

 1

Clustering of Web Services Based on WordNet Semantic Similarity

Aparna Kondurib and Chien-Chung Chana, b
Department of Information Communicationa

Kainan University
No. 1 Kainan Road

Luchu, Taoyuan County 338
Taiwan

chan@mail.knu.edu.tw
Department of Computer Science b

University of Akron
Akron, OH 44325-4003

USA
chan@uakron.edu

Abstract

As service-oriented architecture is getting popular,

vast numbers of web services have been developed over
a broad range of functionalities. It becomes a
challenging task to find the relevant or similar web
services using web services registry such as UDDI
manually. Current UDDI search uses keywords from
web service and company information in its registry to
retrieve web services. This information cannot fully
capture user’s needs and may miss out on potential
matches. Underlying functionality and semantics of web
services need to be considered. In this paper, we explore
semantics of web services using WSDL operation names
and parameter names along with WordNet. We compute
semantic similarity of web services and use this data to
generate clusters. Then, we use a novel approach to
represent the clusters and utilize that information to
further predict similarity of any new web services. This
approach has yielded good results and it can be
efficiently used by web service search engines to
retrieve similar or related web services.

Keywords: Web Services, WordNet, Clustering,
Classification

1. Introduction

Web Services are widely popular and offer a bright
promise for integrating business applications within or
outside an organization. They are based on Service
Oriented Architecture (SOA) [1] that provides loose
coupling between software components via standard
interfaces.

Web Services expose their interfaces using Web
Service Description Language (WSDL) [2]. WSDL is an
XML based language and hence platform independent.
A typical WSDL file provides information such as web
service description, operations that are offered by a web
service, input and output parameters for each web
service operation. Web Service providers use a central
repository called UDDI (Universal Description,
Discovery and Integration) [3] to advertise and publish
their services. Web Service consumers use UDDI to
discover services that suit their requirements and to
obtain the service metadata needed to consume those
services. Users that want to use a web service will utilize
this metadata to query the web service using SOAP
(Simple Object Access Protocol) [4]. SOAP is a network
protocol for exchanging XML messages or data. Since
SOAP is based on HTTP/HTTP-S, it can very likely get
through network firewalls. The advantages of XML and
SOAP give web services their maximum strength.

With web applications and portals getting complex
and rich in functionality day after day, many users are
interesting in finding similar web services. Users might
want to compose two operations from different web
services to obtain complex functionality. Also, users
might be interested in looking at operations that take
similar inputs and produce similar outputs. Let us say,
web service A has an operation GetCityNameByZip that
returns city name by zip code, web service B has an
operation GetWeatherByCityName that returns weather
by city name and web service C has an operation
GetGeographicalLocationBasedOnZip that returns city
name, longitude, latitude and altitude of a location by
zip code. Operations from web services A and B are
related, i.e., output from one operation can be used as an
input to another. So, these operations can be composed

 2

to obtain weather by city name. Operations from web
services A and C are similar. They take similar inputs.
Outputs are also similar, i.e., output of operation from
web service C is fine grained when compared to output
of operation from web service A.

As more and more web services are developed, it is
a challenge to find the right or relevant web services
quickly and efficiently. Currently, UDDI supports
keyword match just based on web service data entries in
its registry. This might potentially miss out on some
valid matches. For example, searching UDDI with
keywords like zip code may not retrieve web service
with postal code information.

Semantics of a web service in terms of the
requirements and capabilities of a web service can be
really helpful for efficient retrieval of web services.
WSDL does not have support for semantic
specifications. A lot of research is done on annotating
web services through special markup languages, to
attach semantics to a web service. Akkiraju et al. [5]
proposed WSDL-S to annotate web services. Cardoso
and Sheth [6] used DAML-S [7] annotations to compose
multiple web services. Ganjisaffar et al. [8] used OWL-S
[9] annotations to compute similarity between web
services. But annotating all the available web services
manually is a time consuming task and not feasible.

Some research has been done to extract semantics
just based on WSDL. Normally the functionality or
semantics of a web service can be inferred based on its
description, operations along with parameters that these
operations take. Dong et al. [10] built a web search
engine called Woogle based on agglomerative clustering
of WSDL descriptions, operations and parameters. Wu
and Wu [11] provided a suite of similarity measures to
assess the web service similarity. Kil et al. [12] proposed
a flexible network model for matching web services.

The objective of our work is to cluster and predict
similar web services using semantics of WSDL
operations and parameters along with WordNet [13].
WordNet is a lexical database that groups words into
synsets (synonym sets) and maintains semantic relations
between these synsets. This work integrates ideas from
[11] and [12] along with Hierarchical Clustering to
innovatively predict similar web services.

Since there is no publicly available web services
dataset, we evaluated our study using a set of WSDL
files downloaded from the Internet. The general
structure of our approach is as follows: first, we
organized web service descriptions, operation names and
parameter names from WSDL into three separate excel
files respectively. We used popular natural language pre-
processing techniques like Stop Words Removal and
Stemming to remove unnecessary and irrelevant terms
from the data. Then we use similarity measures from
[11] along with WordNet to assess the similarity

between web services. Once we obtain a similarity
matrix of web services, we use Hierarchical Clustering
[24, 25] to group or cluster related web services. One of
the main contributions of this work is the representation
of these clusters. We represent a cluster by a set of
characteristic operations, i.e., for each web service in a
cluster; take one characteristic operation that has
maximum similarity to operations of other web services
in the same cluster. This cluster representation is then
used as a basis for predicting similarity of any new web
services to the clusters using the nearest neighbor
approach.

Our application has yielded good results and can be
used as an add-on for any web service search engine for
efficient web service matchmaking. If user has partially
designed a web service or has discovered a web service
and is interested in finding web services with similar
operations, then our application can effectively find
related services based on interface similarity of web
service operations and their input and output parameters.

The remaining sections of this paper are organized
as follows. Section 2 provides key information on
similarity computation of web services. Section 3
presents data collection and pre-processing. In Section
4, we discuss WordNet based semantic similarity. It
starts with an overview of WordNet, its organization and
use for word sense disambiguation and explains
similarity computation measures. Section 5 describes
clustering of training set of web services using
hierarchical clustering approach, cluster representation
and prediction of similarity for web services in the test
dataset. Section 6 discusses application setup and
results. Conclusions are given in Section 7, followed by
references.

2. Similarity of Web Services

A web service is described by WSDL file and is
characterized by a name, description, and a set of
operations that take input parameters and return output
parameters. We used this WSDL information for
computing similarity of web services. Specifically, we
employed interface similarity assessment suggested by
Wu and Wu [11]. Similarity between web services is
computed by identifying the pair-wise correspondence of
their operations that maximizes the sum total of the
matching scores of the individual pairs. Similarity
between web services S1 with m operations and S2 with n
operations is given by the following formula:

��
= =

×=
m

i

n

j
ijjiOperationInterfaces xOOSimMaxSSSim

1 1
2121),(),((1)

 3

�
�
�

=
else

OwithOcombine
x ji

ij

0

1 21 (2)

��
==

====
m

i
ij

n

j
ij njxmix

11

,..2,1,1,..2,1,1 (3)

where O1i represents an operation from web service S1
and O2j represents an operation from web service S2. Xij
indicates the weight and it is set to 1, while matching
operation O1i with operation O2j.

To illustrate interface similarity, let us consider the
example shown in Figure 2.1. Here web service 1 has 2
operations, operation 11 and operation 12. Web service
2 has 3 operations, operation 21, operation 22 and
operation 23. We match operation 11 to operation 21,
operation 22 and operation 23 and pick the matching
that gives maximum similarity. Similarly, we match
operation 12 to operations in web service 2. Then we
sum up the maximum similarity values from both these
matching pairs to give the similarity between web
services.

Figure 2.1. Matching of web service operations.

Similarly, the similarity of operation pairs is

calculated by identifying the pair-wise correspondence
of their input/output parameter lists that maximizes the
sum total of the matching scores of the input/output
individual pairs. Similarity between web service
operation O1 with m input parameters and u outputs; and
web service operation O2 with n input parameters and v
outputs can be given by the following formula:

��
= =

×=
m

i

n

j
ijjiInputOperations xIISimMaxOOSim

1 1
2121),(),(

��
= =

×+
u

i

v

j
ijjiOutput yPPSimMax

1 1
21),((4)

�
�
�

=
else

IwithIcombine
x ji

ij
0

1 21 (5)

�
�
�

=
else

PwithPcombine
y ji

ij
0

1 21 (6)

��
==

====
v

i
ij

n

j
ij ujymix

11

,..2,1,1,..2,1,1 (7)

��
==

====
u

i
ij

m

j
ij vjynix

11

,..2,1,1,..2,1,1 (8)

Here I1i and I2j stand for input parameters of web
service operation O1 and web service operation O2
respectively. P1i and P2j stand for outputs of web service
operation O1 and web service operation O2 respectively.
Xij indicates the weight and it is set to 1 while matching
input parameters I1i with I2j, and Yij is the weight and it is
set to 1 while matching outputs P1i with P2j.

Parameter name similarity is computed by the
lexical similarity of their names. Lexical similarity
between words indicates how closely their underlying
concepts are related. Similarity between Input parameter
I1 of Operation O1, belonging to web service S1 and
Input parameter I2 of Operation O2, belonging to web
service S2 can be given by the following formula:

).,.(),(2121 NameINameISimIISim LexicalParameters = (9)

Similarly, lexical similarity can be computed for

outputs of operations O1 and O2.
Since number of operations and in turn its

parameters are not constant across web services, we
normalized the similarity measures. For example, let us
say web service A has 3 operations and web service B
has 5 operations. Similarity between web services is
computed according to the formula for interface
similarity and then normalized by dividing by 3 (number
of operations in A). This is done to normalize the effect
of number of operations across all web services.
Similarly, we normalized input and output parameters of
operations.

Next two sectons explain how web service data was
collected and how WordNet was used along with the
formulae mentioned in this section for similarity
computations.

3. Data Pre-processing

There is no publicly available web services dataset.

So, we downloaded a set of web services in 5 domains
from xmethods.net website. WSDL data from these web
services is then organized into 3 excel files, one for web
service name and description, one for web service
operation names and another for web service input and
output parameter names. Tables 3.1, 3.2 and 3.3 show
the format of Excel files. Web service ID in these tables
represents a unique numeric identifier for each web
service. This is similar to ID column in a database table

Web Service 1

Operation11

Operation 12

Web Service 2

Operation 21

Operation 22

Operation 23

 4

represents a unique numeric identifier for each web
service.

Table 3.1: Format of Excel file with web service
descriptions.
WS
ID Name

Text
Description

WSDL
Name URL

1
US Zip
Validator

Zip code
validator USZip

http://www.webse
rvicemart.com/us
zip.asmx

2

Phone
Number
Verificati
on service

Phone
number
verifier

Phone
3T

http://www.webse
rvicemart.com/ph
one3t.asmx

Table 3.2: Format of Excel file with web service
operations.

Web service ID Operation ID Name
1 1 ValidateZip
2 1 PhoneVerify

Operation ID in Tables 3.2 and 3.3 represents a

numeric identifier for each web service operation.
Direction in Table 3.3 indicates whether it is an input
parameter ‘I’ or an output parameter ‘O’.

Table 3.3: Format of Excel file with web service
operation parameters.

Web
service

ID

Operation
ID

Parameter Name Direction

1 1 ZipCode I
1 1 ValidateZipResult O
2 1 PhoneNumber I
2 1 PhoneVerifyResult O

We use parameter flattening similar to that

described in [12] when we come across complex data
structures for input parameters. For example, if the input
parameter of web service operation is a data structure
named “PhoneVerify” that contains Phone Number field.
Then we take Phone Number as input parameter instead
of PhoneVerify.

The 3 Excel files are then fed as inputs to web
service pre-processing module. This module is a third
party software downloaded from [21]. It internally
removes Stop Words, uses stemming for preprocessing
the data.

3.1 Stop Words Removal

A document is a vector or bag of words or terms.

Stop Words are a list of words that are insignificant and
can be easily removed from a document or a sentence or
phrase. To achieve this, program is presented with a list

of stop words that can be removed. Examples of stop
words can be a, an, about, by, get etc. For a web service
operation like GetWeatherByZip, significant words are
‘Weather’ and ‘Zip’. ‘Get’ and ‘By’ do not convey a lot
of meaning and can be safely removed.

3.2 Stemming

Normally terms that originate from a common root
or stem have similar meanings. For example, the
following words have similar meanings.

• INTERSECT
• INTERSECTED
• INTERSECTING
• INTERSECTION
• INTERSECTIONS
Key idea is to represent such related term groups

using a single term, here INTERSECT by removing
various suffixes like –ED, -ING, -ION, -IONS. This
process of representing a document with unique terms is
called Stemming. Stemming reduces the amount and
complexity of the data while retrieving information. It is
widely used in search engines for indexing and other
natural language processing problems [14].

Porter Stemming Algorithm [15, 16] is one of the
most popular stemming algorithms. The basic idea is to
take a list of suffixes and the criterion during which a
suffix can be removed. It is simple, efficient and fast.

Once WSDL data is pre-processed using stemming
and stop words removal, WordNet is used in similarity
computation of web services. More details on WordNet
and similarity computation can be found in the next
section.

4. WordNet Based Semantic
Similarity

This section provides an overview of WordNet and

how WordNet is used for computing semantic similarity
of web services.

4.1 WordNet

WordNet is an electronic lexical database [13, 17]
that uses word senses to determine underlying semantics.
It differs from the traditional dictionary in that, it is
organized by meaning, so words in close proximity are
related. WordNet entries are organized as mapping of
words and its concepts.

Multiple synonym words (synonym set or synset)
can represent a single concept. For example, {Comb,
Brush} are synonyms. Also, a single word can represent

 5

multiple concepts (polysemy). For example, Brush can
mean Sweep, Clash, Encounter etc.

4.2 Organization of WordNet

WordNet organizes synsets of nouns and verbs as

hypernyms and hyponyms [17]. For example, animal is a
hypernym of cow and cow is a hyponym of animal.
Beyond this hypernym /hyponym relation, WordNet also
provides relations such as Meronymy/holonymy
(part/whole), is-made-of, is-an-attribute-of etc. Also,
each concept is quantified by a short description called
“gloss”. All these relations result in a large
interconnection network. The logical structure of
WordNet is shown as in Figure 4.1.

4.3 Word Sense Disambiguation

In general, a word can have multiple meanings or
make different senses in the context where it is used.
The object of word sense disambiguation is to determine
the correct sense of a word. Many algorithms have been
developed for this purpose. In the present work, we use
Lesk algorithm [18]. The following steps can summarize
it:

1. Retrieve from Machine Readable Dictionary all
sense definitions of the words to be
disambiguated.

2. Determine the definition overlap for all
possible sense combinations

3. Choose senses that lead to highest overlap

Figure 4.1. The Logical structure of WordNet.

For example, to disambiguate PINE CONE using
the example introduced by Christiane Fellbaum
(reproduced from [13] with author’s permission),

PINE has these 2 senses

1. Kinds of evergreen tree with needle-shaped leaves
2. Waste away through sorrow or illness

CONE has these 3 senses

1. Solid body that narrows to a point
2. Something of this shape whether solid or hollow
3. Fruit of certain evergreen trees

Determine all possible combination of senses and
their scores as:

Pine#1 ∩ Cone#1 = 0
Pine#2 ∩ Cone#1 = 0
Pine#1 ∩ Cone#2 = 1
Pine#2 ∩ Cone#2 = 0
Pine#1 ∩ Cone#3 = 2
Pine#2 ∩ Cone#3 = 0

Then, we can conclude that Pine1 and Cone3 are highly
related.

4.4 Determine Word Sense Using
WordNet

One idea to determine word sense in a given context
by using WordNet is to look for all the paths from the
context to the word and take the shortest one as the right
sense. A detailed explanation of the adapted Lesk
algorithm using WordNet can be found in [19, 20]. To
elucidate this, consider the following example that is
reproduced from [21] with author’s written permission:

Figure 4.2. Illustration of WordNet structure.

Word Word

Synset Synset

Synset

Concept
Concept

Concept

Relation type

 6

In Figure 4.2, we observe that the length between
car and auto is 1, car and truck is 3, car and bicycle is 4,
and car and fork is 12.

4.5 Measure Words Similarity Using
WordNet

There are six measures to obtain similarity between
words using WordNet. As described in [22], three of the
six measures are based on the information content of the
Least Common Subsumer (LCS) of concepts.
Information content is a measure of the specificity of a
concept, and the LCS of concepts A and B is the most
specific concept that is an ancestor of both A and B.
Three similarity measures are based on path lengths
between a pair of concepts.

In the present study, we use Wu & Palmer similarity
measure [23]. According to this measure, similarity
between two concepts is the path length to the root node
from the least common subsumer of the two concepts.
Least common subsumer is the most specific concept
that two concepts share as an ancestor.

In Figure 4.2, the LCS of {car, auto} and {truck} is
{automotive, motor vehicle}, since the {automotive,
motor vehicle} is more specific than the common
subsumer {wheeled vehicle}.

For synsets S1 and S2, it can be given by the
formula: Similarity Score = 2*depth (LCS) / (depth (S1)
+ depth (S2)).

Similarity score is in the range 0 < score <= 1. It
can never be zero because depth of the LCS is never
zero (the depth of the root of taxonomy is one). The
score is one if the two input synsets are the same.

4.6 WordNet Based Similarity of Web
Services

As we know from Section 2, parameter similarity is
determined by the lexical similarity of parameter names.
We use 3rd party similarity computation software module
from [21] along with WordNet for this purpose. Figure
4.3 illustrates the flowchart for the pre-processing and
similarity computation that we used in this study. Once
parameter similarity is obtained, then we compute
operation similarity and web service similarity using the
formulae mentioned in Section 2. Similarity matrix for
web services thus computed is used as basis for
clustering or grouping similar web services.

Figure 4.3. WordNet based Similarity computation.

5. Clustering and Classification of
Web Services

Clustering is the process of partitioning data into

groups of similar objects or clusters. It is an
unsupervised learning technique that is widely used in
Artificial Intelligence, Data mining etc. It aims to
discover patterns taking into account the entire data.
There are no pre-defined conditional and decision
variables. Members within a cluster are more similar or
related to each other and different from members of
other clusters.

Clustering is used in our work to identify related or
similar web services. There are many different
approaches to clustering. In the present work, we use
agglomerative or bottom-up Hierarchical Clustering
method [24, 25]. In this method, initially each web
service is treated as belonging to a cluster. Then we use
similarity matrix of web services in the training dataset
to determine the nearest neighbors. Nearest clusters are

 7

then merged into one cluster. This process is repeated
and in the end all the web services merge to a single
cluster.

We used adapted version of Hierarchical Clustering
program available at [26] for clustering web services.
We employed a couple of approaches to use this
clustering information to predict similarity of web
services in the test dataset.

5.1 Classification of web services

First, we tried to generate rules from the generated
clusters using rule-based algorithm BLEM2 [27]. Web
service operation name and parameter names are taken
as condition attributes and cluster number as the
decision attribute. Since the number of parameters is not
constant across all web services, we have to treat some
of the attributes as don’t cares in the training set. To
illustrate this, let us take web service 1 with operation A
and web service 2 with operation B. Also, assume that
operation A has 5 parameters (4 input parameters and 1
output parameter) and operation B has 3 parameters (2
input parameters and 1 output parameter). We take the
maximum number of parameters of all web service
operations, here 5, as condition attributes. So, when we
represent operation B we take its 3 parameters as
condition attributes and treat rest of the columns, as
don’t cares. As expected, this kind of training set would
cause problems for most classifier learning algorithms,
because too many don’t cares entries are artificially
inserted into the training set.

Since classification from rule-based classifier did
not yield good results, we tried a different approach to
predict similarity of web services in the test dataset.
Initially, we represent each cluster by a set of
characteristic operations of its member web services. To
obtain this set of characteristic operations, i.e., for each
web service in a cluster; take one characteristic
operation that has maximum similarity to operations of
other web services in the same cluster. For example, say
a cluster has grouped two web services "Electronic
Directory Assistance" and "Weather by City".
“Electronic Directory Assistance” has 3 operations
namely ResidentialLookup, BusinessLookup,
LookupByAddress. “Weather by City” has 2 operations
namely GetWeatherByCity, GetWeatherByCityXml. If
similarity between ResidentialLookup and
GetWeatherByCity is the highest, then we represent the
cluster by these 2 most similar operations (1 operation
per web service). If a cluster has only one web service,
then we take one web service operation that is very
dissimilar to operations of web services in other clusters.
This cluster representation is then used as a basis for
predicting similarity of any new web services to the

clusters using the nearest neighbor approach. To
elucidate, we compute interface similarity between
operations of each test web service and characteristic
operations of clusters and find the nearest cluster. This
approach yielded good results.

6. Experimental Results

To setup the application, first WordNet needs to be
installed. WordNet can be downloaded from
http://wordnet.princeton.edu/obtain website. We use C#.
NET to implement our application.

There is no publicly available web services dataset
on the Internet. So, we have downloaded a small set of
web services from xmethods.net website. It was tedious
to dig through WSDL files and organize data into three
excel files as mentioned in Section 3. Table 6.1
represents our training set of web services. Our
clustering algorithm generated 5 clusters based on
interface similarity of these web services. These clusters
are represented in Figure 6.1.

We came up with a novel idea of representing the
clusters by the most similar operations (1 operation per
web service) of web services in that cluster. If there is
only one web service in a cluster, then we select an
operation that is very dissimilar to operations in other
clusters. Table 6.2 lists the characteristic operations for
clusters represented in Figure 6.1.

Table 6.1: Training dataset.

Web
service ID Name Text Description

1 US Zip Validator Zip code validator

2
Phone Number

Verification service
Phone number

verifier

3
StrikeIron Foreign

Exchange Rates

Current and
historical foreign
exchange rates

4 U.S. Yellow Pages

Access to yellow
pages listings for
17 million U.S.

businesses

5 City and State by ZIP

Finds the City and
State for a given

ZIP code

6
Electronic Directory

Assistance white pages

7 Weather by City

Enter a city name
and instantly

receive the current
day’s weather

report.

8 Forecast by ZIP Code

Enter a U.S. ZIP
code and instantly
receive the 10-day

 8

weather forecast.

Cluster 1

US Zip Validator,
Forecast by ZIP

Cod

Cluster 2

Phone
Number

Verification
service,

U.S. Yellow
Pages

Cluster 3

StrikeIron Foreign
Exchange Rates

Cluster 4

City and State by
ZIP

Cluster 5

Electronic Directory
Assistance,

Weather by City

Figure 6.1. Clusters obtained from training data.

Table 6.2: Clusters and their characteristic operations.
Cluster

Operation Web Service

1 ValidateZip US Zip
Validator

1 GetForecastByZip Forecast by ZIP
Code

2 PhoneVerify Phone Number
Verification

service
2 ReversePhoneLookup U.S. Yellow

Pages
3 GetAllLatestRatesToUSD StrikeIron

Foreign
Exchange Rates

4 GetCityStateByZip City and State

by ZIP
5 GetWeatherByCityXml Weather by City
5 ResidentialLookup Electronic

Directory
Assistance

We downloaded a set of web services to test our

idea. We organized the WSDL data into 3 files as
mentioned in Section 3. Similarly, we created another
set of 3 files for representing the clusters. Then our
program computed interface similarity between clusters
and the test web services and found closest cluster to
each test web service based on nearest neighbor
approach. Table 6.3 represents test web services, their
predicted nearest clusters, cluster members and the

actual clusters. Actual cluster values are given based on
semantic similarity of web service descriptions. Our
approach yielded good results and accuracy is 70%.

Table 6.3: Test web services and nearest clusters.

Test Web Service Nearest
cluster #

Web Services in
Cluster

Actual
Cluster #

FastWeather 1 US Zip
Validator,

Forecast by ZIP
Code

1

Currency
Convertor

3 StrikeIron
Foreign

Exchange Rates

3

StrikeIron
Reverse Phone

Residential Intel

5 Weather by City,
Electronic
Directory
Assistance

5

DOTS Yellow
Pages

3 StrikeIron
Foreign

Exchange Rates

2

PHONEval 2 Phone Number
Verification

service

2

Levelsoft
GeoServices

Global Weather
Service

2 Phone Number
Verification

service

1

Zip Codes 1 US Zip
Validator,

Forecast by ZIP
Code

1

StrikeIron ZIP
Code

Information

4 City and State by
ZIP

4

7. Conclusions

We developed an application for effectively finding
similar or related web services. It can be used as an add-
on to any web service search engine with UDDI
repository. We used semantics of WSDL along with
WordNet to compute similarity between various web
services. For web services in the training set, we
computed similarities and clustered the data using
Hierarchical Clustering. Next, we represented each
cluster by a set of characteristic operations. Then we
used these cluster representations to evaluate similarity
of any new web services using nearest neighbor
approach. This has yielded good results and accuracy is
70% for our test data. At present, there is no publicly
available web services dataset. More work can be done
in future with evaluating our approach, when such a
dataset becomes available. Also, we would like to
compare our approach with other dimensionality
reduction techniques while choosing the key operations
of a cluster.

 9

8. References

[1] Barry, Douglas K. (2003). Web Services and

Service-Oriented Architectures: The Savvy
Manager's Guide. San Francisco: Morgan
Kaufmann Publishers. ISBN 1-55860-906-7.

[2] Christensen, E., F. Curbera, G. Meredith, and S.
Weerawarana (2001), “Web Services Description
Language (WSDL) 1.1”, W3C Recommendation,
2001, http://www.w3.org/TR/2001/NOTE-wsdl-
20010315 .

[3] Clement, L. et al. (Ed.) (2004), “UDDI Version
3.0.2”, http://uddi.org/pubs/uddiv3.0.2-
20041019.htm .

[4] Mitra, N. (Ed.). (2003) “SOAP Version 1.2 Part 0:
Primer”, W3C Recommendation, 2003,
http://www.w3.org/TR/2003/REC-soap12-part0-
20030624/

[5] Akkiraju, R. et al. (2005), “Web Service Semantics:
WSDL-S”, W3C member submission, 2005;
www.w3.org/SubmissionWSDL-S/ .

[6] Cardoso, J. and A. Sheth (2003), “Semantic e-
Workflow Composition”, Journal of Intelligent
Information Systems, vol. 21, no. 3, pp. 191--225,
November 2003.

[7] Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O.,
Martin, D., McIlraith, S., Narayanan, S., Paolucci,
M., Payne, T., Sycara, K., and Zeng, H. (2001),
“DAML-S: Semantic Markup for Web Services”,
Proceedings of the International Semantic Web
Working Symposium (SWWS) (pp. 39–54).
Stanford University, California.

[8] Ganjisaffar, Y., Hassan Abolhassani, Mahmood
Neshati, Mohsen Jamali (2006), “A Similarity
Measure for OWL-S Annotated Web Services”, pp.
621-624, 2006 IEEE/WIC/ACM International
Conference on Web Intelligence.

[9] Martin et al. (2004), OWL-S: Semantic Markup for
Web Services.
http://www.w3.org/Submission/OWL-S/

[10] Dong, X., et. al. (2004): Similarity Search for Web
Services, VLDB Conference. Toronto, Canada,
www.vldb.org/conf/2004/RS10P1.PDF.

[11] Wu, Jian and Wu, Zhaohui (2005), “Similarity-
based Web service matchmaking”, 2005 IEEE
International Conference on Services Computing,
Vol. 1, pp. 287-294.

[12] Kil, Hyunyoung, Seog-Chan Oh and Dongwon Lee
(2006), “On the Topological Landscape of Web
Services Matchmaking”, VLDB Int'l Workshop on
Semantic Matchmaking and Resource Retrieval
(SMR06), Seoul, Korea.

[13] Fellbaum, Christiane (1998), The WordNet book,
WordNet: An Electronic Lexical Database.

[14] Stemming, http://en.wikipedia.org/wiki/Stemming
[15] van Rijsbergen, C.J., S.E. Robertson and M.F.

Porter (1980), New models in probabilistic
information retrieval. London: British Library.
(British Library Research and Development Report,
no. 5587).

[16] Porter, M.F. (1980), An algorithm for suffix
stripping, Program, 14 (3) pp 130−137.

[17] Fellbaum, Christiane (2007), WordNet: Connecting
words and concepts,
http://colab.cim3.net/file/work/SICoP/2007-02-
06/WordNet02062007.ppt

[18] Pedersen, Ted (2005), Word sense disambiguation,
http://www.d.umn.edu/~tpederse/WSDTutorial.html

[19] Banerjee, Satanjeev and Pedersen, Ted (2002), "An
Adapted Lesk Algorithm for Word Sense
Disambiguation Using WordNet", Lecture Notes In
Computer Science Vol. 2276, Proceedings of the
Third International Conference on Computational
Linguistics and Intelligent Text Processing, pp.
136-145, 2002. Available online at:
http://www.d.umn.edu/~tpederse/Pubs/cicling2002-
b.ps

[20] Banerjee, S. & T. Pedersen (2003), "Extended gloss
overlap as a measure of semantic relatedness",
Proceedings of the 18th International Joint
Conference on Artificial Intelligence, Acapulco,
Mexico, 9--15 August, 2003, pp. 805-810. Available
online at
http://www.d.umn.edu/~tpederse/Pubs/ijcai03.pdf

[21] Simpson, Troy and Dao, Thanh (2005), WordNet-
based semantic similarity measurement,
http://www.codeproject.com/cs/library/semanticsimi
laritywordnet.asp

[22] Pedersen, Ted, Siddharth Patwardhan & Jason
Michelizzi (2004), WordNet::Similarity --
Measuring the relatedness of concepts,
Demonstrations of the Human Language
Technology Conference of the North American
Chapter of the Association for Computational
Linguistics, Boston, Mass., 2--7 May 2004, pp. 267-
-270. Available online at
http://www.cs.utah.edu/~sidd/papers/PedersenPM04
b.pdf

[23] Wu and Palmer similarity measure,
http://search.cpan.org/src/SID/WordNet-Similarity-
1.04/lib/WordNet/Similarity/wup.pm

[24] Hierarchical Clustering,
http://www.resample.com/xlminer/help/HClst/HClst
_intro.htm

[25] Murtagh, F. (1985), Multidimensional Clustering
Algorithms, Physica-Verlag.

[26] Murtagh, F. (2002), Multivariate Data Analysis
software and resources. http://astro.u-
strasbg.fr/~fmurtagh/mda-sw

 10

[27] Chan, C.-C. and S. Santhosh (2003), "'Blem2:
Learning Bayes' Rules From Examples Using
Rough Sets," NAFIPS 2003, 22nd Int. conf. of the
North American Fuzzy Information Processing
Society, July 24 – 26, 2003, Chicago, Illinois, pp
187-190.

