
From Ontology to Semantic Web Service via Model-Driven

System Development

Ting-Huei Li and Cheng-Chia Chen

Department of Computer Science, National Chengchi University

{g9211, chencc}@cs.nccu.edu.tw

ABSTRACT

In this paper we propose a model-driven

approach by which developers can make use

of existing ontology knowledge to help

construct a partial implementation of

semantic web services on related domains.

The idea is to use existing formal ontologies

for an application domain as the basis of

requirement and system analysis. Our

system then transforms these ontologies into

platform neutral models conforming to the

EMF metamodel, which, after additional

refinements, can be used to construct

platform dependent web service models as

well as a partial implementation by

following the typical MDA process with

supporting tools. Finally, developers need

only fulfill the lacked service logic and a

complete web service can be obtained. In

addition to providing and integrating

supporting tools, the main contribution of

our system is to leverage ontology for rapid

construction of software systems and,

especially, semantic web services.

Keywords: semantic web service,

model-driven system development, web

service, Ontology, MDA.

1 Introduction

Semantic web is now a hot research topic

in the field of web technology. There have

been more and more domain knowledge

formalized in so-called ontology expressed

by XML-based languages such as RDF [1],

RDFS [2], and OWL [3] etc. Ontology

manifests its applications in web

development, making knowledge sharable

on the web. It enables resources on the web

to be retrieved by semantic contents instead

of traditional keyword search, which we

have been using since the inception of the

world-wide web. Furthermore, software

agents can be designed to understand the

ontology knowledge and react automatically

according to the retrieved ontology without

the need of human intervention. Although

emerging from the field of semantic web,

there is no reason that ontology could not be

applied to other fields. This motivates our

interest in applying ontology to software

development.

 Recently, there is a new software

development process called Model Driven

Architecture (MDA) [4]. In MDA, software

development is focused on creating models

rather than writing program codes. The

primary goals of MDA are portability,

interoperability and reusability through an

architectural separation of concerns between

specification and implementation of

software.

 A web service is a software component

designed to provide specific functionality to

other applications over the internet.

Currently, it uses Web Service Description

Language (WSDL) [6] to specify its

interface to access clients. This language

does not have the ability to describe the

functionality of web services, because it

lacks semantic constructs. To enable the

semantic contents of a web service to be

exposed and published, an extension of web

service called semantic web service is

proposed[9]. It extends web service by using

web service ontology[9]. This ontology

provides language constructs for describing

the properties and capabilities of a web

service and it thus enable better search,

discovery, selection, composition, and

integration of web services. Unfortunately it

is complex and tedious for a general

developer to write these complicated

descriptions.

In this paper we propose an approach to

develop semantic web service from existing

ontology knowledge via model-driven

system development. Given the goal of

developing a semantic web service, we as

developers need to prepare for formal

ontologies related to the intended web

service, which can either be collected from

the web or developed by the service

developers. After all ontologies are available,

we transform them into a platform neutral

model compliant with the EMF-supported

Ecore metamodel [8] using EODM[11] in

the EMF perspective of Eclipse platform.

The developers can then refine the generated

model by using EMF editor to generate a

platform independent model (PIM). Next,

the PIM should be annotated with additional

information relevant with the requirement of

a semantic web service to form a platform

specific web service model (PSM) targeted

at the AXIS[12] web service container.

Finally a partial implementation of the

service can be generated from the PSM by

code generation. The partial implementation

includes java interfaces, data model API,

and service description files. Developers get

most of their code generated from their

service models. In addition, the complicated

descriptions required for the deployment

and publishing of a semantic web service

are also generated. What remains to be done

is the lacked business logic of the service

which is usually not specified in the models.

2 Backgrounds

This section describes some backgrounds

and technologies about ontology, web

service, and MDA.

2.1 Ontology and semantic web

services

An ontology is a set of concepts together

with a set of properties and relationships

between them. Ontologies make it possible

to describe resources formally. It thus plays

an important role in the architecture of

semantic web, enabling web-based

knowledge processing, sharing and reuse

between applications.

The Web Ontology Language (OWL) [3]

is an XML-based language for describing

ontologies. It is based on RDF/RDFS[1,2]

and provides a language for the description

of semantic contents of resources on the

web. In OWL a resources means anything

on the web such as a web page or a service.

Not only enabling content-based search,

ontology can also be interpreted

automatically by software agents. The

ecommerce can thus benefits much from

utilization of ontology.

Web services are loosely coupled

software components which support

machine to machine interaction on the web.

These services defined their interfaces with

a description file called Web Service

Description Language (WSDL) [6]. WSDL

is an XML-based language for describing

the interface of the service, including

message formats, URI address bindings, and

transfer protocol used in the service. The

service providers usually need to register

and publish their service with some registry

service such as Universal Description,

Discovery, and Integration (UDDI)[7]. A

typical scenario of web service invocation is

shown in Figure 1.

When clients or agents need a service,

they will query the UDDI registry to find an

available and qualified web service, which

would have been published to the UDDI

registry by its provider. After receiving the

available service information from a

UDDI

Registry

Find

Service

Requester
Service

Provider

Publish

Bind

Figure 1. Web Service Invocation

registry, service requesters can retrieve the

WSDL content associated with the service

to create a binding to the service and then

execute the service accordingly.

In the current state of web service,

WSDL provides only I/O type and physical

connection information for a web service,

but it lacks semantic contents of the service

it describes. In order to enable further

applications of web service, it is necessary

to enhance a web service by providing

additional semantic information. This

motivates the definition of OWL-S [9],

which is an ontology for describing web

services. It provides a formal mechanism for

describing the semantics of a web service.

Users and software agents can discover,

select, compose, deploy, and monitor web

services automatically by interpreting the

associated semantic descriptions expressed

in OWL-S.

There are three main parts in OWL-S

ontology structure (shown in Figure 2): the

service profile for advertising and

discovering services; the process model

giving a detailed description of a service's

operation; and the service grounding

providing details on how to interoperate

with a service, via messages.

service Service Model

Service Profile

Service

Grounding

describe by

(how it works)

presents

(what it

does)

supports

(how to access

it)

Figure 2. OWL-S Structure

2.2 MDA and EMF

Model Driven Architecture (MDA) [4] is

a new way to develop software applications

initiated by OMG. In MDA, system design

is based on a Platform Independent Model

(PIM) of the application or business

functionality or behavior. The PIM can be

translated to Platform Specific Models

(PSM) with respect to an interface definition

which describes how base model is

implemented on a different platform.

Therefore the portability, interoperability

and reusability of system are increased

through the separation of concerns between

specification (PIM) and implementation of

software (PSM).

Eclipse Modeling Framework (EMF) [8]

is a modeling framework and code

generation facility for building tools and

applications based on structured data model

in Eclipse Environment. The core EMF

framework includes a metamodel (Ecore)

for describing models, runtime support with

default XMI serialization and reflective API

for manipulating EMF objects. The Ecore

metamodel is essentially a variant of

EMOF[19] and similar to the subset of

UML for modeling classes and their

associations. Figure 3 shows a simplified

subset of Ecore. It illustrates the relations

between the four most important

metaclasses: EClass, EAttribute, EDataType

and EReference, of Ecore. EClass and

EDataType are used to model managed and

unmanaged java types, respectively; while

EAttribute and EReference are used to

model attributes and association ends of

managed classes, respectively.

-name : string

EClass

-name : string

EAttribute

-name : string

EDataType

-name : string

EOperation

-name : string

EParameter

-name : string

-containment : bool

-lowerBound : int

-upperBound : int

EReference 1

+eReferences

0..*

1

+eAttributes

0..**

+eAttribute

1

+eOpposite 0..1

+eReferenceType 1

+eContainingClass

1

+eOperations

0..*

+eOperation1

+eParameters0..*

*

+eSuperTypes

*

Figure 3. Ecore Kernel

WSDL

OWL-S

XSD

OWL

service descriptions

generate

partial implementation

AXIS

WSDL2Java

Ecore

model

Service

model

OWL2Ecore

Ontologies

First stage

Second stage

Third stage

EMF

generator

genmodel

WSDLGen

OWLSGen

CodeGen

generate

annotate

Model

Object

API

Service

skeleton

generator

user action
file/serialized model
Java code

refine

Figure 4. System Architecture and Process

Moreover, there are also EPackage and

EAnnotation that would be used later.

EPackage is for containment of EClasses

and EAnnotation is for attaching additional

information to model elements. Essentially,

an EAnnotation is composed of one or more

key-value pairs and has a URI identifying its

source.

3 The process of our approach

This section describes the process of our

approach to generate a semantic web service

using existing ontologies. As shown in

Figure 4, our semantic web service

development process is divided into three

stages.

The whole process starts with a set of

domain ontologies collected in advance.

These ontologies are specified by domain

experts and are assumed to be stored in

either OWL or RDF format. In the first

stage, we import these ontologies into our

system and transform them into a Ecore

model. Since the model obtained this way

usually does not meet the requirement of the

intended web service, we need to manually

refine this model by an editor and possibly

merge it with other elaborated models to

form a complete model. This model is a

PIM (platform independent model)

according to MDA since it is not only

logically complete but also independent of

the platform where it will be executed. In

the second stage, we need to annotate this

model with additional service-related

information and then generate a platform

specific service model targeted at the AXIS

[12] web service container. In the final stage,

we trigger the code generation procedure to

generate a partial implementation of the

service. The implementation includes Java

source code and two description files

required for a semantic web service. The

generated Java source code includes model

objects API and Java interfaces for the

service; the description files include

semantic descriptions (OWL-S) and

concrete service description (WSDL).

Figure 5 illustrates how these descriptions

are used by service providers and requesters.

Readers can refer to [9] for more details.

These generated artifacts reduce most work

a programmer would need to do while

developing a web service. The three stages

are detailed in the rest of this section.

3.1 From Ontology to PIM

To transform ontologies into models, we

use the open source tool EODM [11] to do

the transformation. It is an implementation

of OMG’s Ontology Definition Metamodel

(ODM) specification. Besides other

functionality, this tool can transform an

ontology into a Ecore model in EMF. The

critical part of the transformation is on the

mapping rules between ontology and Ecore,

which are briefed as follows:

<owl:Class rdf:ID="DVD">

 <rdfs:subClassOf rdf:resource="#Prodcut" /

>

</owl:Class>

EClass

name

eSuperTypes

<owl:DatatypeProperty rdf:ID="price">

 <rdfs:domain rdf:resource="Products"/>

 <rdfs:range rdf:resource="&xsd;float"/>

</owl:DatatypeProperty>

EAttribute

name

eContainingClass

eAttributeType

<owl:ObjectProperty rdf:ID="hasProducer">

 <rdfs:domain rdf:resource="DVD"/>

 <rdfs:range rdf:resource="Company"/>

 <owl:inverseOf rdf:resource="#produces"/>

</owl:ObjectProperty>

EReference

name

eContainingClass

eReferenceType

eOppsite

OWL Ecore

Figure 5. Mapping between OWL and Ecore

All other relationship descriptions

between classes in OWL are mostly

transformed into EAnnotations attached to

the associated EClasses. After the

transformation an Ecore model is generated

and, thanks to EMF, it is saved in standard

XMI format.

It is almost always the case that the

model transformed from ontologies does not

meet the requirements of the intended web

service. Therefore we need to refine the

model manually with some editing tools.

Fortunately, the EMF framework, which our

system works, has already provided for a

friendly tree-structured editor for Ecore

models. The developer can use it to edit the

rough model and, if necessary, to import

also other related Ecore models and merge

them with it to form a complete platform

independent model.

For instance, the model generated from

ontologies should contain only static

information such as structural features and

class hierarchy of modeled entities but lack

dynamic behavior information since at

present there is no behavior description in

the original ontologies. We thus have to add

into the model the behavioral part of the

intended web service. In EMF, behavior of

entities is modeled by one or more

EOperations. Each (instance of) EOperation

is used to model an object method or web

service operation. Therefore, for each

operation of a target class we should create

an EOperation to model the operation and

add the EOperation to the EClass

corresponding to the target class.

3.2 From PIM to PSM

This stage aims to decorate the PIM we

obtained at stage 1 with additional

information related to semantic web service

so that finally we can generate a separate

one which contains all required information

of a semantic web service. The process of

this stage is shown in Figure 6 and the

resulting service model is the so-called PSM

in terms of MDA.

The PIM we got from stage 1 contains

many EClasses in one EPackage. It is

certain that all EClasses are not to be

semantic web services and for each EClass

selected as a service there should be only

part of its operations exposed as a service

operation.

To inform later code generator of our

selections of EClasses and EOperations as

services and operations, respectively, we

attach an EAnnotation to each selected one.

Every EAnnotation has a same URI

designated by us for identification; for an

EOperation selected as a service, the

attached EAnnotation has a 'gen' key with

'true' value. There are some other

annotations which can be used to customize

related element settings in generated WSDL

and OWL-S.

Figure 6. The process in stage 2

These models can be used in next stage

to generate description files and partial

implementation. The models can also be

serialized in XMI formats for further uses.

This provides reusability and portability to

our service design.

3.3 From PSM to implementation

code

In this stage, we designed two generators

to generate WSDL and OWL-S descriptions

from Ecore models. We then use Axis tool

WSDL2Java to generate service stubs. We

also generate model object API using EMF

generator. At last, we integrate the service

stub and object API to construct a complete

web service implementation. The process of

this stage is shown in figure 7.

Figure 7. The Process in Stage 3

Ecore2WSDL and Ecore2OWLS module

take the model structure data as its input and

generate WSDL and OWL-S files. The

mappings between Ecore and generated

descriptions are listed below:

WSDL: WSDL is about concrete

connection of a web service. Every

EOperation is mapped to a port/port type;

every EParameter is mapped to a

message/message part in WSDL. In this

WSDL we import the XSD type definition

generated by EMF. So we don’t have to

redefine the message types in WSDL.

OWL-S: OWL-S is about semantics of a

web service. In OWL-S, a service can only

contain one service (atomic or composite).

Therefore in our transformation, every

EOperation will generate one .owl file that

represents an atomic process, and all related

input/output parameters will be generated

from EParameter and return type in

EOperation. In the service grounding part of

OWL-S all grounding information between

WSDL and OWL-S will be set

automatically, because these two

descriptions is generated from the same

model.

After generate the descriptions, we can

use AXIS [12] to develop our service.

Because the WSDL files are already

generated we can develop the service using

top-down design. AXIS supports to generate

service stubs and Javabean API for every

I/O parameter from WSDL files. In order to

benefit more from EMF, we substitute the

original javabean API with EMF generated

API. The EMF API has more powerful

function such as reflection and XMI

serialization. We also implemented the EMF

serializer and deserializer for AXIS, so that

we can transform EMF objects to SOAP

message and vice versa.

When deploying the service to AXIS, in

default setting, AXIS can only serialize java

bean objects. We implemented a EMF

serializer and deserializer using EMF

reflective API and persistence API. After

customize the WSDD settings in AXIS. The

AXIS server can find serializer for the EMF

objects and then transform them in to SOAP

messages.

After the generation we can construct a

service implementation, which only lack of

logics in operations. In this manner, we

don’t have to write all service code. We

only need to complete the logics in the

service implementation.

4 Example

In this section we present an example to

demonstrate our approach. In this example,

we have an ontology about product and

location information (a simple graphic view

is shown in Figure 8). Our objective is to

create two semantic web service operations

called getPrice and order in a

NetStore web service. The input and

output types of both operations are an

individual also from the example ontology.

Produ

ct

DVD Book

Movie

DVD

Drama

DVD

Magazin

e
Novel

Music

Pop Rock

Address

city

street

state

zip

country

productNam

e

class

property

length pages tracks

xsd:strin

g

xsd:int

Figure 8. Example Ontology

This figure shows the subclass and

instance relations between resources in the

ontology. For example, the Product class

has three subclasses and one attribute. This

Product class is represented in Figure 6

using the OWL language.

Figure 9. Example OWL ontology

Now we step into the first stage of our

approach: the generation of a PIM from

ontology. First, the ontology will be

imported and transformed into a Ecore

model using EODM. However, at this time,

the model contains no EClass for

NetStore, our intended service, so we

must manually add an EClass for

NetStore into the model; meanwhile, two

EOperations corresponding to getPrice

and order must be added into the new

EClass as well. We can also add more

classes or attributes, if we need more. After

the refinement we get a complete Ecore

model, which is saved in XMI format.

While editing the two EOperations, since

we have a data model of the ontology, it is

easy to specify their return and parameter

types. All available types will be shown in a

drop down menu and are selectable by the

user. This would prevent the user from

putting invalid types in the type settings.

The Ecore model we create in this example

is shown in Figure 10.

In the second stage, we edit the Ecore

model in the EMF model editor.

In the third stage, we generate description

files from the service model using

WSDLGen and OWLSGen modules,

respectively. The generated WSDL and

OWL-S from EOperation getPrice is

shown in Listing 1, 2 and 3.

Figure 10. Example Service Model

5 Related works

There are some researches about

transformation between ontology and

models [13]. Most of these researches aimed

to develop ontologies with MDA technology.

They used UML profiles or extensions of

UML as the metamodel of PIMs, and

transform PIM to ontologies through XMI

<owl:Class rdf:ID ="&netstore;Product"/>

<owl:Class rdf:about="&netstore;DVD">

 <rdfs:subClassOf rdf:resource="&netstore;Product"/>

</owl:Class>

<owl:Class rdf:about="&netstore;Book">

 <rdfs:subClassOf rdf:resource="&netstore;Product"/>

</owl:Class>

<owl:Class rdf:about="&netstore;Music">

 <rdfs:subClassOf rdf:resource="&netstore;Product"/>

</owl:Class>

<owl:DatatypeProperty rdf:about="&netstore;productName">

 <rdfs:domain rdf:resource="&netstore;Product"/>

 <rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

and XSLT technology. This allows users to

develop ontologies with existing visual

UML tools. Then, as the demands for the

standardization of ontology modeling are

increasing, OMG began to initiate the

Ontology Definition Metamodel [14] and

now it is in nearly complete state. It

provides mainly a metamodel for ontologies

languages and defines the mapping between

conforming models and several ontology.

Our approach uses the EODM

implementation of ODM in the first stage.

In the research area of semantic web

service development, there were some

works about creating OWL-S descriptions.

In [15], it proposed a UML Profile for

OWL-S ontology, helped users to create

OWL-S files in UML tools. The work in [16]

used a template for OWL-S and a

matchmaker system to select suitable

ontology into the template and then generate

OWL-S from it. In [17] and [18], they

proposed an MDA-based approach to create

and composite OWL-S descriptions. They

used WSDL files to generate OWL-S

groundings in a semi-automatic tool and to

compose a composite semantic web service

in UML activity diagram, and then

generated OWL-S with XSLT.

All above works are concerned with the

composition of composite web services

from existing ones. Our approach, on the

other hand, is about how to build an atomic

web service with its initial model derived

from existing ontology knowledge. This

 <wsdl:message name="getPriceInput">

 <wsdl:part name="product" type="tns:Product"/>

 </wsdl:message>

 <wsdl:message name="getPriceOutput">

 <wsdl:part name="getPriceOutput" type="xsd:float"/>

 </wsdl:message>

 <wsdl:portType name="NetstorePortType">

 <wsdl:operation name="getPrice">

 <wsdl:input message="typens:getPriceInput"/>

 <wsdl:output message="typens:getPriceOutput"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="NetstoreBinding"

type="typens:NetstorePortType">

 <soap:binding style="document"

transport="http://schemas.xmlsoap.org/wsdl/soap/http/"/>

 <soap:binding style="document"

transport="http://schemas.xmlsoap.org/wsdl/soap/http/"/>

 <wsdl:operation name="getPrice">

 <soap:operation

soapAction="http://owl.cs.nccu.edu.tw/getPrice"/>

 <wsdl:input>

 <soap:body parts="product" use="literal"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://owl.cs.nccu.edu.tw/netstore/"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body parts="getPriceOutput" use="literal"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://owl.cs.nccu.edu.tw/netstore/"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="netstoreService">

 <wsdl:port name="NetstorePort"

binding="typens:NetstoreBinding">

 <soap:address

location="http://localhost:8080/axis/services/NetstorePort"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

Listing 1. Generated WSDL

<service:Service rdf:ID="NetstoreGetPriceService">

 <service:presents>

 <profile:Profile rdf:ID="NetstoreGetPriceProfile"/>

 </service:presents>

 <service:supports>

 <grounding:WsdlGrounding>

 <grounding:hasAtomicProcessGrounding>

 <grounding:WsdlAtomicProcessGrounding

rdf:ID="NetstoreGetPriceGrounding"/>

 </grounding:hasAtomicProcessGrounding>

 <service:supportedBy

rdf:resource="#NetstoreGetPriceService"/>

 </grounding:WsdlGrounding>

 </service:supports>

 <service:describedBy>

 <process:AtomicProcess

rdf:ID="NetstoreGetPriceProcess"/>

 </service:describedBy>

 </service:Service>

 <profile:Profile rdf:about="#NetstoreGetPriceProfile">

 <service:presentedBy

rdf:resource="#NetstoreGetPriceService"/>

 <profile:hasOutput>

 <process:Output rdf:ID="getPriceResult">

 <process:parameterType

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://www.w3.org/2001/XMLSchema#float</process:parameter

Type>

 </process:Output>

 </profile:hasOutput>

 <profile:hasInput>

 <process:Input rdf:ID="product">

 <process:parameterType

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://owl.cs.nccu.edu.tw/Product</process:parameterType>

 <rdfs:label>product</rdfs:label>

 </process:Input>

 </profile:hasInput>

 </profile:Profile>

 <process:AtomicProcess

rdf:about="#NetstoreGetPriceProcess">

 <rdfs:label>NetstoreGetPriceProcess</rdfs:label>

 <process:hasOutput rdf:resource="#getPriceResult"/>

 <process:hasInput rdf:resource="#product"/>

 <service:describes

rdf:resource="#NetstoreGetPriceService"/>

 </process:AtomicProcess>

Listing 2. Generated OWL-S profile and
process

approach allows us to create an atomic

service easier and faster. The created

services can be deployed and published

without dependency on other services, and

the clients can either execute them directly

or compose them into parts of other

composite services.

6 Conclusions

Semantic web service is a new

technology in web development. But the

service ontology is complex and verbose, so

it is hard for common developer to create

such ontologies. We propose an approach to

transform existing ontology knowledge into

neutral models and using these models to

build service models. We implemented the

generators to generate these service

descriptions from service model. So

developers only need to create the service

model, and then service description files and

a partial implementation can be generated

automatically. Via this MDA-based

approach, an atomic process can be built

much easier and faster. Thus this approach

not only provides a way to utilize existing

ontology knowledge, but also makes it

easier and faster for common developers to

build a semantic web service.

7 References

[1] Brian McBride, Hewlett-Packard
Laboratories, RDF Primer, http: //www.w3.
org/TR/rdf-primer/

[2] Dan Brickley, RDF Vocabulary Description
Language 1.0: RDF Schema,
http://www.w3.org/TR/rdf-schema/

[3] Michael K. Smith, Chris Welty and Deborah
L. McGuinness, OWL Web Ontology Guide,
http://www.w3.org/TR/owl-guide/

[4] Joaquin Miller and Jishnu Mukerji et al.
MDA Guide Version 1.0.1 Technical Report
omg/2003-06-01,
http://www.omg.org/docs/omg/03-06-01.pdf

[5] Anneke Kleppe, Jos Warmer, Wim Bast,
MDA Explained: The Model Driven
Architecture: Practice and Promise, Addison
Wesley

[6] Erik Christensen, Francisco Curbera, Greg
Meredith, Sanjiva Weerawarana, Web
Services Description Language (WSDL) 1.1
W3C Note 15 March 2001,

http://www.w3.org/TR/wsdl
[7] Universal Description, Discovery, and

Integration spec, http://www.oasis-open.org/
committees/uddi-spec

[8] Frank Budinsky, Ray Ellersick, Timothy J.
Grose, Ed Merks, David Steinberg, Eclipse
Modeling Framework, Addison Wesley

[9] OWL-S: Semantic Markup for Web Services,
http://www.daml.org/services/owl-s/1.1/over
view/

[10] OWL-S Informal Grounding Presentation,
http://www.daml.org/services/owl-s/1.1/owl-
s-wsdl.html

[11] EODM in Eclipse Modeling Framework

Technology project, http://www.eclipse.org/
emft /projects/eodm/

<grounding:WsdlAtomicProcessGrounding

rdf:about="#NetstoreGetPriceGrounding">

 <grounding:wsdlOutputMessage

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://owl.cs.nccu.edu.tw/netstore/netstore.wsdl#getPrice

 </grounding:wsdlOutputMessage>

 <grounding:wsdlInputMessage

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://owl.cs.nccu.edu.tw/netstore/netstore.wsdl#getPriceInput

 </grounding:wsdlInputMessage>

 <grounding:owlsProcess

rdf:resource="#NetstoreGetPriceProcess"/>

 <grounding:wsdlInput>

 <grounding:WsdlInputMessageMap>

 <grounding:owlsParameter rdf:resource="#product"/>

 <grounding:wsdlMessagePart

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://owl.cs.nccu.edu.tw/netstore/netstore.wsdl#product

 </grounding:wsdlMessagePart>

 </grounding:WsdlInputMessageMap>

 </grounding:wsdlInput>

 <grounding:wsdlOperation>

 <grounding:WsdlOperationRef>

 <grounding:portType

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://owl.cs.nccu.edu.tw/netstore/netstore.wsdl#getPricePortTyp

e

 </grounding:portType>

 <grounding:operation

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://owl.cs.nccu.edu.tw/netstore/netstore.wsdl#getPrice

 </grounding:operation>

 </grounding:WsdlOperationRef>

 </grounding:wsdlOperation>

 <grounding:wsdlDocument

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://owl.cs.nccu.edu.tw/netstore/netstore.wsdl

 </grounding:wsdlDocument>

 <grounding:wsdlOutput>

 <grounding:WsdlOutputMessageMap>

 <grounding:wsdlMessagePart

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

http://owl.cs.nccu.edu.tw/netstore/netstore.wsdl#getPriceOutput

 </grounding:wsdlMessagePart>

 <grounding:owlsParameter

rdf:resource="#getPriceResult"/>

 </grounding:WsdlOutputMessageMap>

Listing 3. OWL-S Groundings

 </grounding:wsdlOutput>

 </grounding:WsdlAtomicProcessGrounding>

</rdf:RDF>ssGrounding>

[12] AXIS in Apache web services project,
http://ws.apache.org/axis/

[13] Dragan Gašević, Vladan Devedžić, Dragan
Djurić, MDA standards for ontology
development, http://afrodita.rcub.bg.ac.yu/

~gasevic/tutorials/ICWE2004/
[14] Ontology Definition Metamodel , Sixth

Revised Submission to OMG/ RFP
ad/2003-03-40, http://www.omg.org/cgi-bin/
doc?ad/06-05-01.pdf

[15] Roy Grønmo, Michael C. Jaeger and Hjørdis
Hoff, Transformation between UML and

OWL-S
[16] Michael C. Jaeger, Lars Engel, and Kurt

Geihs, A Methodology for Developing
OWL-S descriptions.

[17] John T.E. Timm, Gerald C. Gannod, A
Model-Driven Approach for Specifying
Semantic Web Services, in Proceeding of

the 2005 IEEE International Conference on
Web Services, July 2005.

[18] Gerald C. Gannod, Raynette J Brodie, and
John T.E Timm, An interactive approach for
specifying OWL-S grounding, in
Proceedings of the 2005 IEEE EDOC
Enterprise Computing Conference.

[19] OMG Inc., Meta Object Facility (MOF)

Core Specification OMG Available
Specification Version 2.0. 2006. http://
www.omg.org/docs/formal/06-01-01.pdf

