∆(R(θy) ◦ P, Q), ∆(R(θz) ◦ P, Q)};
8 P ← R(θ) ◦ P ;T ← R(θ) ◦ T ;
9 Repeat 5 to 9 if∆(R(θz) ◦ P, Q) is smaller than∆(P, Q); otherwise,

exit to 10.
10 Return the transformationT and superposition distance,∆(P, Q).

Figure 2: Finding a good isometric transformationT to align structuresP andQ.

2.2 Finding a suitable rigid transformation
for matching structures

A point q in Q is canceledby a pointp in P if
they are relatively closed to each other. Specifically,
we choose some suitable parameterk and define a list
(an array) ofcanceling distances[d0, d1, . . . , dk] and
a list of canceled fractions[w0, w1, . . . , wk] such that
if two molecular with distances betweendi to di+1

(di ≤ d < di+1) then the collided molecular is can-
celed by a fraction ofwi. It follows that the differ-
ence betweenP andQ on thexy-plane, denoted by
∆z(P,Q), is the total remainedun-canceledmolecu-
lar weights after the cancellation of points inP andQ.
The notation of∆y(P, Q) and ∆x(P,Q) follow ac-
cordingly. Finally, the superposition distance between
P andQ is just thet-norm distance defined by:

∆(P, Q) = [∆x(P, Q)t + ∆y(P,Q)t + ∆z(P, Q)t]
1
t

for some suitable chosen parametert. Here we pro-
pose an algorithm for computing the superposition dis-
tance∆(P,Q) in the Figure 1.

Also, since many molecular biology researchers
prefer using the similarity or scoring function in mea-
suring the relationship between two molecular struc-
tures, here we mention that there is a general way of
converting the distance function∆(P, Q) can be made
by defining two adjustable parametric constantsa and
b such that the scoring (similarity) function

S(P, Q) =
a

b + ∆(P, Q)

Note that a smaller distance of∆(P, Q) results in a
higher score S(P, Q), while a larger distance causing
a lower score, and vice versus.

With the similarity/difference function,∆(P,Q),
at hand, we need a method to iteratively find a good
superposition, by using 3D isometric transformation
(rotation+ translation), of two structures, such that the
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PERTURB(P, θ, t)
Input: A set of pointsP = {p1, p2, . . . , pn};θ = (0..2π);

the rotation axist ∈ {x|y|z}.
Output:The set of points after rotation, and the rotation matrix defined by(θ, t).

1 R ← the matrix rotatingθ angle along thet-axis ;P ′ ← ∅
2 for eachp in P do P ′ ← P ′ ∪ {R ◦ p}
3 return (P ′, R).

Figure 3: The algorithm for perturbing the set of pointsP .

resulting structures have sufficiently low∆(P, Q) dif-
ference. Here we propose an algorithm for performing
suitable isometric transformationT between structures
P andQ such that the resulting superposition distance
∆(T ◦P,Q) is sufficiently low; the algorithm is shown
in Figure 2.

This iterative algorithm is seeded with an initial
superposition that is based on translating both mass
centers to the origin point and an initial rotation trans-
formation R0. A custom-based initially seeded po-
sition is also possible. We briefly explain possible
heuristics for finding a good rotation angleθx. The
method of findingθy and θz also follows symmetri-
cally. Note that the projected points ofP to theyz-
plane are justn 2D points. One possibility is to find
the two least-squares regression lines for bothP and
Q and align (rotate) points ofP accordingly. Another
possibility is to use the exponential jumping method.
Given a minimum angleθmin, a maximum angleθmax,
and a positive real ratior the algorithm will try all
possiblerkθmin for all nonnegative integerk until
rkθmin > θmax . The algorithm then picks an angle
that minimizes∆(R(θx) ◦ P, Q).

To avoid that an ill-chosen initial transformation
might lead to a local maximal solution and miss some
better alignment, we use Monte Carlo procedure to
pick up several different initial settings of initial ro-
tation R0’s such that better results might be chosen.
That is,

R∗ = arg minR {ALIGN(P,Q · R)| several ran-
domly picked rotationR};

ALIGN(P, Q) =ALIGN(P,Q ·R∗)
Finally, we can do the final refinement by uti-

lizing the RMSD procedure to fine-tune the final re-
sult. Let T ∗ be the isometric transformation obtain-
ing ALIGN(P, Q · R∗), P ′ = T ◦ P , andQ being
translated toQ′ such that the mass center ofQ′ is
located at the origin. We construct a weighed graph
G = (V,E) with V being labelled with points ofP ′

and Q′, and each(p, q) in E being weighted some
scoring function of the Euclidean 3D distance, for ex-
ample,w(p, q) = a/(b+‖p, q‖) for some parametersa
andb. We then solve the weighted maximum matching
problem [7] to obtain the best matching ofP ′ andQ′.
After the matched pairings, we perturb and refine the
final alignment by applying the algorithmMB-ALIGN

andPERTURB to obtain lowerrmsd, the algorithm is

show in Figure 3 and Figure 4.
Note that MB-ALIGN uses PERTURB to rotate

the Cα atoms of a protein, and performs minimum
weighted bipartite matching to find good choices of
atoms pairing between two structures before perform-
ing the refinementRMSD. First, the algorithmMB-
ALIGN constructs a setS containing a set of config-
urations of the points set. Atoms of the structure are
rotated along each axle (x-axis, y-axis, orz-axis) to
several set of groups of set points; each rotated group
is called aseed, s; the set of seeds is denoted by the
setS. Note that eachs in S is a structure containing a
real value rms[s] and a rotation matrix mat[s]. The al-
gorithm then perturb eachs in S by rotating six direc-
tions by thePERTURB procedure. For each perturbed
seed,MB-ALIGN finds the minimum bipartite match-
ing, MBM, to decide the points pairing between point
sets. Once it observes an improved seeds (smaller
rms[s]), the seed is then put back toS. The algo-
rithm stops either when a sufficiently small rms[s] is
observed or when no further improvement is possible.

3 Preliminary Experiments and Result

To validate our method, we have implemented the
algorithms as several independent C programs to per-
form experiments. Given a set of points,P , we use
programs to rotate and translate them into another set
P ′. We then use our independent system (not know-
ing how the original set was perturbed) to find the best
structural alignment betweenP and P ′. In imple-
menting our system, we adapt the LEDA [15] pack-
age system to perform the minimum weighted bipar-
tite matching. The algorithm of maximum bipartite
matching is implemented by Dijkstra’s algorithm and
heuristic method. In the worst case, the time complex-
ity of this algorithm isO(n(m + n log n)) [15]. Fur-
thermore, we make use of the open source licensed
software, ProFit [13], to calculate root mean square
deviation. ProFit is designed to be the ultimate pro-
tein least squares fitting program, there are now some
1300 registered users around the world. It has many
features including flexible specification of fitting zones
and atoms, calculation ofrms over different zones or
atoms, andrms-by-residue calculation. Fitting is im-
plemented by using the McLachlan algorithm [14].
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MB-ALIGN(P, Q, F, τ).
Input: Two set of pointsP = {p1, p2, . . . , pn} andQ = {q1, q2, . . . , qm}; n < m

The thresholdτ is a real number, and a flagF is integer.
Output:a sufficiently lowrmsdand its corresponding rotation matrixR.

1 θMax = 2π
10 and create a empty structure queue S.

B Eachs in S contains a real number rms[s] and a rotation matrix mat[s].
2 Create two arrayP ′andR. B P ′ is a temp set of points, andR is a matrix.
3 for i ← 1 to 10do
4 for eacht in {x, y, z} do B Placing seeds by rotation alongx-axis,y-axis andz-axis.
5 (P ′, R) ← PERTURB(P, i · θMax, t); L ← MBM (P ′, Q); rms[s] ← RMSD(L);
6 mat[s] ← R; S ← S ∪ {s};
7 C ← 0 B Initializing the counter.
8 while C ≤ F do
9 for eachs in S do

10 Letr be a real value picked uniformly random from(0..1).
11 LetθAdj = θMax· rms[s] / rms[Adj] B The rms[Adj] is determined by empiricism.
12 for eacht in {x, y, z} do
13 (P ′, R) ← PERTURB(P◦ mat[s], r · θAdj, t); L ←MBM (P ′, Q);
14 if rms[s] > RMSD(L) then rms[s]← RMSD(L); mat[s]← R ◦mat[s];
15 (P ′, R) ← PERTURB(P◦ mat[s], r · −θAdj, t); L ←MBM (P ′, Q);
16 if rms[s] > RMSD(L) then rms[s]← RMSD(L); mat[s]← R ◦mat[s];
17 C ← C + 6
18 if rms[s] ≤ τ then return rms[s] and mat[s].
19 return the minimum rms[s] and mat[s] from S.

MBM (P, Q) B Finding the minimum minimum bipartite matching of two points sets.
Input: Two set of pointsP = {p1, p2, . . . , pn} andQ = {q1, q2, . . . , qm}; n < m
Output:The minimum bipartite matching ofP andQ, encoded in the listL.

RMSD(L) B Finding the minimum root mean squared deviation of two ordered sets of points.
Input: An ordered list L.
Output:The minimum root mean square deviation ofL.

Figure 4: Aligning two sets of atoms with lowrmsdby pairing points according to the maximum bipartite matching
measurement.

We perform our experiments as the following.
First, a points set,P , of size varying from 50 to 1,000
are randomly generated as the tested case. The point
setP is then rotated and translated randomly to an-
other setQ. The idea is then to use our structure align-
ment system to find the suitable reversed transforma-
tion so that the resultingrmsd' 0 or at least suffi-
ciently small.

To fine-tune the structure alignment system, sev-
eral experiments have been done. For example, to fig-
ure out a better Monte Carlo strategy in perturbing the
seeds, we adapt two slightly different approaches. One
is that all seeds inS shares one single random dice (r),
while the other is to let each seed having its own pri-
vate (local) dice. Note that the rotation angle will be
adjusted in accordance with the rms[s] value. The ex-
perimental results is shown in Figure 5. Furthermore,
we also compare the differences of the performance
of the system when the number of seeds in considera-
tion are varied; the average required rotation numbers
under different seeding conditions is illustrated by the

table shown in Figure 6.
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