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Abstract 

A fast estimation of blocking 

probability for heterogeneous voice source 

in VoIP environments is proposed in this 

paper. In VoIP environments, traffics are 

generated from various voice sources and 

the transient system states due to the input 

traffics are commonly described by MMPP 

(Markov-Modulated Poisson Process).  

MMPP is a generalization of Poisson 

process and is commonly used in modeling 

the input process of communication 

networks. However, as we know, the 

solution of MMPP model on the estimation 

of blocking probability is very involved 

when the total system state number N 

become large.  

In this paper, a generic reduction 

method is proposed for blocking probability 

estimation. In our study, a large total 

number of system states for the original 

MMPP model is equivalently downsized to 

an approximating Markov chain model with 

less total number of system states. This will 

benefit on easy estimation of blocking 

probability. Our contribution is focused on 

system simplification and the blocking 

probability estimation is asymptotically 

closed to the original system. The 

numerical results shows our method is 

satisfied and this discipline can be widely 

applied to other high-speed networks for 

model simplifications. 

 

Keywords: Two-state, voice, reduction, 
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1. Introduction 

 

In modern VoIP environments, voice is 

the vast majority of information exchanging 

over the telecommunication networks. 

Voice transmission can be performed either 

by circuit switching or packet switching. 

Circuit switching has the fixed 

bandwidth and control policy, its blocking 

probability can be easily calculated by 

Erlang’s formula. However much bandwidth 

is exhausted in circuit switching technique. 

In another aspect, less bandwidth is required 

in packet switching technique. However, the 

blocking probability estimation in packet 

switching is much complex than in circuit 

switching. Packet switching requires the 

system performance to fit the quality of 

service (QoS) requirements. Low latency 

and low blocking rate are the fundamental 

requirements of QoS. Especially for packets 

encoded from voice behaving the 

characteristics of burstiness and 

delay-sensitive, this results in the 

complexity of system analysis. Therefore, 

for QoS guarantee, how to capture the traffic 
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characteristics of voice is the main issue in 

VoIP environments. In this paper, we 

concentrate on blocking probability 

estimation for voice transmission in VoIP 

environments. 

The MMPP models have been 

widespread applied in traffic analysis [4]-[8], 

however no simple methods have been 

provided for performance estimations. 

Classical iterative methods, such as the block 

Gauss-Seidel method, are used to solve the 

steady state probability. The convergence rate 

of this method is slow [12].  

In our approach, due to the traffic 

generated by voice source, a generic method 

is provided to estimate the blocking 

probability by reducing the MMPP model. A 

fast estimation for blocking probability is 

achieved according to the equivalent reduced 

MMPP model. The dimension of the state 

space of the Markov chain expressed by the 

MMPP model is effectively reduced in our 

scheme. Numerical results presented therein 

focused on the accuracy of the 

approximation. 

The rest of the paper is organized as 

follows. After given the model description in 

the next section, we derive mathematical 

analysis in Section 3 both for uniform and 

non-uni-form traffics. In Section 4, numerical 

and simulation results are presented and 

Section 5 is the conclusion. 

 

2. Model description 

 

Fig. 1 shows a traffic rate of voice 

source includes two states in a busy period, 

i.e., active state and idle state in a 

conversation cycle. The busy period is 

defined as the summation of one active state 

and one idle state. In Fig. 1, the packets are 

generated only when the voice source is stay 

in the busy period and no packets are 

generated when the voice source is stay in 

the idle period.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In voice conversations, the voice source 

resides in active state will generate packets. 

The generating packet is fed to a server with 

finite queue buffer as depicted in Fig. 2. 

Where nµ  denotes an n servers with each 

server owns a service rate equal to µ . 

Therefore, in our model, the link capacity of 

the queue is equal to nµ . Since voice 

transmission is delay-sensitive, to avoid 

delay occurring caused by the queue buffer, 

we assume the buffer size is small enough 

and its effect can be ignored. Therefore, it is 

reasonable to adopt the M/M/n/n loss 

queuing model for analysis in our approach. 

For the M/M/n/n system, if a packet arrives 

when n servers are occupied, that packet is 

lost. 

Traffic rate 

Busy period 

Idle period 

Fig. 1 Voice conversation cycle 

Time 
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3. Mathematical analysis 

 

Fig. 3 shows the two-state MMPP 

Markov model corresponds to Fig. 2, where 

the total number of state for the original 

model equal to 2(n +1), where n is a positive 

integer indicating the total number of 

packets resident in the system. We assume 

each packet is served by one server with 

service rate µ , and nµ  servers can serve 

at most n packets at one time. In our scheme, 

the 2(n+1) states are reduced to k+1 states, 

where k is an positive integer and its 

magnitude is much less than n. The 

advantage of the reducing method is based 

on the fact that the calculation of blocking 

probability is simplified since the dimension 

of the system state space is reduced. For 

convenience, we call each of the k+1 states 

as cluster state.  

From Fig. 3, the system states are 

described by the two-dimensional Markov 

chain with metric state (x, y), where the first 

parameter x is a random variable indicating 

the system state with state space set {0,1}, 

in which, 0 indicates the idle state and 1 

indicates the active state. The second 

parameter y is a random variable indicating 

the total number of customers in the system 

with set {0, 1, 2, … ,n }. For instance, state 

(1,9) indicates the system is in active state 

and the total number of customers equal to 

9.  

 

 

 

 

 

 

 

 

 

 

Fig. 3 Two-state Markov model 

 

Recall that packets can only be 

generated during the time interval when the 

voice source is in active state. In our study, 

the original 2(n+1) states of MMPP Markov 

model shown in Fig. 3 (including both of 

active and idle state) is reduced to n+1 states 

as Fig. 4 depicted. It is noted the arrival rate 

a in Fig. 3 is replaced by r as Fig. 4 depicted 

with the following equation. i.e., 

a
gb

b
r

+
= -------------------------(1) 

Equation (1) can be validated from the 

two state Markov chain model as Fig. 5 

shown under the assumption that the system 

is stationary and ergodic. Let ONP  be the 

steady state probability for the “ON state”, 

similarly, let OFFP  be the steady state 

nµ

Input voice traffic 

Fig. 2 M/M/n/n queuing model  

0,0 

1,n 1,0 

0,n 

b g 

a 

µ
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probability for the “OFF state”. Then 

applying the balance equation to Fig. 5 and 

the normalization constraint, we have 

bPgP OFFON =  --------------------(2) 

and 

1PP OFFON =+ ---------------------(3) 

Solving for ONP  by conjunction of Eqs. 

(2) and (3), we obtain  

bg

b
PON

+
= .  

Since the total arrival rate equal to a 

when the state is staying in ON state and 

equal 0 in OFF state. Therefore the 

equivalent arrival rate r in the reduced 

MMPP model (as shown in Fig. 4) is equal 

to the partial fraction of the arrival rate in 

the original MMPP model (as depicted in 

Fig. 3) in ON state. 

 

 

 

 

 

 

 

 

 

Fig. 4 Reduced MMPP model with n+1 

state 

 

An advanced simple model is obtained 

From Fig. 4 by partitioning the n+1 states 

into k+1 states by associations (we call k+1 

clusters in the following sections) with k be 

much less than n.  

It is noted that the total number of the 

states for the MMPP model and the reduced 

model are n+1 and k+1 respectively since 

the start number of the state is 0. In reducing 

a MMPP queueing model containing large 

number of n+1 states into a small number of 

k+1 states. For simplicity we consider the 

uniform distribution in the following.  

 

In this case, the distributions of the 

arrival rate for the ON/OFF transition rates 

are assumed to be constant as shown in Fig. 

4 and Fig. 5 for the original MMPP model 

and reduced equivalent model respectively. 

Then, from symmetry point of view, we can 

select the states numbered 0, m’th, 2m’th, 

3m’th,…,etc. as the pilot states. For each 

pilot state, we make decision to decide 

either the m-1 states that located at its left 

hand side or right hand side should align to 

the pilot state to constitute a cluster or not.  

 

 

 

 

 

 

Fig. 5 ON/OFF state model 

 

Without loss of generality, the n+1 

states are divided into k+1 clusters where 

each cluster contains m states with the 

exception that the left end cluster (i.e., the 

first cluster) and the right end cluster (i.e., 

the last cluster). Hence, the total number of 

states in the left end and right end cluster 

depend on which one of the left-aligned or 

right-aligned structures are selected. 

Therefore we have the following relation 

between parameters n, m and k.  

  

ON OFF 

g 

b 
0 N 

r r

 
µ µn
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k
m

n
=





 ---------------------------(4) 

At here, n, m and k are all positive integers, 

where  x  is the ceiling of the x. Hence, in 

our approach, the magnitude of n is very 

large, i.e., n
m

n
m ≈





.  

It is noted, different selected value of m 

corresponds to different number of system 

states to be solved. Large value of m 

corresponds to small number of state 

equations necessary to solve, however less 

accuracy in system performance estimations. 

Small value of m selected corresponds to 

more involved system states to be solved 

but will benefit on more accurate in system 

performance estimations. Generally, 

accuracy requirements and calculation 

complexity are tradeoff in system 

performance estimations. Therefore 

adequate selection for the value of k is 

crucial to network designers. 

The blocking probability for the original 

MMPP model as shown in Fig. 4 is obtained 

from the well-known birth-death Markov 

chain [1], i.e., 

∑
=

−

=
n

0s

ssn

n

n

rµ
s!

n!

r
P  ------------------(5) 

similarly, the blocking probability for the 

reduced left-aligned Markov chain is 

∑
=

−

=
k

0t

tkt

k

L

)(mµr
t!

k!

r
P --------------(6) 

Similarly, the blocking probability of the 

right-aligned model is 

∑ ∏
−

=

−

= 







+−+

=
1k

0q

q
qk

1h

k

k

R

r1]µh)m[(kr

r
P  

-----------------------------------------(7) 

 

 

Applying Eqs. (6)-(7), we have the 

following useful Lemma for blocking 

probability estimation. 

 

Lemma: For an equivalent n+1 states 

Markov Modulated Poisson process model 

as shown in Fig. 4, the blocking 

probabilities are over-estimated both for the 

reduced left-aligned and right-aligned 

structures. For the reduced system 

containing k+1 states with k > m and m > 2. 

We claim the left-aligned model is prior 

than the right-aligned model in the 

estimation of blocking probability, 

equivalently, the following relation is hold. 

 

RLn PPP <<  --------------(8) 

The reason for m > 2 is from the fact 

that the efficiency of association is zero for 

m = 1 and k > m will effectively highlight 

the reducing efficiency. 

 

<Proof> 

The detail proof is depicted in appendix.  

In the estimation of blocking probability, 

the relation (8) indicates the left-aligned 

method is prior than the right-aligned 

method. Eq. (6) is powerful in the 

calculations of blocking probability 

estimation when the total number of states 

of the MMPP model is very large since 

large value of n makes solution complicated 
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and unreachable. 

Hence, in our study, Poisson arrival and 

exponential service rate are adopted for 

model analysis. By using similar method, 

other traffic distributions of input arrivals 

and different service distribution can also be 

taken into account in the reducing process 

for performance estimations (e.g., Parento’s 

distribution in Ethernet). Owning to space 

limitation, other distributions for input 

stream and service rate are not presented in 

this paper. 

 

4. Numerical and simulation results 

 

In this case, the arrival rate is constant 

for each state. Fig. 6(a) shows the blocking 

probability as functions of input arrival rate 

for service rate c equal to 0.1, the “ON 

state” transition probability rate b equal to 

0.05 and the “OFF state” transition 

probability rate g equal to 0.1. Similarly, 

Fig. 6(b) shows for the same values of c and 

g except b = 0.03. It is noted, the blocking 

probability is under-estimated for the 

reduced model, and over-estimated for the 

right-aligned and left-aligned models. The 

blocking probability of the left-aligned 

model is more approached to the blocking 

probability of the original model than the 

right-aligned model as the Lemma depicted 

previously. Hence, it is clear that the 

blocking probability is an increasing 

function of traffic load as desired.  

It is noted, the system with larger value 

of the “ON state” probability rate has higher 

blocking probability than less value of the 

“ON state” probability rate, i.e., the 

blocking probability of Fig. 6(a) is greater 

than Fig. 6(b). This is reasonable from Eq. 

(5) for larger value of arrival rate 

corresponds to larger value of blocking 

probability. 
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            (b) 

Fig. 6 Blocking probability comparisons for 

uniform condition with n=9, arrival rate=0.1 

  

Our simple model has the benefit to fast 

estimate the blocking probability without 

need concerning all the system states. This 

will facilitate on the calculation cost in 

system performance estimation. Although 

more numbers of clusters we take, more 

accuracy we get, i.e., as the total number of 

cluster increases, the more accurate results 

we obtained. However, more clusters will 
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induce more state equations to be solved, 

this will be non-practical in economic 

consideration. The tradeoff between total 

number of selected clusters and calculation 

cost is reasonable. Although we focus on 

the fast estimation of the blocking 

probability, nevertheless the other 

parameters such as delay, throughput can 

also be calculated easily in the same 

method.    

 In our scheme, the pilot states have 

been selected first and then we make 

decision for which of the adjacent states 

(located at left and right hand side of the 

pilot state) are selected to associate with its 

pilot state. Our solution is based on the 

M/M/n/n queuing model in which the 

service rate and arrival rate are assumed to 

be uniform. E.g., arrival rate equal to a for 

each state and the service rate equal to u for 

state 1 and equal to iu for state i 

respectively.  

 

5. Conclusions 

An efficient asymptotic estimation for 

blocking probability in VoIP environments 

has been derived. In real time environments, 

the asymptotic estimates of blocking 

probability is compared with the results of 

the original model. The voice model 

describing bursty traffic belonging to 

MMPP are solved by reducing the numbers 

of system states into small number of 

clusters. In this paper, we illustrate the 

blocking probability of a complex queuing 

model can be easily estimated by simple 

model that is downsized from the original 

models. Only the uniform distribution is 

considered. The non-uniform condition can 

be treated in the same manner. Our results 

shows the left-aligned method is better than 

the right-aligned method for uniform 

condition.  

Consequently, the developed method 

can be widely applicable in simplifying any 

traffic distributions (i.e., the Ethernet traffic, 

which is Parento’s distributions).The results 

presented here are satisfied. Our methods 

are simple and can easily applied in 

performance estimations for high speed 

network. 

 

Appendix 

Proof of Lemma  

To validate the relation RLn PPP <<  in Eq. 

(4), We first prove RL PP < . By expending 

Eq. (6) and Eq. (7), we have  

k1k

k

L
rkmµr...mµ...1)mµ-(kkmµ

r
P

+++
=

−

 

----------------------------------------(9) 

k1k

k

R
r1]µ1)m[(kr......µ1]µ2)m(k[1]µ1)m[(k

r
P

++−+++−+−
=

−

---------------------------------------(10) 

It is noted, Eqs. (5) and (6) are function of r. 

Then the coefficient of ir  in the 

denominator of Eq. (5) can be expressed as 

1)mµ...(i2)mµ)mµ...(k.1)mµ(k.kmµ(mu)
i!

k! ik +−−=−  

----------------------------------------(11) 

similarly, the coefficient of ir  in the 

denominator of Eq. (6) is 

1]µjm.........[1]3)m.[(k1]µ2)m[(k.1]µ1)m[(k ++−+−+−
 

----------------------------------------(12) 

Therefore, the corresponding p’th term in Eq. 

(7) and (8) is 1)mµp(k +−  and 
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1]µp)m[(k +−  respectively. 

 

Therefore 

1]µp)m[(kµpmµkmµ

mµpmµkmµ1)mµp(k

+−=+−

>+−=+−
 

for m > 2 (as described in Lemma).  

 

This results induce the value of the 

denominator of Eq. (5) is greater than the 

value of the denominator of Eq. (6), i.e., 

RL PP <  .               

Next we prove Ln PP <  in the following. 

Since we assume the system load is under 

the non-saturation condition, then arrival 

rate r is less than 1. The value of the 

numerator of Eq. (6) is less than the 

numerator of Eq. (7) from the fact that r < 1 

and n > k. We only need to compare the 

value of the denominator of Eq. (6) and (7). 

The coefficient of ir  in the denominator of 

Eq. (6) is 

in
µ

i!

n! − -------------------------------------(13) 

for large value of n, we have 

ikm

i-kmin

µ
i!

1)...1kk)(km2)...(km1)(kmkm(km

µ
i!

(km)!
µ

i!

n!

−

−

−−−−−

==
 

---------------------------------------------(14) 

Therefore, the requirement for Ln PP <  is 

equivalent to guarantee Eq. (14) is greater 

than Eq. (11), i.e., 

ikikikm
mµ

i!

k!
µ

i!

1)...1kk)(km2)...(km1)(kmkm(km −−− >
−−−−−  

this implies 

ik)1k(m )(mµ
1

1)k)...(k2)...(km1)(kmkm(km −− >
+−−−  

---------------------------------------------(15) 

where m > 2 and k > m as defined in the 

Lemma. 

Applying the fact that n is a large 

positive integer and n = km with k > m, then 

Eq. (15) is true when µ  is greater than 0.09 

for k = 10 and i = 3, where A corresponds to 

the left term of the Eq. (15) and B 

corresponds to the right term of Eq. (15). It 

is noted that large value of k corresponds to 

lower bound of value of µ  in satisfying the 

requirement of Eq. (15).  

Therefore 

L
PPn <  The proof of the Lemma is 

completed. 
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