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Abstract 

 
As service-oriented architecture is getting popular, 

vast numbers of web services have been developed over 
a broad range of functionalities. It becomes a 
challenging task to find the relevant or similar web 
services using web services registry such as UDDI 
manually. Current UDDI search uses keywords from 
web service and company information in its registry to 
retrieve web services. This information cannot fully 
capture user’s needs and may miss out on potential 
matches. Underlying functionality and semantics of web 
services need to be considered. In this paper, we explore 
semantics of web services using WSDL operation names 
and parameter names along with WordNet. We compute 
semantic similarity of web services and use this data to 
generate clusters. Then, we use a novel approach to 
represent the clusters and utilize that information to 
further predict similarity of any new web services. This 
approach has yielded good results and it can be 
efficiently used by web service search engines to 
retrieve similar or related web services.  
 
Keywords: Web Services, WordNet, Clustering, 
Classification 
 

1.  Introduction 
 

Web Services are widely popular and offer a bright 
promise for integrating business applications within or 
outside an organization. They are based on Service 
Oriented Architecture (SOA) [1] that provides loose 
coupling between software components via standard 
interfaces. 

Web Services expose their interfaces using Web 
Service Description Language (WSDL) [2]. WSDL is an 
XML based language and hence platform independent. 
A typical WSDL file provides information such as web 
service description, operations that are offered by a web 
service, input and output parameters for each web 
service operation. Web Service providers use a central 
repository called UDDI (Universal Description, 
Discovery and Integration) [3] to advertise and publish 
their services. Web Service consumers use UDDI to 
discover services that suit their requirements and to 
obtain the service metadata needed to consume those 
services. Users that want to use a web service will utilize 
this metadata to query the web service using SOAP 
(Simple Object Access Protocol) [4]. SOAP is a network 
protocol for exchanging XML messages or data. Since 
SOAP is based on HTTP/HTTP-S, it can very likely get 
through network firewalls. The advantages of XML and 
SOAP give web services their maximum strength.  

With web applications and portals getting complex 
and rich in functionality day after day, many users are 
interesting in finding similar web services. Users might 
want to compose two operations from different web 
services to obtain complex functionality. Also, users 
might be interested in looking at operations that take 
similar inputs and produce similar outputs. Let us say, 
web service A has an operation GetCityNameByZip that 
returns city name by zip code, web service B has an 
operation GetWeatherByCityName that returns weather 
by city name and web service C has an operation 
GetGeographicalLocationBasedOnZip that returns city 
name, longitude, latitude and altitude of a location by 
zip code. Operations from web services A and B are 
related, i.e., output from one operation can be used as an 
input to another. So, these operations can be composed 
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to obtain weather by city name. Operations from web 
services A and C are similar. They take similar inputs. 
Outputs are also similar, i.e., output of operation from 
web service C is fine grained when compared to output 
of operation from web service A.  

As more and more web services are developed, it is 
a challenge to find the right or relevant web services 
quickly and efficiently. Currently, UDDI supports 
keyword match just based on web service data entries in 
its registry. This might potentially miss out on some 
valid matches. For example, searching UDDI with 
keywords like zip code may not retrieve web service 
with postal code information.  

Semantics of a web service in terms of the 
requirements and capabilities of a web service can be 
really helpful for efficient retrieval of web services. 
WSDL does not have support for semantic 
specifications. A lot of research is done on annotating 
web services through special markup languages, to 
attach semantics to a web service. Akkiraju et al. [5] 
proposed WSDL-S to annotate web services. Cardoso 
and Sheth [6] used DAML-S [7] annotations to compose 
multiple web services. Ganjisaffar et al. [8] used OWL-S 
[9] annotations to compute similarity between web 
services. But annotating all the available web services 
manually is a time consuming task and not feasible. 

Some research has been done to extract semantics 
just based on WSDL. Normally the functionality or 
semantics of a web service can be inferred based on its 
description, operations along with parameters that these 
operations take. Dong et al. [10] built a web search 
engine called Woogle based on agglomerative clustering 
of WSDL descriptions, operations and parameters. Wu 
and Wu [11] provided a suite of similarity measures to 
assess the web service similarity. Kil et al. [12] proposed 
a flexible network model for matching web services.  

The objective of our work is to cluster and predict 
similar web services using semantics of WSDL 
operations and parameters along with WordNet [13].  
WordNet is a lexical database that groups words into 
synsets (synonym sets) and maintains semantic relations 
between these synsets. This work integrates ideas from 
[11] and [12] along with Hierarchical Clustering to 
innovatively predict similar web services.  

Since there is no publicly available web services 
dataset, we evaluated our study using a set of WSDL 
files downloaded from the Internet. The general 
structure of our approach is as follows: first, we 
organized web service descriptions, operation names and 
parameter names from WSDL into three separate excel 
files respectively. We used popular natural language pre-
processing techniques like Stop Words Removal and 
Stemming to remove unnecessary and irrelevant terms 
from the data. Then we use similarity measures from 
[11] along with WordNet to assess the similarity 

between web services. Once we obtain a similarity 
matrix of web services, we use Hierarchical Clustering 
[24, 25] to group or cluster related web services. One of 
the main contributions of this work is the representation 
of these clusters. We represent a cluster by a set of 
characteristic operations, i.e., for each web service in a 
cluster; take one characteristic operation that has 
maximum similarity to operations of other web services 
in the same cluster. This cluster representation is then 
used as a basis for predicting similarity of any new web 
services to the clusters using the nearest neighbor 
approach.  

Our application has yielded good results and can be 
used as an add-on for any web service search engine for 
efficient web service matchmaking. If user has partially 
designed a web service or has discovered a web service 
and is interested in finding web services with similar 
operations, then our application can effectively find 
related services based on interface similarity of web 
service operations and their input and output parameters. 

The remaining sections of this paper are organized 
as follows. Section 2 provides key information on 
similarity computation of web services. Section 3 
presents data collection and pre-processing. In Section 
4, we discuss WordNet based semantic similarity. It 
starts with an overview of WordNet, its organization and 
use for word sense disambiguation and explains 
similarity computation measures. Section 5 describes 
clustering of training set of web services using 
hierarchical clustering approach, cluster representation 
and prediction of similarity for web services in the test 
dataset. Section 6 discusses application setup and 
results. Conclusions are given in Section 7, followed by 
references. 
 

2.  Similarity of Web Services 
 

A web service is described by WSDL file and is 
characterized by a name, description, and a set of 
operations that take input parameters and return output 
parameters. We used this WSDL information for 
computing similarity of web services. Specifically, we 
employed interface similarity assessment suggested by 
Wu and Wu [11]. Similarity between web services is 
computed by identifying the pair-wise correspondence of 
their operations that maximizes the sum total of the 
matching scores of the individual pairs. Similarity 
between web services S1 with m operations and S2 with n 
operations is given by the following formula: 
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where O1i represents an operation from web service S1 
and O2j represents an operation from web service S2. Xij 
indicates the weight and it is set to 1, while matching 
operation O1i with operation O2j.  

To illustrate interface similarity, let us consider the 
example shown in Figure 2.1. Here web service 1 has 2 
operations, operation 11 and operation 12. Web service 
2 has 3 operations, operation 21, operation 22 and 
operation 23. We match operation 11 to operation 21, 
operation 22 and operation 23 and pick the matching 
that gives maximum similarity. Similarly, we match 
operation 12 to operations in web service 2. Then we 
sum up the maximum similarity values from both these 
matching pairs to give the similarity between web 
services.  

 

 
Figure 2.1. Matching of web service operations. 
  
Similarly, the similarity of operation pairs is 

calculated by identifying the pair-wise correspondence 
of their input/output parameter lists that maximizes the 
sum total of the matching scores of the input/output 
individual pairs. Similarity between web service 
operation O1 with m input parameters and u outputs; and 
web service operation O2 with n input parameters and v 
outputs can be given by the following formula: 
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Here I1i and I2j stand for input parameters of web 
service operation O1 and web service operation O2 
respectively. P1i and P2j stand for outputs of web service 
operation O1 and web service operation O2 respectively. 
Xij indicates the weight and it is set to 1 while matching 
input parameters I1i with I2j, and Yij is the weight and it is 
set to 1 while matching outputs P1i with P2j.  

Parameter name similarity is computed by the 
lexical similarity of their names. Lexical similarity 
between words indicates how closely their underlying 
concepts are related. Similarity between Input parameter 
I1 of Operation O1, belonging to web service S1 and 
Input parameter I2 of Operation O2, belonging to web 
service S2 can be given by the following formula: 

 
).,.(),( 2121 NameINameISimIISim LexicalParameters =  (9) 

 
Similarly, lexical similarity can be computed for 

outputs of operations O1 and O2. 
Since number of operations and in turn its 

parameters are not constant across web services, we 
normalized the similarity measures. For example, let us 
say web service A has 3 operations and web service B 
has 5 operations. Similarity between web services is 
computed according to the formula for interface 
similarity and then normalized by dividing by 3 (number 
of operations in A). This is done to normalize the effect 
of number of operations across all web services. 
Similarly, we normalized input and output parameters of 
operations.  

Next two sectons explain how web service data was 
collected and how WordNet was used along with the 
formulae mentioned in this section for similarity 
computations. 

 

 
3.  Data Pre-processing 

 
There is no publicly available web services dataset. 

So, we downloaded a set of web services in 5 domains 
from xmethods.net website. WSDL data from these web 
services is then organized into 3 excel files, one for web 
service name and description, one for web service 
operation names and another for web service input and 
output parameter names. Tables 3.1, 3.2 and 3.3 show 
the format of Excel files. Web service ID in these tables 
represents a unique numeric identifier for each web 
service. This is similar to ID column in a database table 

Web Service 1 
 

Operation11 
 

Operation 12 

Web Service 2 
 

Operation 21 
 

Operation 22 
 

Operation 23 
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represents a unique numeric identifier for each web 
service.  
 
Table 3.1: Format of Excel file with web service 
descriptions. 
WS 
ID Name 

Text 
Description 

WSDL 
Name URL 

1 
US Zip 
Validator 

Zip code 
validator USZip 

http://www.webse
rvicemart.com/us
zip.asmx 

2 

Phone 
Number 
Verificati
on service 

Phone 
number 
verifier 

Phone
3T 

http://www.webse
rvicemart.com/ph
one3t.asmx 

 
Table 3.2: Format of Excel file with web service 
operations. 

Web service ID Operation ID Name 
1 1 ValidateZip 
2 1 PhoneVerify 

 
Operation ID in Tables 3.2 and 3.3 represents a 

numeric identifier for each web service operation. 
Direction in Table 3.3 indicates whether it is an input 
parameter ‘I’ or an output parameter ‘O’. 

 
Table 3.3: Format of Excel file with web service 
operation parameters. 

Web 
service 

ID 

Operation 
ID 

Parameter Name Direction 

1 1 ZipCode I 
1 1 ValidateZipResult O 
2 1 PhoneNumber I 
2 1 PhoneVerifyResult O 

 
We use parameter flattening similar to that 

described in [12] when we come across complex data 
structures for input parameters. For example, if the input 
parameter of web service operation is a data structure 
named “PhoneVerify” that contains Phone Number field. 
Then we take Phone Number as input parameter instead 
of PhoneVerify.  

The 3 Excel files are then fed as inputs to web 
service pre-processing module. This module is a third 
party software downloaded from [21]. It internally 
removes Stop Words, uses stemming for preprocessing 
the data. 

 
3.1  Stop Words Removal 

 
A document is a vector or bag of words or terms. 

Stop Words are a list of words that are insignificant and 
can be easily removed from a document or a sentence or 
phrase. To achieve this, program is presented with a list 

of stop words that can be removed. Examples of stop 
words can be a, an, about, by, get etc. For a web service 
operation like GetWeatherByZip, significant words are 
‘Weather’ and ‘Zip’. ‘Get’ and ‘By’ do not convey a lot 
of meaning and can be safely removed. 
 
3.2  Stemming 
 

Normally terms that originate from a common root 
or stem have similar meanings. For example, the 
following words have similar meanings. 

• INTERSECT 
• INTERSECTED 
• INTERSECTING 
• INTERSECTION 
• INTERSECTIONS 
Key idea is to represent such related term groups 

using a single term, here INTERSECT by removing 
various suffixes like –ED, -ING, -ION, -IONS. This 
process of representing a document with unique terms is 
called Stemming. Stemming reduces the amount and 
complexity of the data while retrieving information. It is 
widely used in search engines for indexing and other 
natural language processing problems [14].  

Porter Stemming Algorithm [15, 16] is one of the 
most popular stemming algorithms. The basic idea is to 
take a list of suffixes and the criterion during which a 
suffix can be removed. It is simple, efficient and fast.  

Once WSDL data is pre-processed using stemming 
and stop words removal, WordNet is used in similarity 
computation of web services. More details on WordNet 
and similarity computation can be found in the next 
section. 
 

4.  WordNet Based Semantic 
Similarity 

 
This section provides an overview of WordNet and 

how WordNet is used for computing semantic similarity 
of web services. 
 
4.1  WordNet 
 

WordNet is an electronic lexical database [13, 17] 
that uses word senses to determine underlying semantics. 
It differs from the traditional dictionary in that, it is 
organized by meaning, so words in close proximity are 
related. WordNet entries are organized as mapping of 
words and its concepts.  

Multiple synonym words (synonym set or synset) 
can represent a single concept. For example, {Comb, 
Brush} are synonyms. Also, a single word can represent 
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multiple concepts (polysemy). For example, Brush can 
mean Sweep, Clash, Encounter etc.  

 
4.2  Organization of WordNet 

 
WordNet organizes synsets of nouns and verbs as 

hypernyms and hyponyms [17]. For example, animal is a 
hypernym of cow and cow is a hyponym of animal. 
Beyond this hypernym /hyponym relation, WordNet also 
provides relations such as Meronymy/holonymy 
(part/whole), is-made-of, is-an-attribute-of etc. Also, 
each concept is quantified by a short description called 
“gloss”. All these relations result in a large 
interconnection network. The logical structure of 
WordNet is shown as in Figure 4.1. 

4.3  Word Sense Disambiguation 
 

In general, a word can have multiple meanings or 
make different senses in the context where it is used. 
The object of word sense disambiguation is to determine 
the correct sense of a word. Many algorithms have been 
developed for this purpose. In the present work, we use 
Lesk algorithm [18]. The following steps can summarize 
it: 

1. Retrieve from Machine Readable Dictionary all 
sense definitions of the words to be 
disambiguated. 

2. Determine the definition overlap for all 
possible sense combinations 

3. Choose senses that lead to highest overlap 
 

 
Figure 4.1. The Logical structure of WordNet. 

 

For example, to disambiguate PINE CONE using 
the example introduced by Christiane Fellbaum 
(reproduced from [13] with author’s permission), 
 
PINE has these 2 senses 
 
1. Kinds of evergreen tree with needle-shaped leaves 
2. Waste away through sorrow or illness 
 
CONE has these 3 senses  

 
1. Solid body that narrows to a point 
2. Something of this shape whether solid or hollow 
3. Fruit of certain evergreen trees 
 

Determine all possible combination of senses and 
their scores as: 

Pine#1 ∩ Cone#1 = 0 
Pine#2 ∩ Cone#1 = 0 
Pine#1 ∩ Cone#2 = 1 
Pine#2 ∩ Cone#2 = 0 
Pine#1 ∩ Cone#3 = 2 
Pine#2 ∩ Cone#3 = 0 

Then, we can conclude that Pine1 and Cone3 are highly 
related.  

4.4  Determine Word Sense Using 
WordNet  
 

One idea to determine word sense in a given context 
by using WordNet is to look for all the paths from the 
context to the word and take the shortest one as the right 
sense. A detailed explanation of the adapted Lesk 
algorithm using WordNet can be found in [19, 20]. To 
elucidate this, consider the following example that is 
reproduced from [21] with author’s written permission: 
 

 

Figure 4.2. Illustration of WordNet structure. 

Word  Word 

Synset  Synset  

Synset 

Concept  
Concept  

Concept  

Relation type 
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In Figure 4.2, we observe that the length between 
car and auto is 1, car and truck is 3, car and bicycle is 4, 
and car and fork is 12. 
 
4.5  Measure Words Similarity Using 
WordNet 
 

There are six measures to obtain similarity between 
words using WordNet. As described in [22], three of the 
six measures are based on the information content of the 
Least Common Subsumer (LCS) of concepts. 
Information content is a measure of the specificity of a 
concept, and the LCS of concepts A and B is the most 
specific concept that is an ancestor of both A and B. 
Three similarity measures are based on path lengths 
between a pair of concepts. 

In the present study, we use Wu & Palmer similarity 
measure [23]. According to this measure, similarity 
between two concepts is the path length to the root node 
from the least common subsumer of the two concepts. 
Least common subsumer is the most specific concept 
that two concepts share as an ancestor.  

In Figure 4.2, the LCS of {car, auto} and {truck} is 
{automotive, motor vehicle}, since the {automotive, 
motor vehicle} is more specific than the common 
subsumer {wheeled vehicle}. 

For synsets S1 and S2, it can be given by the 
formula: Similarity Score = 2*depth (LCS) / (depth (S1) 
+ depth (S2)). 

Similarity score is in the range 0 < score <= 1. It 
can never be zero because depth of the LCS is never 
zero (the depth of the root of taxonomy is one). The 
score is one if the two input synsets are the same.  

4.6  WordNet Based Similarity of Web 
Services 
 

As we know from Section 2, parameter similarity is 
determined by the lexical similarity of parameter names. 
We use 3rd party similarity computation software module 
from [21] along with WordNet for this purpose. Figure 
4.3 illustrates the flowchart for the pre-processing and 
similarity computation that we used in this study. Once 
parameter similarity is obtained, then we compute 
operation similarity and web service similarity using the 
formulae mentioned in Section 2. Similarity matrix for 
web services thus computed is used as basis for 
clustering or grouping similar web services.  

 

 
Figure 4.3. WordNet based Similarity computation. 
 
 

5.  Clustering and Classification of 
Web Services 

 
Clustering is the process of partitioning data into 

groups of similar objects or clusters. It is an 
unsupervised learning technique that is widely used in 
Artificial Intelligence, Data mining etc. It aims to 
discover patterns taking into account the entire data. 
There are no pre-defined conditional and decision 
variables. Members within a cluster are more similar or 
related to each other and different from members of 
other clusters.  

Clustering is used in our work to identify related or 
similar web services. There are many different 
approaches to clustering. In the present work, we use 
agglomerative or bottom-up Hierarchical Clustering 
method [24, 25]. In this method, initially each web 
service is treated as belonging to a cluster. Then we use 
similarity matrix of web services in the training dataset 
to determine the nearest neighbors. Nearest clusters are 
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then merged into one cluster. This process is repeated 
and in the end all the web services merge to a single 
cluster. 

We used adapted version of Hierarchical Clustering 
program available at [26] for clustering web services. 
We employed a couple of approaches to use this 
clustering information to predict similarity of web 
services in the test dataset.  

 
5.1  Classification of web services 
 

First, we tried to generate rules from the generated 
clusters using rule-based algorithm BLEM2 [27]. Web 
service operation name and parameter names are taken 
as condition attributes and cluster number as the 
decision attribute. Since the number of parameters is not 
constant across all web services, we have to treat some 
of the attributes as don’t cares in the training set. To 
illustrate this, let us take web service 1 with operation A 
and web service 2 with operation B. Also, assume that 
operation A has 5 parameters (4 input parameters and 1 
output parameter) and operation B has 3 parameters (2 
input parameters and 1 output parameter). We take the 
maximum number of parameters of all web service 
operations, here 5, as condition attributes. So, when we 
represent operation B we take its 3 parameters as 
condition attributes and treat rest of the columns, as 
don’t cares. As expected, this kind of training set would 
cause problems for most classifier learning algorithms, 
because too many don’t cares entries are artificially 
inserted into the training set.  

Since classification from rule-based classifier did 
not yield good results, we tried a different approach to 
predict similarity of web services in the test dataset. 
Initially, we represent each cluster by a set of 
characteristic operations of its member web services. To 
obtain this set of characteristic operations, i.e., for each 
web service in a cluster; take one characteristic 
operation that has maximum similarity to operations of 
other web services in the same cluster. For example, say 
a cluster has grouped two web services "Electronic 
Directory Assistance" and "Weather by City". 
“Electronic Directory Assistance” has 3 operations 
namely ResidentialLookup, BusinessLookup, 
LookupByAddress. “Weather by City” has 2 operations 
namely GetWeatherByCity, GetWeatherByCityXml. If 
similarity between ResidentialLookup and 
GetWeatherByCity is the highest, then we represent the 
cluster by these 2 most similar operations (1 operation 
per web service). If a cluster has only one web service, 
then we take one web service operation that is very 
dissimilar to operations of web services in other clusters. 
This cluster representation is then used as a basis for 
predicting similarity of any new web services to the 

clusters using the nearest neighbor approach. To 
elucidate, we compute interface similarity between 
operations of each test web service and characteristic 
operations of clusters and find the nearest cluster. This 
approach yielded good results. 

 

6.  Experimental Results 
 

To setup the application, first WordNet needs to be 
installed. WordNet can be downloaded from 
http://wordnet.princeton.edu/obtain website. We use C#. 
NET to implement our application.  

There is no publicly available web services dataset 
on the Internet. So, we have downloaded a small set of 
web services from xmethods.net website. It was tedious 
to dig through WSDL files and organize data into three 
excel files as mentioned in Section 3. Table 6.1 
represents our training set of web services. Our 
clustering algorithm generated 5 clusters based on 
interface similarity of these web services. These clusters 
are represented in Figure 6.1. 

We came up with a novel idea of representing the 
clusters by the most similar operations (1 operation per 
web service) of web services in that cluster. If there is 
only one web service in a cluster, then we select an 
operation that is very dissimilar to operations in other 
clusters. Table 6.2 lists the characteristic operations for 
clusters represented in Figure 6.1. 
 

Table 6.1: Training dataset. 

Web 
service ID Name Text Description 

1 US Zip Validator Zip code validator 

2 
Phone Number 

Verification service 
Phone number 

verifier 

3 
StrikeIron Foreign 

Exchange Rates 

Current and 
historical foreign 
exchange rates 

4 U.S. Yellow Pages 

Access to yellow 
pages listings for 
17 million U.S. 

businesses 

5 City and State by ZIP 

Finds the City and 
State for a given 

ZIP code 

6 
Electronic Directory 

Assistance white pages 

7 Weather by City 

Enter a city name 
and instantly 

receive the current 
day’s weather 

report. 

8 Forecast by ZIP Code 

Enter a U.S. ZIP 
code and instantly 
receive the 10-day 
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weather forecast. 
 
 
 

 

Cluster 1 
 

US Zip Validator, 
Forecast by ZIP 

Cod 

Cluster 2 
 

Phone 
Number 

Verification 
service, 

U.S. Yellow 
Pages 

Cluster 3 
 

StrikeIron Foreign 
Exchange Rates 

Cluster 4 
 

City and State by 
ZIP 

Cluster 5 
 

Electronic Directory 
Assistance, 

Weather by City 

Figure 6.1. Clusters obtained from training data. 

 
 
 

Table 6.2: Clusters and their characteristic operations. 
Cluster 

# 
Operation Web Service 

1 ValidateZip US Zip 
Validator 

1 GetForecastByZip Forecast by ZIP 
Code 

2 PhoneVerify Phone Number 
Verification 

service 
2 ReversePhoneLookup U.S. Yellow 

Pages 
3 GetAllLatestRatesToUSD StrikeIron 

Foreign 
Exchange Rates 

 
4 GetCityStateByZip City and State 

by ZIP 
5 GetWeatherByCityXml Weather by City 
5 ResidentialLookup Electronic 

Directory 
Assistance 

 
We downloaded a set of web services to test our 

idea. We organized the WSDL data into 3 files as 
mentioned in Section 3. Similarly, we created another 
set of 3 files for representing the clusters. Then our 
program computed interface similarity between clusters 
and the test web services and found closest cluster to 
each test web service based on nearest neighbor 
approach. Table 6.3 represents test web services, their 
predicted nearest clusters, cluster members and the 

actual clusters. Actual cluster values are given based on 
semantic similarity of web service descriptions. Our 
approach yielded good results and accuracy is 70%. 

 

Table 6.3: Test web services and nearest clusters. 

Test Web Service Nearest 
cluster # 

Web Services in 
Cluster 

Actual 
Cluster # 

FastWeather 1 US Zip 
Validator, 

Forecast by ZIP 
Code 

1 

Currency 
Convertor 

3 StrikeIron 
Foreign 

Exchange Rates 

3 

StrikeIron 
Reverse Phone 

Residential Intel 

5 Weather by City, 
Electronic 
Directory 
Assistance 

5 

DOTS Yellow 
Pages 

3 StrikeIron 
Foreign 

Exchange Rates 

2 

PHONEval 2 Phone Number 
Verification 

service 

2 

Levelsoft 
GeoServices 

Global Weather 
Service 

2 Phone Number 
Verification 

service 

1 

Zip Codes 1 US Zip 
Validator, 

Forecast by ZIP 
Code 

1 

StrikeIron ZIP 
Code 

Information 

4 City and State by 
ZIP 

4 

 

7.  Conclusions 
 

We developed an application for effectively finding 
similar or related web services. It can be used as an add-
on to any web service search engine with UDDI 
repository. We used semantics of WSDL along with 
WordNet to compute similarity between various web 
services. For web services in the training set, we 
computed similarities and clustered the data using 
Hierarchical Clustering. Next, we represented each 
cluster by a set of characteristic operations. Then we 
used these cluster representations to evaluate similarity 
of any new web services using nearest neighbor 
approach. This has yielded good results and accuracy is 
70% for our test data. At present, there is no publicly 
available web services dataset. More work can be done 
in future with evaluating our approach, when such a 
dataset becomes available. Also, we would like to 
compare our approach with other dimensionality 
reduction techniques while choosing the key operations 
of a cluster. 

 



 

 9 

8.  References 
 
[1] Barry, Douglas K. (2003). Web Services and 

Service-Oriented Architectures: The Savvy 
Manager's Guide. San Francisco: Morgan 
Kaufmann Publishers. ISBN 1-55860-906-7.   

[2] Christensen, E., F. Curbera, G. Meredith, and S. 
Weerawarana (2001), “Web Services Description 
Language (WSDL) 1.1”, W3C Recommendation, 
2001, http://www.w3.org/TR/2001/NOTE-wsdl-
20010315 . 

[3] Clement, L. et al. (Ed.) (2004), “UDDI Version 
3.0.2”, http://uddi.org/pubs/uddiv3.0.2-
20041019.htm . 

[4] Mitra, N. (Ed.). (2003) “SOAP Version 1.2 Part 0: 
Primer”, W3C Recommendation, 2003, 
http://www.w3.org/TR/2003/REC-soap12-part0-
20030624/  

[5] Akkiraju, R. et al. (2005), “Web Service Semantics: 
WSDL-S”, W3C member submission, 2005; 
www.w3.org/SubmissionWSDL-S/ . 

[6] Cardoso, J. and A. Sheth (2003), “Semantic e-
Workflow Composition”, Journal of Intelligent 
Information Systems, vol. 21, no. 3, pp. 191--225, 
November 2003.  

[7] Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O., 
Martin, D., McIlraith, S., Narayanan, S., Paolucci, 
M., Payne, T., Sycara, K., and Zeng, H. (2001), 
“DAML-S: Semantic Markup for Web Services”, 
Proceedings of the International Semantic Web 
Working Symposium (SWWS) (pp. 39–54). 
Stanford University, California. 

[8] Ganjisaffar, Y., Hassan Abolhassani, Mahmood 
Neshati, Mohsen Jamali (2006), “A Similarity 
Measure for OWL-S Annotated Web Services”, pp. 
621-624, 2006 IEEE/WIC/ACM International 
Conference on Web Intelligence. 

[9] Martin et al. (2004), OWL-S: Semantic Markup for 
Web Services. 
http://www.w3.org/Submission/OWL-S/  

[10] Dong, X., et. al. (2004): Similarity Search for Web 
Services, VLDB Conference. Toronto, Canada, 
www.vldb.org/conf/2004/RS10P1.PDF. 

[11] Wu, Jian and Wu, Zhaohui (2005), “Similarity-
based Web service matchmaking”, 2005 IEEE 
International Conference on Services Computing, 
Vol. 1, pp. 287-294. 

[12] Kil, Hyunyoung, Seog-Chan Oh and Dongwon Lee 
(2006), “On the Topological Landscape of Web 
Services Matchmaking”, VLDB Int'l Workshop on 
Semantic Matchmaking and Resource Retrieval 
(SMR06), Seoul, Korea. 

[13] Fellbaum, Christiane (1998), The WordNet book, 
WordNet: An Electronic Lexical Database. 

[14] Stemming, http://en.wikipedia.org/wiki/Stemming 
[15] van Rijsbergen, C.J., S.E. Robertson and M.F. 

Porter (1980), New models in probabilistic 
information retrieval. London: British Library. 
(British Library Research and Development Report, 
no. 5587). 

[16] Porter, M.F. (1980), An algorithm for suffix 
stripping, Program, 14 (3) pp 130−137.  

[17] Fellbaum, Christiane (2007), WordNet: Connecting 
words and concepts, 
http://colab.cim3.net/file/work/SICoP/2007-02-
06/WordNet02062007.ppt  

[18] Pedersen, Ted (2005), Word sense disambiguation, 
http://www.d.umn.edu/~tpederse/WSDTutorial.html  

[19] Banerjee, Satanjeev and Pedersen, Ted (2002), "An 
Adapted Lesk Algorithm for Word Sense 
Disambiguation Using WordNet", Lecture Notes In 
Computer Science Vol. 2276, Proceedings of the 
Third International Conference on Computational 
Linguistics and Intelligent Text Processing, pp. 
136-145, 2002. Available online at: 
http://www.d.umn.edu/~tpederse/Pubs/cicling2002-
b.ps   

[20] Banerjee, S. & T. Pedersen (2003), "Extended gloss 
overlap as a measure of semantic relatedness", 
Proceedings of the 18th International Joint 
Conference on Artificial Intelligence, Acapulco, 
Mexico, 9--15 August, 2003, pp. 805-810. Available 
online at 
http://www.d.umn.edu/~tpederse/Pubs/ijcai03.pdf  

[21] Simpson, Troy and Dao, Thanh (2005), WordNet-
based semantic similarity measurement, 
http://www.codeproject.com/cs/library/semanticsimi
laritywordnet.asp 

[22] Pedersen, Ted, Siddharth Patwardhan & Jason 
Michelizzi (2004), WordNet::Similarity -- 
Measuring the relatedness of concepts, 
Demonstrations of the Human Language 
Technology Conference of the North American 
Chapter of the Association for Computational 
Linguistics, Boston, Mass., 2--7 May 2004, pp. 267-
-270. Available online at 
http://www.cs.utah.edu/~sidd/papers/PedersenPM04
b.pdf  

[23] Wu and Palmer similarity measure, 
http://search.cpan.org/src/SID/WordNet-Similarity-
1.04/lib/WordNet/Similarity/wup.pm   

[24] Hierarchical Clustering, 
http://www.resample.com/xlminer/help/HClst/HClst
_intro.htm  

[25] Murtagh, F. (1985), Multidimensional Clustering 
Algorithms, Physica-Verlag. 

[26] Murtagh, F. (2002), Multivariate Data Analysis 
software and resources. http://astro.u-
strasbg.fr/~fmurtagh/mda-sw 



 

 10 

[27] Chan, C.-C. and S. Santhosh (2003), "'Blem2: 
Learning Bayes' Rules From Examples Using 
Rough Sets," NAFIPS 2003, 22nd Int. conf. of the 
North American Fuzzy Information Processing 
Society, July 24 – 26, 2003, Chicago, Illinois, pp 
187-190. 

 


