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Abstract-Protein secondary structure can be used 
to help determine the tertiary structure via the fold 
recognition. Predicting the secondary structure from 
the protein sequence has attracted the attention of 
many researchers. Support Vector Machine (SVM) is 
a new learning algorithm based on statistical 
learning theory that has been successfully applied to 
the protein secondary structure prediction problem. 
However, the algorithm takes a long time to train the 
prediction model with a large data set. It becomes 
important to revise the method so that the time 
performance is improved while the accuracy 
performance is maintained. In this study, we 
implement a genetic algorithm to cluster the data set 
before the structure classification is predicted. Using 
position specific scoring matrix as part of the input, 
the hybrid method achieves good performances 
through 7-fold cross validation tests on a set of 513 
non-redundant protein sequences (the CB513 data 
set). The result is comparable to that of the existing 
best prediction, yet the time spent is substantially 
reduced. 
 
Keyword: Secondary structure prediction, support 
vector machine, clustering. 
 
1. Introduction 
 

A protein is determined by the sequence (called 
the primary structure) of amino acids that make up 
the protein, and uses its tertiary structure (3-D 
structure) to carry out different biological tasks. 
Knowing the structure of a protein will take us less 
time and investment to develop new drugs. Besides 
experimental methods, one can use several 
knowledge-based methods to predict the tertiary 
structure of a protein from its primary structure. A 
protein frequently mutates faster in its sequence than 
its structure will evolve. Predicting a protein’s 
tertiary structure from the sequence is nontrivial. The 
secondary structure of a protein is simpler than the 
tertiary structure and is found to have important 
influences on the tertiary structure. This is reflected 
in the fold recognition based paradigm for tertiary 
structure prediction. 

The development of protein secondary structure 
prediction until now has almost 50 years of history; 
the prediction accuracy continues to rise [14]. 

Researchers proposed different solutions to improve 
the performance at every step. 

The pre-processing of data is very important in 
secondary structure prediction and it influences the 
prediction accuracy critically [14, 16]. Several 
researches focused on this part to improve the 
accuracy performance. Rost & Sander [15] proposed 
the PHD algorithm using profiles from HSSP [18] as 
input and the prediction accuracy broke the 70% 
benchmark. Jones [9] proposed PSIPRED using 
Position Specific Scoring Matrix (PSSM) generated 
from PSI-BLAST [2] as input and the prediction 
accuracy broke the 75% benchmark. 

On the computational side, researchers are 
devising new algorithms to improve the prediction 
results. Machine learning methods are frequently 
used to predict secondary structures because of the 
availability of more quality structure data and the fast 
advancement of the algorithms. Artificial neural 
networks (ANN) [9, 12, 15] and support vector 
machines (SVM) [8, 11] are two such methods. 

Previous researches focused on the accuracy 
performance by using different inputs and prediction 
algorithms, however they did not look at the time 
performance problem. This problem is nontrivial 
when ANN or SVM is used to train a large data set. 
Clustering is a common technique used in data 
mining to preprocess a large data set. The objective 
of clustering is to partition data into clusters of 
similar data so that finer analysis can be performed 
in each cluster. This partitioning step may provide 
two advantages for the eventual analysis of data: (i) 
since each cluster is smaller in size than the original 
data set, the training time of a prediction analysis in 
each cluster may be substantially reduced; and (ii) 
since data in each cluster are more similar to one 
another, it might be easier to perform further analysis 
in the cluster by avoiding the noises problem. 

In this study we propose a hybrid method to solve 
the time performance issue without affecting the 
accuracy performance. The paper is organized as 
follows. In section 2, we discuss the data and 
algorithms used in this study. Section 3 is devoted to 
the discussion of the experimental results. We 
conclude with a few remarks in section 4. 
 
2. Materials and Methods 
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2.1. Data set 
 

Many data sets are available for the experiment, 
e.g. RS126 [15], CB396 and CB513 [4] and CASP 
[12], etc. Different researchers have reported 
different prediction rates using different data sets. In 
order to compare with recent studies in secondary 
structure prediction, we selected the CB513 set in 
this study. This data set combines CB396 and RS126 
by removing 9 sequences from the latter data set. 
Protein sequences in the CB513 set are non-
redundant. There are 84119 residues in these protein 
sequences, and the percentages of helix, sheet and 
coil secondary structures are roughly 34.6%, 21.3% 
and 44.1%. A 7-fold cross validation is used in this 
study like previous researches [8, 11]. 
 
2.2. Clustering of protein sequences 
 

Clustering is used to partition a large data set into 
clusters so that each cluster contains more 
homogeneous data. Traditional techniques include 
two categories: hierarchical and partitional. 
Hierarchical techniques split or merge data in order 
to form a dendrogram. Since hierarchical methods 
generally consume more computing resources and 
they do not provide cluster representative points, we 
selected partitional methods to cluster training sets of 
the CB513. A partitional method uses cluster 
representative points (called medoids) to attract 
cluster members. A performance measure is used to 
judge the goodness of the partition. We will use a k-
means like performance measure in our study. 

First of all, the similarity between two proteins is 
obtained by aligning the sequences using dynamic 
programming (DP). The PAM250 matrix is used to 
measure the substitution rates of amino acids in DP. 
Let sim(si, sj) denote the alignment score between 
sequences si and sj; the larger this number is, the 
more similar these two sequences are according to 
the PAM250 matrix. Suppose we are partitioning the 
full CB513 data set of protein sequences into c 
clusters, then we measure the clustering performance 
given by a set V of c medoids R1, …,Rc according to 
the following function: 
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Here Rj(i) is the protein from V that is most similar to 
the sequence si according to the similarity measure 
defined above. Each medoid Rj is a protein sequence 
from the CB513 set, and our objective is to maximize 
this performance measure by finding a proper set V. 
This performance measure is similar to that of the 
famous k-means method. Though it is a 
combinatorial optimization problem – choosing the 
best combination of c sequences from the 513 
sequences to maximize the performance measure, an 

exhaustive search method is not appropriate when c 
is moderate. We employ a robust search algorithm, 
the genetic algorithm, to find the near optimal 
solution for the clustering problem. In this study, we 
set c to 3 since it produced the best prediction 
accuracy in a sample study. Another reason for 
setting this number of c is explained in section 3.2 
regarding the jury method. 
 
2.3. Data encoding 
 

Several methods are available to assign the 
secondary structure of a protein sequence with 
known tertiary structure, e.g. DSSP [10] and 
DEFINE [13], etc. We selected DSSP as it is the 
most widely used secondary structure definition 
program. DSSP assigns residues to eight different 
classes, which are H (α-helix), G (310-helix), I (π-
helix), E (β-strand), B (isolated β-bridge), T (turn), S 
(bend), and - (the rest). Reducing from eight classes 
to three classes of helix (H), sheet (E), and coil (C) is 
an important step in the encoding of structure data 
[16]. Two popular reduction methods are: (i) H, G, I 
to H; E to E; all other states to C; and (ii) H, G to H; 
E, B to E; all other states to C [8]. In CB513, method 
(ii) yields many discrete states such as CEC, CEH, 
and HEC while method (i) does not. So, reduction 
method (i) is adopted in this study. 
 
2.3.1.  Position Specific Scoring Matrix (PSSM). 
As Rost and Sander have pointed out in [16] that 
using evolutionary information such as the profile as 
the input for structure prediction can improve 5-10% 
over the second generation prediction method that 
uses the sliding window alone. Since sequence data 
generally mutate faster than the structure data, if we 
can detect more homologous sequences with low 
sequence identity, then the inferred evolutionary 
information will be very useful in the structure 
prediction. Altschul et al. [2] proposed the Position 
Specific Iterated BLAST (PSI-BLAST) algorithm to 
detect more homologous sequences than BLAST [1], 
which was used to construct the profile in Rost and 
Sander’s study [15]. Thus the PSSM generated from 
PSI-BLAST may contain more evolutionary 
information than the profile or the sequence alone, 
and will provide more useful information for the 
prediction algorithm [9, 11]. The PSI-BLAST 
program should use a large database of protein 
sequences to obtain useful evolutionary information 
in PSSM. We used the stand-alone edition of PSI-
BLAST and the NCBI non-redundant (nr) database 
to get the PSSM of each sequence in CB513. During 
this preprocessing step, a setting of 3-iteration and 
the default E-value were adopted in PSI-BLAST. 
 
2.3.2.  Relative frequencies of secondary structures 
in residues. Even though the three secondary 
structures H, E and C appear in typical data sets with 
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the ratio approximately equal to 3:2:5 [16], they do 
appear differently in each residue. Table 1 from [3] 
lists the relative frequencies of the three secondary 
structures in each residue. This statistics will be used 
as part of the input data to the prediction problem. 
 

Table 1. Relative frequencies of  secondary 
structures in each residue [3] 

Residue Helix (H) Sheet (E) Coil (C) 
A 
R 
N 
D 
C 
Q 
E 
G 
H 
I 
L 
K 
M 
F 
P 
S 
T 
W 
Y 
V 

1.41 
1.21 
0.76 
0.99 
0.66 
1.27 
1.59 
0.43 
1.05 
1.09 
1.34 
1.23 
1.30 
1.16 
0.34 
0.57 
0.76 
1.02 
0.74 
0.90 

0.72 
0.84 
0.48 
0.39 
1.40 
0.98 
0.52 
0.58 
0.80 
1.67 
1.22 
0.69 
1.14 
1.33 
0.31 
0.96 
1.17 
1.35 
1.45 
1.87 

0.82 
0.90 
1.34 
1.24 
0.54 
0.84 
1.01 
1.77 
0.81 
0.47 
0.57 
1.07 
0.52 
0.59 
1.32 
1.22 
0.90 
0.65 
0.76 
0.41 

 
2.3.3.  Encoding of the input data. In this study, the 
PSSM of a sliding window around and the relative 
structure frequencies of the center residue will be 
used as the input to the prediction algorithm. The 
length of the window affects the prediction accuracy 
[8]. If the window is too short, then useful 
information from neighboring residues is lost. On the 
other hand, if the length is too large, then noises may 
affect the prediction accuracy. In most cases, the 
length of the sliding window is between 7 and 17, 
and the best length is usually obtained by the trial-
and-error procedure. In this study, the length of the 
sliding window was between 11 and 17, and we 
found that 15 yielded the best prediction result. A 
sliding of 15 will be used in the following study. 
 
2.4. Support vector machines 
 

Vapnik and his coworker, based on statistical 
learning theory, proposed a novel method called 
Support Vectors Machines (SVMs) to perform data 
classification and regression [19]. Because of the 
high performance, SVM is receiving the attentions of 
more researchers in bioinformatics. 

Many learning algorithms including Artificial 
Neural Networks (ANNs) implement the empirical 
risk minimization (ERM) principle to learn the 
prediction model. The empirical risk Remp[f] in eqn. 
(2) is given by the fitting error of the model f with 
the training data. 

∑ −=
=

l
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Vapnik proved a type of error estimate in the 
following equation, 

 
capacityfRfR emp +≤ ][][                                      (3) 

where the expected risk  
is the average actual error according to the model f 
over the test samples drawn from the distribution P(x, 
y). The training samples are assumed to have the 
same distribution function. SVM tries to control both 
the empirical error and the generalization error 
(controlled by the capacity term in eqn. (3)) at the 
same time. Using the structure risk minimization 
(SRM) principle, SVM finds a balance between the 
fitting power of a learning function on the training 
data and the complexity of the learning function [19]. 
Therefore SVM can avoid the overfitting problem 
frequently encountered in ANN. Because of this 
special property of SVM, we employ SVM as the 
classification algorithm in the secondary structure 
prediction problem. 

∫ −= ),(|)(|][ yxdPyxffR

SVM was originally designed for binary 
classification. Since proteins have three different 
types of secondary structures according to our 
reduction method above, some modification of the 
SVM usage is necessary. Researchers have proposed 
different methods to solve the multi-class problem [6, 
7]. One of them is to combine several binary 
classifiers to construct the tertiary classifier. This 
type of solution will be called the combination 
method. The other type of solution is to solve the 
multi-class problem directly by extending the 
original SVM theory. We will call the latter type the 
decomposition method. 

We used the open source software BSVM [6, 7] 
to train a model from the training data, and made 
prediction on the test data. A radial basis function 
(RBF) kernel was adopted for the BSVM, and we 
used a soft margin to handle the noises. This left us 
with two hyper-parameters C (the regularization 
parameter that controls the weight of the fitting error) 
and γ (the width of the Gaussian function) to 
determine. BSVM provides a tool to determine these 
values optimally. It was found that the best result was 
given by the choice where C = 1.5 and γ = 0.15. 
 
2.5. A hybrid method for secondary 

structure prediction 
 

A hybrid method for the secondary structure 
prediction problem is proposed as follows: 

1. Partition the training set according to the 
clustering section by finding the proper 
medoids. 

2. Train a SVM prediction model using the 
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data encoding method stated above for each 
cluster of the training set. 

3. Assign a test sequence to a proper cluster 
and use the prediction model from that 
cluster to predict the secondary structure of 
the sequence. 

Further information of this hybrid approach will 
be detailed in the next section. 
 
3. Results and Discussions 
 
3.1. Prediction accuracy assessment 
 

A couple of indicators may be used to evaluate 
the performance of secondary structure prediction, 
e.g. the three-state single residue accuracy (Q3); for i 
= H, E or C, the percentage of residues observed in 
state i ( Q ), the percentage of residues predicted in 
state i (

obs
i

pre
iQ ), Mathews correlation coefficient (ci), 

and the segment overlap measurement (Sov). Rost & 
Sander [17] proposed the Sov in 1994 as a way to 
measure the prediction accuracy. In 1999 Zemla et al. 
[20] modified the original Sov definition by 
redefining δ(s1, s2) and the normalization factor N(i). 
Zemla's definition is more rigorous than Rost & 
Sander's original definition. In order to distinguish 
these two definitions, we refer to Rost & Sander's 
definition as Sov94 and Zemla's definition as Sov99.  
 
3.2. Comparison with other studies 
 

Table 2 summarizes results of 7-fold cross 
validation tests from various studies using SVM on 
the CB513 data set. Except the first two rows, all 
other results are obtained in this study. We can 
inspect the results from three perspectives: (i) the 
input variables for the SVM classifier (the PSSM + 
structure frequencies vs. PSSM vs. profiles); (ii) the 
method used to construct the tertiary classifier (the 
combination method vs. decomposition method); and 
(iii) the segmentation of data set (clustered vs. non-
clustered data set). 

In the input variables perspective, Hua & Sun 
(row 1) used profiles of the sliding window as input; 
Kim & Park (row 2) used PSSM of the sliding 
window as input; we used both the PSSM of the 
sliding window and the relative structure frequencies 
of the center residue as input. From rows 1, 2, 3 and 
5, we can see that using PSSM is more advantageous 
than the profiles approach (3% increase in accuracy), 
and adding the relative frequencies will improve the 
result slightly (1% increase). 

Regarding the construction of tertiary classifiers, 
both Hua & Sun [8] and Kim & Park [11] used the 
combination method to construct tertiary classifiers. 
We used the decomposition (row 3) and combination 
(row 5) methods to solve the multi-class problem in 
SVM. The combination method is a little bit more 

accurate than the decomposition method. 
In the segmentation of data set, all previous 

studies including Hua & Sun and Kim & Park used 
the non-clustered training set in the cross validation 
test. Training a SVM prediction model is converted 
to a quadratic programming problem [19]. When the 
training set is large, it takes the algorithm substantial 
time to learn the model. For example, using the 
decomposition method took us more than a week to 
finish a 7-fold cross validation test on the CB513 
without the clustering preprocessing. On the other 
hand, if we adopt the hybrid method, the total time 
for a 7-fold cross validation test is less than a day. In 
rows 7-10 of Table 2, global alignments were used in 
DP to compute the similarity measure between two 
protein sequences, while in rows 11-14, we used the 
local alignments in DP. 

We now describe the hybrid approach in further 
details. First of all, we separated the CB513 data set 
into the training set (6/7 of CB513) and the test set 
(the remaining CB513). The roles of training and test 
sets will be rotated according to a 7-fold cross 
validation procedure. The partitional clustering 
method of section 2.2 was applied to the training set 
(approximately 440 protein sequences) of CB513. 
We assumed three clusters are to be located in the 
partitioning, and used the genetic algorithm to find 
the medoids and their associated cluster members. A 
prediction model was built for each cluster via the 
decomposition approach by using the BSVM 
software. In rows 7 and 11 of Table 2, each sequence 
from the test set was categorized to the cluster 
corresponding to the nearest medoid, and the 
prediction model from that cluster was used to 
predict the structure of this test sequence. 

The prediction accuracy of Q3 is reduced by 
about 1.5% using this basic hybrid approach. In 
order to minimize the possible errors caused by 
incorrectly categorizing a test sequence using the 
medoids, we also experimented a jury modification 
of the hybrid method. Since the prediction models of 
all clusters have been trained, we can quickly predict 
the structure of the test sequence using these three 
models. If two of the models predict the residue with 
the same structure say C (coil), then we will assign C 
to this residue. On the other hand, if these models 
assign three different structures, H, E and C, to the 
residue, then we will assign H to the residue. Using a 
3-cluster segmentation allowed us to implement this 
jury assignment easily. Rows 9 and 13 of Table 2 
show that the jury modification can increase the 
accuracy by about 1%. 

The time spent in the genetic clustering of the 
training set is negligible compared to the time spent 
in training the SVM models. Clustering, as a 
preprocessing of the data, has reduced the training 
time substantially without sacrificing the accuracy 
performance too much when a jury modification of 
the hybrid method is implemented. 
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The results in Table 2 also indicate that the 
prediction accuracies of H and C are higher than E; 
this finding is consistent with previous studies. Our 
Mathews correlation coefficients of the three classes 
are better than other’s. The Sov99 results of our 
experiment are lower than Kim & Park’s result. 
When we examined our predicted results more 
carefully, we found that there were a few discrete 
states like CHE, EHE, HEC or HEH in the predicted 
results. Because a α-helix contains at least three 
consecutive Hs, these kinds of discrete states are 
unreasonable in the real world. Using this type of 
knowledge from molecular biology, we post-
processed the prediction and the results are shown in 
rows with the KB suffix in Table 2. The Sov99 scores 
of our experiments rise to beat Kim & Park’s. It is 
also interesting to note that the Q3 score and other 
indicators are improved as well. 
 
4. Conclusions 
 

From this study of the protein secondary structure 
prediction problem, we conclude that a few actions 
may be used to improve the accuracy and time 
performances of the prediction problem: (i) using 
proper variables as input can increase the accuracy, 
e.g. using the PSSM of the sliding window and the 
relative structure frequencies improves the prediction 
rate by about 1-3%; (ii) pre-processing the training 
set by a clustering procedure can substantially reduce 
the training time of SVM models; and (iii) post-
processing the prediction by using knowledge from 
molecular biology can remove certain unreasonable 
cases from the prediction and hence improve the 
prediction accuracy. 

Clustering, as a preprocessing step to reduce the 
data size and increase the homogeneity of data in a 
cluster, has been used frequently in data mining field 
before a classification analysis is performed. In this 
study, we proposed a hybrid method to predict the 
secondary structure of a protein sequence from its 
primary structure. We clustered the training set by 
using a partitional technique, trained SVM prediction 
models for the clusters, assigned test sequences to 
appropriate clusters and predicted the structure using 
the corresponding models. The basic hybrid method 
reduced the prediction rate by about 1.5%, while the 
experimental time was reduced substantially. Using 
the jury modification of the hybrid method improved 
the accuracy by about 1% with a small add up to the 
processing time. 

One may argue that the more data available to 
train the SVM prediction model, the more accurate 
the model will predict. For example, using the full 
training set to build the SVM model seemed to 
predict better than the hybrid method. We do agree 
that the more sequence data available for finding 
homologous sequences in the PSI-BLAST program, 
the more evolutionary information the PSSM will 

contain for structure prediction. This is the reason 
why we used the nr database in NCBI to compute the 
PSSM. However, just like a classification problem in 
data mining, we may ask: will irrelevant sequences 
from other clusters cause the noises problem in 
addition to the lengthy training time issue in the 
secondary structure prediction problem? 

Adding the clustering procedure as the 
preprocessing step of data classification may 
introduce two issues in the classification problem: (i) 
the cluster assignment problem. A test data may be 
categorized into the wrong cluster; and (ii) the 
compatibility issue between the clustering procedure 
and the classification algorithm. In the secondary 
structure prediction problem, we found that a jury 
method can be used to alleviate the false 
categorization problem. On the other hand, how to 
ensure that the clustering result is compatible with 
the later classification analysis remains an issue that 
merits further investigation in a hybrid method. 
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12. Local + KB 76.1 74.4 60.9 84.7 84.8 77.3 71.0 0.70 0.61 0.57 82.3 72.4 
13. Local + Jury 76.9 74.8 62.0 85.7 86.0 78.4 71.6 0.71 0.63 0.58 88.0 70.5 
14. Local + Jury + KB 77.0 74.8 61.5 86.1 86.4 79.1 71.3 0.71 0.63 0.58 82.4 73.8 
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